mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-04 04:43:01 +01:00
29e801c381
Evaluate simpler MATH500 responses with gemini 1.5 flash This improves both the speed and cost of running this eval
516 lines
19 KiB
Python
516 lines
19 KiB
Python
import argparse
|
|
import concurrent.futures
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import time
|
|
from datetime import datetime
|
|
from functools import partial
|
|
from io import StringIO
|
|
from textwrap import dedent
|
|
from threading import Lock
|
|
from typing import Any, Dict
|
|
|
|
import pandas as pd
|
|
import requests
|
|
from datasets import Dataset, load_dataset
|
|
|
|
from khoj.utils.helpers import get_cost_of_chat_message, is_none_or_empty, timer
|
|
|
|
# Configure root logger
|
|
logging.basicConfig(level=logging.INFO, format="%(message)s")
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Configuration
|
|
KHOJ_URL = os.getenv("KHOJ_URL", "http://localhost:42110")
|
|
KHOJ_CHAT_API_URL = f"{KHOJ_URL}/api/chat"
|
|
KHOJ_API_KEY = os.getenv("KHOJ_API_KEY")
|
|
KHOJ_MODE = os.getenv("KHOJ_MODE", "default").lower() # E.g research, general, notes etc.
|
|
|
|
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
|
GEMINI_EVAL_MODEL = os.getenv("GEMINI_EVAL_MODEL", "gemini-1.5-pro-002")
|
|
|
|
SAMPLE_SIZE = os.getenv("SAMPLE_SIZE") # Number of examples to evaluate
|
|
RANDOMIZE = os.getenv("RANDOMIZE", "false").lower() == "true" # Randomize examples
|
|
BATCH_SIZE = int(
|
|
os.getenv("BATCH_SIZE", int(SAMPLE_SIZE) / 10 if SAMPLE_SIZE else 10)
|
|
) # Examples to evaluate in each batch
|
|
SLEEP_SECONDS = 3 if KHOJ_MODE == "general" else 1 # Sleep between API calls to avoid rate limiting
|
|
|
|
|
|
class Counter:
|
|
"""Thread-safe counter for tracking metrics"""
|
|
|
|
def __init__(self, value=0.0):
|
|
self.value = value
|
|
self.lock = Lock()
|
|
|
|
def add(self, amount):
|
|
with self.lock:
|
|
self.value += amount
|
|
|
|
def get(self):
|
|
with self.lock:
|
|
return self.value
|
|
|
|
|
|
# Track running metrics while evaluating
|
|
running_cost = Counter()
|
|
running_true_count = Counter(0)
|
|
running_false_count = Counter(0)
|
|
|
|
|
|
def load_frames_dataset():
|
|
"""
|
|
Load the Google FRAMES benchmark dataset from HuggingFace
|
|
|
|
FRAMES is a benchmark dataset to evaluate retrieval and answering capabilities of agents.
|
|
It contains ~800 requiring multi-hop retrieval and reasoning across various topics.
|
|
|
|
### Data Fields
|
|
- Prompt: The question to be answered
|
|
- Answer: The ground truth answer
|
|
- reasoning_types: The type of reasoning required to answer the question
|
|
"""
|
|
try:
|
|
dataset = load_dataset("google/frames-benchmark")
|
|
# Use test split for evaluation. Sample and shuffle dataset if configured
|
|
dataset = dataset.shuffle() if RANDOMIZE else dataset
|
|
return dataset["test"][: int(SAMPLE_SIZE)] if SAMPLE_SIZE else dataset["test"]
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error loading dataset: {e}")
|
|
return None
|
|
|
|
|
|
def load_simpleqa_dataset():
|
|
"""
|
|
Load the OpenAI SimpleQA benchmark dataset from their public bucket.
|
|
|
|
SimpleQA is a dataset of moderately difficult q&a for 2024 models to answer across various topics.
|
|
It contains ~4000 human vetted questions and answers with additional metadata.
|
|
Its usage can be seen in openai/simple-evals github repository as well.
