mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-18 02:27:10 +00:00
4228965c9b
Notice and truncate the question it self at this point
118 lines
5.3 KiB
Python
118 lines
5.3 KiB
Python
import factory
|
|
import tiktoken
|
|
from langchain.schema import ChatMessage
|
|
|
|
from khoj.processor.conversation import utils
|
|
|
|
|
|
class ChatMessageFactory(factory.Factory):
|
|
class Meta:
|
|
model = ChatMessage
|
|
|
|
content = factory.Faker("paragraph")
|
|
role = factory.Faker("name")
|
|
|
|
|
|
class TestTruncateMessage:
|
|
max_prompt_size = 4096
|
|
model_name = "gpt-3.5-turbo"
|
|
encoder = tiktoken.encoding_for_model(model_name)
|
|
|
|
def test_truncate_message_all_small(self):
|
|
# Arrange
|
|
chat_history = ChatMessageFactory.build_batch(500)
|
|
|
|
# Act
|
|
truncated_chat_history = utils.truncate_messages(chat_history, self.max_prompt_size, self.model_name)
|
|
tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history])
|
|
|
|
# Assert
|
|
# The original object has been modified. Verify certain properties
|
|
assert len(chat_history) < 500
|
|
assert len(chat_history) > 1
|
|
assert tokens <= self.max_prompt_size
|
|
|
|
def test_truncate_message_first_large(self):
|
|
# Arrange
|
|
chat_history = ChatMessageFactory.build_batch(25)
|
|
big_chat_message = ChatMessageFactory.build(content=factory.Faker("paragraph", nb_sentences=2000))
|
|
big_chat_message.content = big_chat_message.content + "\n" + "Question?"
|
|
copy_big_chat_message = big_chat_message.copy()
|
|
chat_history.insert(0, big_chat_message)
|
|
tokens = sum([len(self.encoder.encode(message.content)) for message in chat_history])
|
|
|
|
# Act
|
|
truncated_chat_history = utils.truncate_messages(chat_history, self.max_prompt_size, self.model_name)
|
|
tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history])
|
|
|
|
# Assert
|
|
# The original object has been modified. Verify certain properties
|
|
assert len(chat_history) == 1
|
|
assert truncated_chat_history[0] != copy_big_chat_message
|
|
assert tokens <= self.max_prompt_size
|
|
|
|
def test_truncate_message_last_large(self):
|
|
# Arrange
|
|
chat_history = ChatMessageFactory.build_batch(25)
|
|
chat_history[0].role = "system" # Mark the first message as system message
|
|
big_chat_message = ChatMessageFactory.build(content=factory.Faker("paragraph", nb_sentences=1000))
|
|
big_chat_message.content = big_chat_message.content + "\n" + "Question?"
|
|
copy_big_chat_message = big_chat_message.copy()
|
|
|
|
chat_history.insert(0, big_chat_message)
|
|
initial_tokens = sum([len(self.encoder.encode(message.content)) for message in chat_history])
|
|
|
|
# Act
|
|
truncated_chat_history = utils.truncate_messages(chat_history, self.max_prompt_size, self.model_name)
|
|
final_tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history])
|
|
|
|
# Assert
|
|
# The original object has been modified. Verify certain properties.
|
|
assert len(truncated_chat_history) == (
|
|
len(chat_history) + 1
|
|
) # Because the system_prompt is popped off from the chat_messages lsit
|
|
assert len(truncated_chat_history) < 26
|
|
assert len(truncated_chat_history) > 1
|
|
assert truncated_chat_history[0] != copy_big_chat_message
|
|
assert initial_tokens > self.max_prompt_size
|
|
assert final_tokens <= self.max_prompt_size
|
|
|
|
def test_truncate_single_large_non_system_message(self):
|
|
# Arrange
|
|
big_chat_message = ChatMessageFactory.build(content=factory.Faker("paragraph", nb_sentences=2000))
|
|
big_chat_message.content = big_chat_message.content + "\n" + "Question?"
|
|
big_chat_message.role = "user"
|
|
copy_big_chat_message = big_chat_message.copy()
|
|
chat_messages = [big_chat_message]
|
|
initial_tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
|
|
|
|
# Act
|
|
truncated_chat_history = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name)
|
|
final_tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history])
|
|
|
|
# Assert
|
|
# The original object has been modified. Verify certain properties
|
|
assert initial_tokens > self.max_prompt_size
|
|
assert final_tokens <= self.max_prompt_size
|
|
assert len(chat_messages) == 1
|
|
assert truncated_chat_history[0] != copy_big_chat_message
|
|
|
|
def test_truncate_single_large_question(self):
|
|
# Arrange
|
|
big_chat_message_content = " ".join(["hi"] * (self.max_prompt_size + 1))
|
|
big_chat_message = ChatMessageFactory.build(content=big_chat_message_content)
|
|
big_chat_message.role = "user"
|
|
copy_big_chat_message = big_chat_message.copy()
|
|
chat_messages = [big_chat_message]
|
|
initial_tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
|
|
|
|
# Act
|
|
truncated_chat_history = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name)
|
|
final_tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history])
|
|
|
|
# Assert
|
|
# The original object has been modified. Verify certain properties
|
|
assert initial_tokens > self.max_prompt_size
|
|
assert final_tokens <= self.max_prompt_size
|
|
assert len(chat_messages) == 1
|
|
assert truncated_chat_history[0] != copy_big_chat_message
|