mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-18 18:47:11 +00:00
78 lines
3.5 KiB
Text
78 lines
3.5 KiB
Text
# Ollama
|
|
|
|
```mdx-code-block
|
|
import Tabs from '@theme/Tabs';
|
|
import TabItem from '@theme/TabItem';
|
|
```
|
|
|
|
:::info
|
|
This is only helpful for self-hosted users. If you're using [Khoj Cloud](https://app.khoj.dev), you can use our first-party supported models.
|
|
:::
|
|
|
|
:::info
|
|
Khoj can directly run local LLMs [available on HuggingFace in GGUF format](https://huggingface.co/models?library=gguf). The integration with Ollama is useful to run Khoj on Docker and have the chat models use your GPU or to try new models via CLI.
|
|
:::
|
|
|
|
Ollama allows you to run [many popular open-source LLMs](https://ollama.com/library) locally from your terminal.
|
|
For folks comfortable with the terminal, Ollama's terminal based flows can ease setup and management of chat models.
|
|
|
|
Ollama exposes a local [OpenAI API compatible server](https://github.com/ollama/ollama/blob/main/docs/openai.md#models). This makes it possible to use chat models from Ollama with Khoj.
|
|
|
|
## Setup
|
|
:::info
|
|
Restart your Khoj server after first run or update to the settings below to ensure all settings are applied correctly.
|
|
:::
|
|
|
|
<Tabs groupId="type" queryString>
|
|
<TabItem value="first-run" label="First Run">
|
|
<Tabs groupId="server" queryString>
|
|
<TabItem value="docker" label="Docker">
|
|
1. Setup Ollama: https://ollama.com/
|
|
2. Download your preferred chat model with Ollama. For example,
|
|
```bash
|
|
ollama pull llama3.1
|
|
```
|
|
3. Uncomment `OPENAI_API_BASE` environment variable in your downloaded Khoj [docker-compose.yml](https://github.com/khoj-ai/khoj/blob/master/docker-compose.yml#:~:text=OPENAI_API_BASE)
|
|
4. Start Khoj docker for the first time to automatically integrate and load models from the Ollama running on your host machine
|
|
```bash
|
|
# run below command in the directory where you downloaded the Khoj docker-compose.yml
|
|
docker-compose up
|
|
```
|
|
</TabItem>
|
|
|
|
<TabItem value="pip" label="Pip">
|
|
1. Setup Ollama: https://ollama.com/
|
|
2. Download your preferred chat model with Ollama. For example,
|
|
```bash
|
|
ollama pull llama3.1
|
|
```
|
|
3. Set `OPENAI_API_BASE` environment variable to `http://localhost:11434/v1/` in your shell before starting Khoj for the first time
|
|
```bash
|
|
export OPENAI_API_BASE="http://localhost:11434/v1/"
|
|
khoj --anonymous-mode
|
|
```
|
|
</TabItem>
|
|
</Tabs>
|
|
</TabItem>
|
|
<TabItem value="update" label="Update">
|
|
1. Setup Ollama: https://ollama.com/
|
|
2. Download your preferred chat model with Ollama. For example,
|
|
```bash
|
|
ollama pull llama3.1
|
|
```
|
|
3. Create a new [OpenAI Processor Conversation Config](http://localhost:42110/server/admin/database/openaiprocessorconversationconfig/add) on your Khoj admin panel
|
|
- Name: `ollama`
|
|
- Api Key: `any string`
|
|
- Api Base Url: `http://localhost:11434/v1/` (default for Ollama)
|
|
4. Create a new [Chat Model Option](http://localhost:42110/server/admin/database/chatmodeloptions/add) on your Khoj admin panel.
|
|
- Name: `llama3.1` (replace with the name of your local model)
|
|
- Model Type: `Openai`
|
|
- Openai Config: `<the ollama config you created in step 3>`
|
|
- Max prompt size: `20000` (replace with the max prompt size of your model)
|
|
5. Go to [your config](http://localhost:42110/settings) and select the model you just created in the chat model dropdown.
|
|
|
|
If you want to add additional models running on Ollama, repeat step 4 for each model.
|
|
</TabItem>
|
|
</Tabs>
|
|
|
|
That's it! You should now be able to chat with your Ollama model from Khoj.
|