|
|
|
|
### Data Fields
|
|
- problem: The question to be answered
|
|
- answer: The ground truth answer
|
|
- metadata: Additional metadata including topic information
|
|
"""
|
|
|
|
try:
|
|
# Load SimpleQA benchmark from OpenAI public bucket
|
|
raw_url = "https://openaipublic.blob.core.windows.net/simple-evals/simple_qa_test_set.csv"
|
|
response = requests.get(raw_url)
|
|
response.raise_for_status()
|
|
|
|
# Parse benchmark from raw CSV response
|
|
csv_data = pd.read_csv(StringIO(response.text))
|
|
# Normalize it into FRAMES format
|
|
formatted_data = [
|
|
{
|
|
"Prompt": d["problem"],
|
|
"Answer": d["answer"],
|
|
"reasoning_types": json.loads(csv_data.to_dict("records")[0]["metadata"].replace("'", '"'))["topic"],
|
|
}
|
|
for d in csv_data.to_dict("records")
|
|
]
|
|
|
|
# Convert benchmark to HF Dataset
|
|
dataset = Dataset.from_list(formatted_data)
|
|
dataset = dataset.shuffle() if RANDOMIZE else dataset
|
|
dataset = dataset.select(range(int(SAMPLE_SIZE))) if SAMPLE_SIZE else dataset
|
|
|
|
return dataset
|
|
except Exception as e:
|
|
logger.error(f"Error loading simpleqa dataset: {e}")
|
|
return None
|
|
|
|
|
|
def load_gpqa_dataset():
|
|
"""
|
|
Load the Google GPQA benchmark dataset from HuggingFace
|
|
|
|
GPQA is a benchmark dataset to evaluate retrieval and answering capabilities of agents.
|
|
It contains ~800 requiring multi-hop retrieval and reasoning across various topics.
|
|
|
|
### Data Fields
|
|
- Prompt: The question to be answered
|
|
- Answer: The ground truth answer
|
|
- reasoning_types: The type of reasoning required to answer the question
|
|
"""
|
|
import random
|
|
|
|
def format_multiple_choice_question(row: Dict) -> tuple[str, str]:
|
|
"""
|
|
Create GPQA multi-choice prompt from shuffled answer choices and question.
|
|
Refer: https://github.com/openai/simple-evals/blob/a8e85cc8a5dea497d915f870895250e07f9cc737/common.py#L12
|
|
|
|
Returns formatted prompt and correct answer letter.
|
|
"""
|
|
# Gather choices
|
|
choices = [
|
|
row["Incorrect Answer 1"],
|
|
row["Incorrect Answer 2"],
|
|
row["Incorrect Answer 3"],
|
|
row["Correct Answer"],
|
|
]
|
|
# Shuffle choices
|
|
random.shuffle(choices)
|
|
|
|
# Get correct answer letter
|
|
correct_index = choices.index(row["Correct Answer"])
|
|
correct_letter = "ABCD"[correct_index]
|
|
|
|
prompt = f"""
|
|
Answer the following multiple choice question. Answer should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
|
|
|
|
{row["Question"]}
|
|
|
|
A) {choices[0]}
|
|
B) {choices[1]}
|
|
C) {choices[2]}
|
|
D) {choices[3]}
|
|
""".strip()
|
|
|
|
return prompt, correct_letter
|
|
|
|
try:
|
|
dataset = load_dataset("Idavidrein/gpqa", "gpqa_diamond", split="train")
|
|
|
|
# Create multi-choice q&a prompt from choices and correct answer
|
|
prompts_and_answers = [format_multiple_choice_question(row) for row in dataset]
|
|
|
|
# Normalize dataset to FRAMES format
|
|
dataset = dataset.rename_columns({"Subdomain": "reasoning_types"})
|
|
dataset = dataset.add_column("Prompt", [p[0] for p in prompts_and_answers])
|
|
dataset = dataset.add_column("Answer", [p[1] for p in prompts_and_answers])
|
|
|
|
# Sample and shuffle dataset if configured
|
|
dataset = dataset.shuffle() if RANDOMIZE else dataset
|
|
dataset = dataset[: int(SAMPLE_SIZE)] if SAMPLE_SIZE else dataset
|
|
|
|
return dataset
|
|
except Exception as e:
|
|
logger.error(f"Error loading dataset: {e}")
|
|
return None
|
|
|
|
|
|
def load_math500_dataset():
|
|
"""
|
|
Load and format the MATH500 dataset to match the evaluation script's structure.
|
|
|
|
Args:
|
|
sample_size (int, optional): Number of samples to include. Defaults to None (use full dataset).
|
|
randomize (bool, optional): Whether to randomize the dataset. Defaults to False.
|
|
|
|
Returns:
|
|
Dataset: Formatted HuggingFace Dataset.
