mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-18 10:37:11 +00:00
9b1048caf7
Asymmetric search is the only search type used now in khoj.el. So making distinction between between symmetric and asymmetric search isn't necessary anymore
295 lines
12 KiB
Python
295 lines
12 KiB
Python
# System Packages
|
|
import logging
|
|
from pathlib import Path
|
|
import os
|
|
|
|
# External Packages
|
|
import pytest
|
|
import torch
|
|
from khoj.utils.config import SearchModels
|
|
|
|
# Internal Packages
|
|
from khoj.utils.state import content_index, search_models
|
|
from khoj.search_type import text_search
|
|
from khoj.utils.rawconfig import ContentConfig, SearchConfig, TextContentConfig
|
|
from khoj.processor.org_mode.org_to_jsonl import OrgToJsonl
|
|
from khoj.processor.github.github_to_jsonl import GithubToJsonl
|
|
|
|
|
|
# Test
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_text_search_setup_with_missing_file_raises_error(
|
|
org_config_with_only_new_file: TextContentConfig, search_config: SearchConfig
|
|
):
|
|
# Arrange
|
|
# Ensure file mentioned in org.input-files is missing
|
|
single_new_file = Path(org_config_with_only_new_file.input_files[0])
|
|
single_new_file.unlink()
|
|
|
|
# Act
|
|
# Generate notes embeddings during asymmetric setup
|
|
with pytest.raises(FileNotFoundError):
|
|
text_search.setup(OrgToJsonl, org_config_with_only_new_file, search_config.asymmetric, regenerate=True)
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_text_search_setup_with_empty_file_raises_error(
|
|
org_config_with_only_new_file: TextContentConfig, search_config: SearchConfig
|
|
):
|
|
# Act
|
|
# Generate notes embeddings during asymmetric setup
|
|
with pytest.raises(ValueError, match=r"^No valid entries found*"):
|
|
text_search.setup(OrgToJsonl, org_config_with_only_new_file, search_config.asymmetric, regenerate=True)
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_text_search_setup(content_config: ContentConfig, search_models: SearchModels):
|
|
# Act
|
|
# Regenerate notes embeddings during asymmetric setup
|
|
notes_model = text_search.setup(
|
|
OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=True
|
|
)
|
|
|
|
# Assert
|
|
assert len(notes_model.entries) == 10
|
|
assert len(notes_model.corpus_embeddings) == 10
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_text_index_same_if_content_unchanged(content_config: ContentConfig, search_models: SearchModels, caplog):
|
|
# Arrange
|
|
caplog.set_level(logging.INFO, logger="khoj")
|
|
|
|
# Act
|
|
# Generate initial notes embeddings during asymmetric setup
|
|
text_search.setup(OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=True)
|
|
initial_logs = caplog.text
|
|
caplog.clear() # Clear logs
|
|
|
|
# Run asymmetric setup again with no changes to data source. Ensure index is not updated
|
|
text_search.setup(OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=False)
|
|
final_logs = caplog.text
|
|
|
|
# Assert
|
|
assert "Creating index from scratch." in initial_logs
|
|
assert "Creating index from scratch." not in final_logs
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
@pytest.mark.anyio
|
|
async def test_text_search(content_config: ContentConfig, search_config: SearchConfig):
|
|
# Arrange
|
|
search_models.text_search = text_search.initialize_model(search_config.asymmetric)
|
|
content_index.org = text_search.setup(
|
|
OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=True
|
|
)
|
|
query = "How to git install application?"
