mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-24 16:05:07 +01:00
65da7daf1f
Conversation logs structure now has session info too instead of just chat info Session info will allow loading past conversation summaries as context for AI in new conversations { "session": [ { "summary": <chat_session_summary>, "session-start": <session_start_index_in_chat_log>, "session-end": <session_end_index_in_chat_log> }], "chat": [ { "intent": <intent-object> "trigger-emotion": <emotion-triggered-by-message> "by": <AI|Human> "message": <chat_message> "created": <message_created_date> }] }
208 lines
8.1 KiB
Python
208 lines
8.1 KiB
Python
# Standard Packages
|
|
import sys
|
|
import json
|
|
from typing import Optional
|
|
|
|
# External Packages
|
|
import uvicorn
|
|
from fastapi import FastAPI
|
|
|
|
# Internal Packages
|
|
from src.search_type import asymmetric, symmetric_ledger, image_search
|
|
from src.utils.helpers import get_absolute_path, get_from_dict
|
|
from src.utils.cli import cli
|
|
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig, ProcessorConfig, ConversationProcessorConfig
|
|
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand, summarize
|
|
|
|
|
|
# Application Global State
|
|
model = SearchModels()
|
|
search_config = SearchConfig()
|
|
processor_config = ProcessorConfig()
|
|
app = FastAPI()
|
|
|
|
|
|
@app.get('/search')
|
|
def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
|
if q is None or q == '':
|
|
print(f'No query param (q) passed in API call to initiate search')
|
|
return {}
|
|
|
|
user_query = q
|
|
results_count = n
|
|
|
|
if (t == SearchType.Notes or t == None) and model.notes_search:
|
|
# query notes
|
|
hits = asymmetric.query(user_query, model.notes_search)
|
|
|
|
# collate and return results
|
|
return asymmetric.collate_results(hits, model.notes_search.entries, results_count)
|
|
|
|
if (t == SearchType.Music or t == None) and model.music_search:
|
|
# query music library
|
|
hits = asymmetric.query(user_query, model.music_search)
|
|
|
|
# collate and return results
|
|
return asymmetric.collate_results(hits, model.music_search.entries, results_count)
|
|
|
|
if (t == SearchType.Ledger or t == None) and model.ledger_search:
|
|
# query transactions
|
|
hits = symmetric_ledger.query(user_query, model.ledger_search)
|
|
|
|
# collate and return results
|
|
return symmetric_ledger.collate_results(hits, model.ledger_search.entries, results_count)
|
|
|
|
if (t == SearchType.Image or t == None) and model.image_search:
|
|
# query transactions
|
|
hits = image_search.query(user_query, results_count, model.image_search)
|
|
|
|
# collate and return results
|
|
return image_search.collate_results(
|
|
hits,
|
|
model.image_search.image_names,
|
|
search_config.image.input_directory,
|
|
results_count)
|
|
|
|
else:
|
|
return {}
|
|
|
|
|
|
@app.get('/regenerate')
|
|
def regenerate(t: Optional[SearchType] = None):
|
|
if (t == SearchType.Notes or t == None) and search_config.notes:
|
|
# Extract Entries, Generate Embeddings
|
|
model.notes_search = asymmetric.setup(search_config.notes, regenerate=True)
|
|
|
|
if (t == SearchType.Music or t == None) and search_config.music:
|
|
# Extract Entries, Generate Song Embeddings
|
|
model.music_search = asymmetric.setup(search_config.music, regenerate=True)
|
|
|
|
if (t == SearchType.Ledger or t == None) and search_config.ledger:
|
|
# Extract Entries, Generate Embeddings
|
|
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=True)
|
|
|
|
if (t == SearchType.Image or t == None) and search_config.image:
|
|
# Extract Images, Generate Embeddings
|
|
model.image_search = image_search.setup(search_config.image, regenerate=True)
|
|
|
|
return {'status': 'ok', 'message': 'regeneration completed'}
|
|
|
|
|
|
@app.get('/chat')
|
|
def chat(q: str):
|
|
# Load Conversation History
|
|
chat_session = processor_config.conversation.chat_session
|
|
meta_log = processor_config.conversation.meta_log
|
|
|
|
# Converse with OpenAI GPT
|
|
metadata = understand(q, api_key=processor_config.conversation.openai_api_key)
|
|
if get_from_dict(metadata, "intent", "memory-type") == "notes":
|
|
query = get_from_dict(metadata, "intent", "query")
|
|
result_list = search(query, n=1, t=SearchType.Notes)
|
|
collated_result = "\n".join([item["Entry"] for item in result_list])
|
|