|
|
"""
|
|
try:
|
|
# Load the MATH500 dataset from HuggingFace
|
|
dataset = load_dataset("HuggingFaceH4/MATH-500", split="test")
|
|
dataset = dataset.rename_columns({"problem": "Prompt", "answer": "Answer", "subject": "reasoning_types"})
|
|
dataset = dataset.shuffle() if RANDOMIZE else dataset
|
|
dataset = dataset.select(range(int(SAMPLE_SIZE))) if SAMPLE_SIZE else dataset
|
|
|
|
return dataset
|
|
except Exception as e:
|
|
print(f"Error loading and formatting MATH500 dataset: {e}")
|
|
return None
|
|
|
|
|
|
def get_agent_response(prompt: str) -> Dict[str, Any]:
|
|
"""Get response from the Khoj API"""
|
|
# Set headers
|
|
headers = {"Content-Type": "application/json"}
|
|
if not is_none_or_empty(KHOJ_API_KEY):
|
|
headers["Authorization"] = f"Bearer {KHOJ_API_KEY}"
|
|
|
|
try:
|
|
response = requests.post(
|
|
KHOJ_CHAT_API_URL,
|
|
headers=headers,
|
|
json={
|
|
"q": prompt,
|
|
"create_new": True,
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
response_json = response.json()
|
|
return {"response": response_json.get("response", ""), "usage": response_json.get("usage", {})}
|
|
except Exception as e:
|
|
logger.error(f"Error getting agent response: {e}")
|
|
return {"response": "", "usage": {}}
|
|
|
|
|
|
def evaluate_response_with_mcq_match(
|
|
query: str, agent_response: str, ground_truth: str
|
|
) -> tuple[bool | None, str, float]:
|
|
"""Evaluate Khoj response against benchmark ground truth using string matching"""
|
|
try:
|
|
# Extract answer from agent response
|
|
answer_pattern_multichoice = r"(?i)Answer\s*:\s*([A-D])"
|
|
match = re.search(answer_pattern_multichoice, agent_response)
|
|
extracted_answer = match.group(1) if match else None
|
|
|
|
# Check if extracted answer matches ground truth
|
|
decision = extracted_answer == ground_truth
|
|
explanation = f"Agent response {'matches' if decision else 'does not match'} ground truth {ground_truth}"
|
|
|
|
# Return decision, explanation and cost in structured form
|
|
return decision, explanation, 0.0
|
|
except Exception as e:
|
|
logger.error(f"Error in evaluation: {e}")
|
|
return None, f"Evaluation failed: {str(e)}", 0.0
|
|
|
|
|
|
def evaluate_response_with_gemini(
|
|
query: str, agent_response: str, ground_truth: str, eval_model=GEMINI_EVAL_MODEL
|
|
) -> tuple[bool | None, str, float]:
|
|
"""Evaluate Khoj response against benchmark ground truth using Gemini"""
|
|
evaluation_prompt = f"""
|
|
Compare the following agent response with the ground truth answer.
|
|
Determine if the agent response contains the key information from the ground truth.
|
|
Focus on factual correctness rather than exact wording.
|
|
|
|
Query: {query}
|
|
Agent Response: {agent_response}
|
|
Ground Truth: {ground_truth}
|
|
|
|
Provide your evaluation in the following json format:
|
|
{"explanation:" "[How you made the decision?)", "decision:" "(TRUE if response contains key information, FALSE otherwise)"}
|
|
"""
|
|
gemini_api_url = (
|
|
f"https://generativelanguage.googleapis.com/v1beta/models/{eval_model}:generateContent?key={GEMINI_API_KEY}"
|
|
)
|
|
|
|
try:
|
|
response = requests.post(
|
|
gemini_api_url,
|
|
headers={"Content-Type": "application/json"},
|
|
json={
|
|
"contents": [{"parts": [{"text": evaluation_prompt}]}],
|
|
"generationConfig": {"response_mime_type": "application/json"},
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
response_json = response.json()
|
|
|
|
# Update cost of evaluation
|
|
input_tokens = response_json["usageMetadata"]["promptTokenCount"]
|
|
ouput_tokens = response_json["usageMetadata"]["candidatesTokenCount"]
|
|
cost = get_cost_of_chat_message(eval_model, input_tokens, ouput_tokens)
|
|
|
|
# Parse evaluation response
|
|
eval_response: dict[str, str] = json.loads(
|
|
clean_json(response_json["candidates"][0]["content"]["parts"][0]["text"])
|
|
)
|
|
decision = str(eval_response.get("decision", "")).upper() == "TRUE"
|
|
explanation = eval_response.get("explanation", "")
|
|
# Handle evaluation service errors
|
|
if "503 Service Error" in explanation:
|
|
decision = None
|
|
# Extract decision and explanation from structured response
|
|
return decision, explanation, cost
|
|
except Exception as e:
|
|
logger.error(f"Error in evaluation: {e}")
|
|
return None, f"Evaluation failed: {str(e)}", 0.0
|
|
|
|
|
|
def process_batch(batch, batch_start, results, dataset_length, response_evaluator):
|
|
global running_cost
|
|
for idx, (prompt, answer, reasoning_type) in enumerate(batch):
|
|
current_index = batch_start + idx
|
|
logger.info(f"Processing example: {current_index}/{dataset_length}")
|
|
|
|
# Trigger research mode if enabled
|
|
prompt = f"/{KHOJ_MODE} {prompt}" if KHOJ_MODE and not prompt.startswith(f"/{KHOJ_MODE}") else prompt
|
|
|
|
# Get agent response
|
|
response = get_agent_response(prompt)
|
|
agent_response = response["response"]
|
|
agent_usage = response["usage"]
|
|
|
|
# Evaluate response
|
|
if is_none_or_empty(agent_response):
|
|
decision = None
|
|
explanation = "Agent response is empty. This maybe due to a service error."