|
|
|
|
# Act
|
|
hits, entries = await text_search.query(
|
|
query, search_model=search_models.text_search, content=content_index.org, rank_results=True
|
|
)
|
|
|
|
results = text_search.collate_results(hits, entries, count=1)
|
|
|
|
# Assert
|
|
# search results should contain "git clone" entry
|
|
search_result = results[0].entry
|
|
assert "git clone" in search_result
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_entry_chunking_by_max_tokens(org_config_with_only_new_file: TextContentConfig, search_models: SearchModels):
|
|
# Arrange
|
|
# Insert org-mode entry with size exceeding max token limit to new org file
|
|
max_tokens = 256
|
|
new_file_to_index = Path(org_config_with_only_new_file.input_files[0])
|
|
with open(new_file_to_index, "w") as f:
|
|
f.write(f"* Entry more than {max_tokens} words\n")
|
|
for index in range(max_tokens + 1):
|
|
f.write(f"{index} ")
|
|
|
|
# Act
|
|
# reload embeddings, entries, notes model after adding new org-mode file
|
|
initial_notes_model = text_search.setup(
|
|
OrgToJsonl, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=False
|
|
)
|
|
|
|
# Assert
|
|
# verify newly added org-mode entry is split by max tokens
|
|
assert len(initial_notes_model.entries) == 2
|
|
assert len(initial_notes_model.corpus_embeddings) == 2
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_regenerate_index_with_new_entry(
|
|
content_config: ContentConfig, search_models: SearchModels, new_org_file: Path
|
|
):
|
|
# Arrange
|
|
initial_notes_model = text_search.setup(
|
|
OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=True
|
|
)
|
|
|
|
assert len(initial_notes_model.entries) == 10
|
|
assert len(initial_notes_model.corpus_embeddings) == 10
|
|
|
|
# append org-mode entry to first org input file in config
|
|
content_config.org.input_files = [f"{new_org_file}"]
|
|
with open(new_org_file, "w") as f:
|
|
f.write("\n* A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n")
|
|
|
|
# Act
|
|
# regenerate notes jsonl, model embeddings and model to include entry from new file
|
|
regenerated_notes_model = text_search.setup(
|
|
OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=True
|
|
)
|
|
|
|
# Assert
|
|
assert len(regenerated_notes_model.entries) == 11
|
|
assert len(regenerated_notes_model.corpus_embeddings) == 11
|
|
|
|
# verify new entry appended to index, without disrupting order or content of existing entries
|
|
error_details = compare_index(initial_notes_model, regenerated_notes_model)
|
|
if error_details:
|
|
pytest.fail(error_details, False)
|
|
|
|
# Cleanup
|
|
# reset input_files in config to empty list
|
|
content_config.org.input_files = []
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_update_index_with_duplicate_entries_in_stable_order(
|
|
org_config_with_only_new_file: TextContentConfig, search_models: SearchModels
|
|
):
|
|
# Arrange
|
|
new_file_to_index = Path(org_config_with_only_new_file.input_files[0])
|
|
|
|
# Insert org-mode entries with same compiled form into new org file
|
|
new_entry = "* TODO A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n"
|
|
with open(new_file_to_index, "w") as f:
|
|
f.write(f"{new_entry}{new_entry}")
|
|
|
|
# Act
|
|
# load embeddings, entries, notes model after adding new org-mode file
|
|
initial_index = text_search.setup(
|
|
OrgToJsonl, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=True
|
|
)
|
|
|
|
# update embeddings, entries, notes model after adding new org-mode file
|
|
updated_index = text_search.setup(
|
|
OrgToJsonl, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=False
|
|
)
|
|
|
|
# Assert
|
|
# verify only 1 entry added even if there are multiple duplicate entries
|
|
assert len(initial_index.entries) == len(updated_index.entries) == 1
|
|
assert len(initial_index.corpus_embeddings) == len(updated_index.corpus_embeddings) == 1
|
|
|
|
# verify the same entry is added even when there are multiple duplicate entries
|
|
error_details = compare_index(initial_index, updated_index)
|
|
if error_details:
|
|
pytest.fail(error_details)
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_update_index_with_deleted_entry(org_config_with_only_new_file: TextContentConfig, search_models: SearchModels):
|
|
# Arrange
|
|
new_file_to_index = Path(org_config_with_only_new_file.input_files[0])
