Mirror of khoj from Github
Find a file
2021-08-15 23:01:55 -07:00
processor/org-mode Add org processor to generate compressed jsonl from org-mode files 2021-08-15 22:52:31 -07:00
search_types Move different search types into search_types directory 2021-08-15 19:09:50 -07:00
utils Change default install directory to current, fix open file code 2021-08-15 23:01:55 -07:00
.gitignore Add Readme, License. Update .gitignore 2021-08-15 22:52:37 -07:00
environment.yml Create API interface for Semantic Search 2021-08-15 18:11:48 -07:00
LICENSE Add Readme, License. Update .gitignore 2021-08-15 22:52:37 -07:00
main.py Move different search types into search_types directory 2021-08-15 19:09:50 -07:00
README.md Reduce indentation from 4 to 2 in Readme.md. 2021-08-15 22:56:36 -07:00
requirements.txt Update requirements.txt for users wanting to use pip install 2021-08-15 18:45:37 -07:00

Semantic Search

Provide natural language search on user personal content like notes, images using ML models

All data is processed locally. User can interface with semantic-search app via Emacs, API or Commandline

Dependencies

Install

git clone https://github.com/debanjum/semantic-search && cd semantic-search
conda env create -f environment.yml
conda activate semantic-search

Setup

Generate compressed JSONL from specified org-mode files

python3 processor/org-mode/org-to-jsonl.py \
--org-files "Schedule.org" "Incoming.org" \
--org-directory "~/Notes" \
--jsonl-file ".data/notes.jsonl" \
--compress \
--verbose

Run

Load ML model, generate embeddings and expose API interface to run user queries on above org-mode files

python3 main.py -j .data/notes.jsonl.gz -e .data/notes_embeddings.pt

Use

  • Calls Semantic Search via Emacs

    • M-x semantic-search "<user-query>"
    • C-c C-s
  • Call Semantic Search via API

  • Call Semantic Search via Python Script Directly

    python3 search_types/asymmetric.py \
    -j .data/notes.jsonl.gz \
    -e .data/notes_embeddings.pt \
    -n 5 \
    --verbose \
    --interactive
    

Acknowledgments