mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-12-12 00:33:01 +01:00
5923b6d89e
- This utilizes PUT, PATCH HTTP method semantics to remove need for the "regenerate" query param and "/update" url suffix - This should make the url more succinct and API request intent more understandable by using existing HTTP method semantics
533 lines
15 KiB
Python
533 lines
15 KiB
Python
import os
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
from fastapi import FastAPI
|
|
from fastapi.staticfiles import StaticFiles
|
|
from fastapi.testclient import TestClient
|
|
|
|
from khoj.configure import (
|
|
configure_middleware,
|
|
configure_routes,
|
|
configure_search_types,
|
|
)
|
|
from khoj.database.models import (
|
|
Agent,
|
|
GithubConfig,
|
|
GithubRepoConfig,
|
|
KhojApiUser,
|
|
KhojUser,
|
|
LocalMarkdownConfig,
|
|
LocalOrgConfig,
|
|
LocalPdfConfig,
|
|
LocalPlaintextConfig,
|
|
)
|
|
from khoj.processor.content.org_mode.org_to_entries import OrgToEntries
|
|
from khoj.processor.content.plaintext.plaintext_to_entries import PlaintextToEntries
|
|
from khoj.processor.embeddings import CrossEncoderModel, EmbeddingsModel
|
|
from khoj.routers.api_content import configure_content
|
|
from khoj.search_type import text_search
|
|
from khoj.utils import fs_syncer, state
|
|
from khoj.utils.config import SearchModels
|
|
from khoj.utils.constants import web_directory
|
|
from khoj.utils.helpers import resolve_absolute_path
|
|
from khoj.utils.rawconfig import ContentConfig, ImageSearchConfig, SearchConfig
|
|
from tests.helpers import (
|
|
ChatModelOptionsFactory,
|
|
OpenAIProcessorConversationConfigFactory,
|
|
ProcessLockFactory,
|
|
SubscriptionFactory,
|
|
UserConversationProcessorConfigFactory,
|
|
UserFactory,
|
|
)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def enable_db_access_for_all_tests(db):
|
|
pass
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def search_config() -> SearchConfig:
|
|
state.embeddings_model = dict()
|
|
state.embeddings_model["default"] = EmbeddingsModel()
|
|
state.cross_encoder_model = dict()
|
|
state.cross_encoder_model["default"] = CrossEncoderModel()
|
|
|
|
model_dir = resolve_absolute_path("~/.khoj/search")
|
|
model_dir.mkdir(parents=True, exist_ok=True)
|
|
search_config = SearchConfig()
|
|
|
|
search_config.image = ImageSearchConfig(
|
|
encoder="sentence-transformers/clip-ViT-B-32",
|
|
model_directory=model_dir / "image/",
|
|
encoder_type=None,
|
|
)
|
|
|
|
return search_config
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def default_user():
|
|
user = UserFactory()
|
|
SubscriptionFactory(user=user)
|
|
return user
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def default_user2():
|
|
if KhojUser.objects.filter(username="default").exists():
|
|
return KhojUser.objects.get(username="default")
|
|
|
|
user = KhojUser.objects.create(
|
|
username="default",
|
|
email="default@example.com",
|
|
password="default",
|
|
)
|
|
SubscriptionFactory(user=user)
|
|
return user
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def default_user3():
|
|
"""
|
|
This user should not have any data associated with it
|
|
"""
|
|
if KhojUser.objects.filter(username="default3").exists():
|
|
return KhojUser.objects.get(username="default3")
|
|
|
|
user = KhojUser.objects.create(
|
|
username="default3",
|
|
email="default3@example.com",
|
|
password="default3",
|
|
)
|
|
SubscriptionFactory(user=user)
|
|
return user
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def default_user4():
|
|
"""
|
|
This user should not have a valid subscription
|
|
"""
|
|
if KhojUser.objects.filter(username="default4").exists():
|
|
return KhojUser.objects.get(username="default4")
|
|
|
|
user = KhojUser.objects.create(
|
|
username="default4",
|
|
email="default4@example.com",
|
|
password="default4",
|
|
)
|
|
SubscriptionFactory(user=user, renewal_date=None)
|
|
return user
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def api_user(default_user):
|
|
if KhojApiUser.objects.filter(user=default_user).exists():
|
|
return KhojApiUser.objects.get(user=default_user)
|
|
|
|
return KhojApiUser.objects.create(
|
|
user=default_user,
|
|
name="api-key",
|
|
token="kk-secret",
|
|
)
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def api_user2(default_user2):
|
|
if KhojApiUser.objects.filter(user=default_user2).exists():
|
|
return KhojApiUser.objects.get(user=default_user2)
|
|
|
|
return KhojApiUser.objects.create(
|
|
user=default_user2,
|
|
name="api-key",
|
|
token="kk-diff-secret",
|
|
)
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def api_user3(default_user3):
|
|
if KhojApiUser.objects.filter(user=default_user3).exists():
|
|
return KhojApiUser.objects.get(user=default_user3)
|
|
|
|
return KhojApiUser.objects.create(
|
|
user=default_user3,
|
|
name="api-key",
|
|
token="kk-diff-secret-3",