gpt_response = summarize(collated_result, summary_type="notes", user_query=q, api_key=processor_config.conversation.openai_api_key)
|
|
else:
|
|
gpt_response = converse(q, chat_session, api_key=processor_config.conversation.openai_api_key)
|
|
|
|
# Update Conversation History
|
|
processor_config.conversation.chat_session = message_to_prompt(q, chat_session, gpt_message=gpt_response)
|
|
processor_config.conversation.meta_log['chat'] = message_to_log(q, metadata, gpt_response, meta_log.get('chat', []))
|
|
|
|
return {'status': 'ok', 'response': gpt_response}
|
|
|
|
|
|
def initialize_search(config, regenerate, verbose):
|
|
model = SearchModels()
|
|
search_config = SearchConfig()
|
|
|
|
# Initialize Org Notes Search
|
|
search_config.notes = TextSearchConfig.create_from_dictionary(config, ('content-type', 'org'), verbose)
|
|
if search_config.notes:
|
|
model.notes_search = asymmetric.setup(search_config.notes, regenerate=regenerate)
|
|
|
|
# Initialize Org Music Search
|
|
search_config.music = TextSearchConfig.create_from_dictionary(config, ('content-type', 'music'), verbose)
|
|
if search_config.music:
|
|
model.music_search = asymmetric.setup(search_config.music, regenerate=regenerate)
|
|
|
|
# Initialize Ledger Search
|
|
search_config.ledger = TextSearchConfig.create_from_dictionary(config, ('content-type', 'ledger'), verbose)
|
|
if search_config.ledger:
|
|
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=regenerate)
|
|
|
|
# Initialize Image Search
|
|
search_config.image = ImageSearchConfig.create_from_dictionary(config, ('content-type', 'image'), verbose)
|
|
if search_config.image:
|
|
model.image_search = image_search.setup(search_config.image, regenerate=regenerate)
|
|
|
|
return model, search_config
|
|
|
|
|
|
def initialize_processor(config, verbose):
|
|
# Initialize Conversation Processor
|
|
processor_config = ProcessorConfig()
|
|
processor_config.conversation = ConversationProcessorConfig.create_from_dictionary(config, ('processor', 'conversation'), verbose)
|
|
|
|
conversation_logfile = processor_config.conversation.conversation_logfile
|
|
if processor_config.conversation.verbose:
|
|
print('INFO:\tLoading conversation logs from disk...')
|
|
|
|
if conversation_logfile.expanduser().absolute().is_file():
|
|
# Load Metadata Logs from Conversation Logfile
|
|
with open(get_absolute_path(conversation_logfile), 'r') as f:
|
|
processor_config.conversation.meta_log = json.load(f)
|
|
|
|
print('INFO:\tConversation logs loaded from disk.')
|
|
else:
|
|
# Initialize Conversation Logs
|
|
processor_config.conversation.meta_log = {}
|
|
processor_config.conversation.chat_session = ""
|
|
|
|
return processor_config
|
|
|
|
|
|
@app.on_event('shutdown')
|
|
def shutdown_event():
|
|
# No need to create empty log file
|
|
if not processor_config.conversation.meta_log:
|
|
return
|
|
elif processor_config.conversation.verbose:
|
|
print('INFO:\tSaving conversation logs to disk...')
|
|
|
|
# Summarize Conversation Logs for this Session
|
|
chat_session = processor_config.conversation.chat_session
|
|
openai_api_key = processor_config.conversation.openai_api_key
|
|
conversation_log = processor_config.conversation.meta_log
|
|
session = {
|
|
"summary": summarize(chat_session, summary_type="chat", api_key=openai_api_key),
|
|
"session-start": conversation_log.get("session", [{"session-end": 0}])[-1]["session-end"],
|
|
"session-end": len(conversation_log["chat"])
|
|
}
|
|
if 'session' in conversation_log:
|
|
conversation_log['session'].append(session)
|
|
else:
|
|
conversation_log['session'] = [session]
|
|
|
|
# Save Conversation Metadata Logs to Disk
|
|
conversation_logfile = get_absolute_path(processor_config.conversation.conversation_logfile)
|
|
with open(conversation_logfile, "w+", encoding='utf-8') as logfile:
|
|
json.dump(conversation_log, logfile)
|
|
|
|
print('INFO:\tConversation logs saved to disk.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# Load config from CLI
|
|
args = cli(sys.argv[1:])
|
|
|
|
# Initialize Search from Config
|
|
model, search_config = initialize_search(args.config, args.regenerate, args.verbose)
|
|
|
|
# Initialize Processor from Config
|
|
processor_config = initialize_processor(args.config, args.verbose)
|
|
|
|
# Start Application Server
|
|
if args.socket:
|
|
uvicorn.run(app, proxy_headers=True, uds=args.socket)
|
|
else:
|
|
uvicorn.run(app, host=args.host, port=args.port)
|