|
|
else:
|
|
decision, explanation, eval_cost = response_evaluator(prompt, agent_response, answer)
|
|
|
|
# Store results
|
|
results.append(
|
|
{
|
|
"index": current_index,
|
|
"prompt": prompt,
|
|
"ground_truth": answer,
|
|
"agent_response": agent_response,
|
|
"evaluation_decision": decision,
|
|
"evaluation_explanation": explanation,
|
|
"reasoning_type": reasoning_type,
|
|
"usage": agent_usage,
|
|
}
|
|
)
|
|
|
|
# Update running cost
|
|
query_cost = float(agent_usage.get("cost", 0.0))
|
|
running_cost.add(query_cost + eval_cost)
|
|
|
|
# Update running accuracy
|
|
running_accuracy = 0.0
|
|
if decision is not None:
|
|
running_true_count.add(1) if decision == True else running_false_count.add(1)
|
|
running_accuracy = running_true_count.get() / (running_true_count.get() + running_false_count.get())
|
|
|
|
## Log results
|
|
decision_color = {True: "green", None: "blue", False: "red"}[decision]
|
|
colored_decision = color_text(str(decision), decision_color)
|
|
result_to_print = f"""
|
|
---------
|
|
Decision: {colored_decision}
|
|
Accuracy: {running_accuracy:.2%}
|
|
Question: {prompt}
|
|
Expected Answer: {answer}
|
|
Agent Answer: {agent_response}
|
|
Explanation: {explanation}
|
|
Cost: ${running_cost.get():.5f} (Query: ${query_cost:.5f}, Eval: ${eval_cost:.5f})
|
|
---------
|
|
"""
|
|
logger.info(dedent(result_to_print).lstrip())
|
|
|
|
# Sleep between API calls to avoid rate limiting
|
|
time.sleep(SLEEP_SECONDS)
|
|
|
|
|
|
def color_text(text, color):
|
|
colors = {
|
|
"red": "\033[91m", # Bright red
|
|
"green": "\033[32m", # Standard green
|
|
"blue": "\033[34m", # Bright blue
|
|
"reset": "\033[0m",
|
|
}
|
|
return f"{colors[color]}{text}{colors['reset']}"
|
|
|
|
|
|
def clean_json(response: str):
|
|
"""Remove any markdown json codeblock and newline formatting if present. Useful for non schema enforceable models"""
|
|
return response.strip().replace("\n", "").removeprefix("```json").removesuffix("```")
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Evaluate Khoj on a supported benchmark.")