|
|
|
|
# Insert org-mode entries with same compiled form into new org file
|
|
new_entry = "* TODO A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n"
|
|
with open(new_file_to_index, "w") as f:
|
|
f.write(f"{new_entry}{new_entry} -- Tatooine")
|
|
|
|
# load embeddings, entries, notes model after adding new org file with 2 entries
|
|
initial_index = text_search.setup(
|
|
OrgToJsonl, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=True
|
|
)
|
|
|
|
# update embeddings, entries, notes model after removing an entry from the org file
|
|
with open(new_file_to_index, "w") as f:
|
|
f.write(f"{new_entry}")
|
|
|
|
# Act
|
|
updated_index = text_search.setup(
|
|
OrgToJsonl, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=False
|
|
)
|
|
|
|
# Assert
|
|
# verify only 1 entry added even if there are multiple duplicate entries
|
|
assert len(initial_index.entries) == len(updated_index.entries) + 1
|
|
assert len(initial_index.corpus_embeddings) == len(updated_index.corpus_embeddings) + 1
|
|
|
|
# verify the same entry is added even when there are multiple duplicate entries
|
|
error_details = compare_index(updated_index, initial_index)
|
|
if error_details:
|
|
pytest.fail(error_details)
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
def test_update_index_with_new_entry(content_config: ContentConfig, search_models: SearchModels, new_org_file: Path):
|
|
# Arrange
|
|
initial_notes_model = text_search.setup(
|
|
OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=True, normalize=False
|
|
)
|
|
|
|
# append org-mode entry to first org input file in config
|
|
with open(new_org_file, "w") as f:
|
|
new_entry = "\n* A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n"
|
|
f.write(new_entry)
|
|
|
|
# Act
|
|
# update embeddings, entries with the newly added note
|
|
content_config.org.input_files = [f"{new_org_file}"]
|
|
final_notes_model = text_search.setup(
|
|
OrgToJsonl, content_config.org, search_models.text_search.bi_encoder, regenerate=False, normalize=False
|
|
)
|
|
|
|
# Assert
|
|
assert len(final_notes_model.entries) == len(initial_notes_model.entries) + 1
|
|
assert len(final_notes_model.corpus_embeddings) == len(initial_notes_model.corpus_embeddings) + 1
|
|
|
|
# verify new entry appended to index, without disrupting order or content of existing entries
|
|
error_details = compare_index(initial_notes_model, final_notes_model)
|
|
if error_details:
|
|
pytest.fail(error_details, False)
|
|
|
|
# Cleanup
|
|
# reset input_files in config to empty list
|
|
content_config.org.input_files = []
|
|
|
|
|
|
# ----------------------------------------------------------------------------------------------------
|
|
@pytest.mark.skipif(os.getenv("GITHUB_PAT_TOKEN") is None, reason="GITHUB_PAT_TOKEN not set")
|
|
def test_text_search_setup_github(content_config: ContentConfig, search_models: SearchModels):
|
|
# Act
|
|
# Regenerate github embeddings to test asymmetric setup without caching
|
|
github_model = text_search.setup(
|
|
GithubToJsonl, content_config.github, search_models.text_search.bi_encoder, regenerate=True
|
|
)
|
|
|
|
# Assert
|
|
assert len(github_model.entries) > 1
|
|
|
|
|
|
def compare_index(initial_notes_model, final_notes_model):
|
|
mismatched_entries, mismatched_embeddings = [], []
|
|
for index in range(len(initial_notes_model.entries)):
|
|
if initial_notes_model.entries[index].to_json() != final_notes_model.entries[index].to_json():
|
|
mismatched_entries.append(index)
|
|
|
|
# verify new entry embedding appended to embeddings tensor, without disrupting order or content of existing embeddings
|
|
for index in range(len(initial_notes_model.corpus_embeddings)):
|
|
if not torch.equal(final_notes_model.corpus_embeddings[index], initial_notes_model.corpus_embeddings[index]):
|
|
mismatched_embeddings.append(index)
|
|
|
|
error_details = ""
|
|
if mismatched_entries:
|
|
mismatched_entries_str = ",".join(map(str, mismatched_entries))
|
|
error_details += f"Entries at {mismatched_entries_str} not equal\n"
|
|
if mismatched_embeddings:
|
|
mismatched_embeddings_str = ", ".join(map(str, mismatched_embeddings))
|
|
error_details += f"Embeddings at {mismatched_embeddings_str} not equal\n"
|
|
|
|
return error_details
|