khoj/tests/conftest.py
Debanjum Singh Solanky 4a90972e38 Use a better model for asymmetric semantic search
- The multi-qa-MiniLM-L6-cos-v1 is more extensively benchmarked[1]
- It has the right mix of model query speed, size and performance on benchmarks
- On hugging face it has way more downloads and likes than the msmarco model[2]
- On very preliminary evaluation of the model
  - It doubles the encoding speed of all entries (down from ~8min to 4mins)
  - It gave more entries that stay relevant to the query (3/5 vs 1/5 earlier)

[1]: https://www.sbert.net/docs/pretrained_models.html
[2]: https://huggingface.co/sentence-transformers
2022-07-18 20:27:26 +04:00

78 lines
No EOL
2.7 KiB
Python

# Standard Packages
import pytest
import torch
# Internal Packages
from src.search_type import asymmetric, image_search
from src.utils.rawconfig import ContentConfig, TextContentConfig, ImageContentConfig, SearchConfig, SymmetricSearchConfig, AsymmetricSearchConfig, ImageSearchConfig
@pytest.fixture(scope='session')
def search_config(tmp_path_factory):
model_dir = tmp_path_factory.mktemp('data')
search_config = SearchConfig()
search_config.asymmetric = SymmetricSearchConfig(
encoder = "sentence-transformers/paraphrase-MiniLM-L6-v2",
cross_encoder = "cross-encoder/ms-marco-MiniLM-L-6-v2",
model_directory = model_dir
)
search_config.asymmetric = AsymmetricSearchConfig(
encoder = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
cross_encoder = "cross-encoder/ms-marco-MiniLM-L-6-v2",
model_directory = model_dir
)
search_config.image = ImageSearchConfig(
encoder = "clip-ViT-B-32",
model_directory = model_dir
)
return search_config
@pytest.fixture(scope='session')
def model_dir(search_config):
model_dir = search_config.asymmetric.model_directory
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
# Generate Image Embeddings from Test Images
content_config = ContentConfig()
content_config.image = ImageContentConfig(
input_directory = 'tests/data/images',
embeddings_file = model_dir.joinpath('image_embeddings.pt'),
batch_size = 10,
use_xmp_metadata = False)
image_search.setup(content_config.image, search_config.image, regenerate=False, verbose=True)
# Generate Notes Embeddings from Test Notes
content_config.org = TextContentConfig(
input_files = None,
input_filter = 'tests/data/notes/*.org',
compressed_jsonl = model_dir.joinpath('notes.jsonl.gz'),
embeddings_file = model_dir.joinpath('note_embeddings.pt'))
asymmetric.setup(content_config.org, search_config.asymmetric, regenerate=False, device=device, verbose=True)
return model_dir
@pytest.fixture(scope='session')
def content_config(model_dir):
content_config = ContentConfig()
content_config.org = TextContentConfig(
input_files = None,
input_filter = 'tests/data/notes/*.org',
compressed_jsonl = model_dir.joinpath('notes.jsonl.gz'),
embeddings_file = model_dir.joinpath('note_embeddings.pt'))
content_config.image = ImageContentConfig(
input_directory = 'tests/data/images',
embeddings_file = model_dir.joinpath('image_embeddings.pt'),
batch_size = 10,
use_xmp_metadata = False)
return content_config