|
|
parser.add_argument(
|
|
"--output",
|
|
"-o",
|
|
default=None,
|
|
help="Path to store evaluation results CSV (default: [benchmark]_evaluation_results_[datetime].csv)",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset",
|
|
"-d",
|
|
default="frames",
|
|
choices=["frames", "simpleqa", "gpqa", "math500"],
|
|
help="Dataset to use for evaluation (default: frames)",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
# Initialize variables
|
|
args = parse_args()
|
|
dataset = None
|
|
|
|
# Load dataset
|
|
with timer(f"Loaded {args.dataset} dataset in", logger, log_level=logging.INFO):
|
|
if args.dataset == "frames":
|
|
dataset = load_frames_dataset()
|
|
elif args.dataset == "simpleqa":
|
|
dataset = load_simpleqa_dataset()
|
|
elif args.dataset == "gpqa":
|
|
dataset = load_gpqa_dataset()
|
|
elif args.dataset == "math500":
|
|
dataset = load_math500_dataset()
|
|
if dataset is None:
|
|
return
|
|
|
|
# Initialize variables
|
|
results = []
|
|
dataset_length = len(dataset["Prompt"])
|
|
if args.dataset == "gpqa":
|
|
response_evaluator = evaluate_response_with_mcq_match
|
|
elif args.dataset == "math500":
|
|
response_evaluator = partial(
|
|
evaluate_response_with_gemini, eval_model=os.getenv("GEMINI_EVAL_MODEL", "gemini-1.5-flash-002")
|
|
)
|
|
else:
|
|
response_evaluator = evaluate_response_with_gemini
|
|
|
|
# Process examples in batches
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
futures = []
|
|
for i in range(0, dataset_length, BATCH_SIZE):
|
|
batch_start = i
|
|
batch = zip(
|
|
dataset["Prompt"][i : i + BATCH_SIZE],
|
|
dataset["Answer"][i : i + BATCH_SIZE],
|
|
dataset["reasoning_types"][i : i + BATCH_SIZE],
|
|
)
|
|
futures.append(
|
|
executor.submit(process_batch, batch, batch_start, results, dataset_length, response_evaluator)
|
|
)
|
|
|
|
# Wait for all futures to complete
|
|
concurrent.futures.wait(futures)
|
|
|
|
# Calculate metrics
|
|
df = pd.DataFrame(results)
|
|
eval_df = df.dropna(subset=["evaluation_decision"]) # Exclude rows with missing evaluation decision
|
|
accuracy = (eval_df["evaluation_decision"] == True).mean()
|
|
|
|
# Calculate accuracy by reasoning type
|
|
reasoning_type_accuracy = eval_df.groupby("reasoning_type")["evaluation_decision"].apply(
|
|
lambda x: (x == True).mean()
|
|
)
|
|
|
|
# Collect summary
|
|
colored_accuracy = color_text(f"{accuracy:.2%}", "blue")
|
|
colored_accuracy_str = f"Overall Accuracy: {colored_accuracy} on {args.dataset.title()} dataset."
|
|
accuracy_str = f"Overall Accuracy: {accuracy:.2%} on {args.dataset}."
|
|
accuracy_by_reasoning = f"Accuracy by Reasoning Type:\n{reasoning_type_accuracy}"
|
|
cost = f"Total Cost: ${running_cost.get():.5f}."
|
|
sample_type = f"Sampling Type: {SAMPLE_SIZE} samples." if SAMPLE_SIZE else "Whole dataset."
|
|
sample_type += " Randomized." if RANDOMIZE else ""
|
|
logger.info(f"\n{colored_accuracy_str}\n\n{accuracy_by_reasoning}\n\n{cost}\n\n{sample_type}\n")
|
|
|
|
# Save summary to file
|
|
summary = f"{accuracy_str}\n\n{accuracy_by_reasoning}\n\n{cost}\n\n{sample_type}\n"
|
|
summary_file = args.output.replace(".csv", ".txt") if args.output else None
|
|
summary_file = (
|
|
summary_file or f"{args.dataset}_evaluation_summary_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
|
|
)
|
|
with open(summary_file, "w") as f:
|
|
f.write(summary)
|
|
|
|
# Save raw results to file
|
|
output_file = args.output or f"{args.dataset}_evaluation_results_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.csv"
|
|
df.to_csv(output_file, index=False)
|
|
logger.info(f"Results saved to {summary_file}, {output_file}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""
|
|
Evaluate Khoj on supported benchmarks.
|
|
Response are evaluated by GEMINI_EVAL_MODEL (default: gemini-pro-1.5-002).
|
|
|
|
Khoj should be running at KHOJ_URL (default: http://localhost:42110).
|
|
The Gemini judge model is accessed via the Gemini API with your GEMINI_API_KEY.
|
|
To evaluate Khoj in research mode, set the KHOJ_MODE environment variable to "research".
|
|
|
|
Run the script using the following command:
|
|
KHOJ_MODE="research" GEMINI_API_KEY="<your_gemini_api_key>" python eval_frames.py
|
|
"""
|
|
logger.info(f"{datetime.now()} - Begin Quizzing Khoj.")
|
|
with timer("Ran eval script in", logger, log_level=logging.INFO):
|
|
main()
|
|
logger.info(f"{datetime.now()} - End Quizzing Khoj.")
|