|
|
)
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def api_user4(default_user4):
|
|
if KhojApiUser.objects.filter(user=default_user4).exists():
|
|
return KhojApiUser.objects.get(user=default_user4)
|
|
|
|
return KhojApiUser.objects.create(
|
|
user=default_user4,
|
|
name="api-key",
|
|
token="kk-diff-secret-4",
|
|
)
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def offline_agent():
|
|
chat_model = ChatModelOptionsFactory()
|
|
return Agent.objects.create(
|
|
name="Accountant",
|
|
chat_model=chat_model,
|
|
personality="You are a certified CPA. You are able to tell me how much I've spent based on my notes. Regardless of what I ask, you should always respond with the total amount I've spent. ALWAYS RESPOND WITH A SUMMARY TOTAL OF HOW MUCH MONEY I HAVE SPENT.",
|
|
)
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def openai_agent():
|
|
chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai")
|
|
return Agent.objects.create(
|
|
name="Accountant",
|
|
chat_model=chat_model,
|
|
personality="You are a certified CPA. You are able to tell me how much I've spent based on my notes. Regardless of what I ask, you should always respond with the total amount I've spent.",
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def search_models(search_config: SearchConfig):
|
|
search_models = SearchModels()
|
|
|
|
return search_models
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture
|
|
def default_process_lock():
|
|
return ProcessLockFactory()
|
|
|
|
|
|
@pytest.fixture
|
|
def anyio_backend():
|
|
return "asyncio"
|
|
|
|
|
|
@pytest.mark.django_db
|
|
@pytest.fixture(scope="function")
|
|
def content_config(tmp_path_factory, search_models: SearchModels, default_user: KhojUser):
|
|
content_dir = tmp_path_factory.mktemp("content")
|
|
|
|
# Generate Image Embeddings from Test Images
|
|
content_config = ContentConfig()
|
|
|
|
LocalOrgConfig.objects.create(
|
|
input_files=None,
|
|
input_filter=["tests/data/org/*.org"],
|
|
index_heading_entries=False,
|
|
user=default_user,
|
|
)
|
|
|
|
text_search.setup(OrgToEntries, get_sample_data("org"), regenerate=False, user=default_user)
|
|
|
|
if os.getenv("GITHUB_PAT_TOKEN"):
|
|
GithubConfig.objects.create(
|
|
pat_token=os.getenv("GITHUB_PAT_TOKEN"),
|
|
user=default_user,
|
|
)
|
|
|
|
GithubRepoConfig.objects.create(
|
|
owner="khoj-ai",
|
|
name="lantern",
|
|
branch="master",
|
|
github_config=GithubConfig.objects.get(user=default_user),
|
|
)
|
|
|
|
LocalPlaintextConfig.objects.create(
|
|
input_files=None,
|
|
input_filter=["tests/data/plaintext/*.txt", "tests/data/plaintext/*.md", "tests/data/plaintext/*.html"],
|
|
user=default_user,
|
|
)
|
|
|
|
return content_config
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def md_content_config():
|
|
markdown_config = LocalMarkdownConfig.objects.create(
|
|
input_files=None,
|
|
input_filter=["tests/data/markdown/*.markdown"],
|
|
)
|
|
|
|
return markdown_config
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def chat_client(search_config: SearchConfig, default_user2: KhojUser):
|
|
return chat_client_builder(search_config, default_user2, require_auth=False)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def chat_client_with_auth(search_config: SearchConfig, default_user2: KhojUser):
|
|
return chat_client_builder(search_config, default_user2, require_auth=True)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def chat_client_no_background(search_config: SearchConfig, default_user2: KhojUser):
|
|
return chat_client_builder(search_config, default_user2, index_content=False, require_auth=False)
|
|
|
|
|
|
@pytest.mark.django_db
|
|
def chat_client_builder(search_config, user, index_content=True, require_auth=False):
|
|
# Initialize app state
|
|
state.config.search_type = search_config
|
|
state.SearchType = configure_search_types()
|
|
|
|
if index_content:
|
|
LocalMarkdownConfig.objects.create(
|
|
input_files=None,
|
|
input_filter=["tests/data/markdown/*.markdown"],
|
|
user=user,
|
|
)
|
|
|
|
# Index Markdown Content for Search
|
|
all_files = fs_syncer.collect_files(user=user)
|
|
success = configure_content(all_files, user=user)
|
|
|
|
# Initialize Processor from Config
|
|
if os.getenv("OPENAI_API_KEY"):
|
|
chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai")
|
|
chat_model.openai_config = OpenAIProcessorConversationConfigFactory()
|
|
UserConversationProcessorConfigFactory(user=user, setting=chat_model)
|
|
|
|
state.anonymous_mode = not require_auth
|
|
|
|
app = FastAPI()
|
|
|
|
configure_routes(app)
|
|
configure_middleware(app)
|
|
app.mount("/static", StaticFiles(directory=web_directory), name="static")
|
|
return TestClient(app)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def fastapi_app():
|
|
app = FastAPI()
|
|
configure_routes(app)
|
|
configure_middleware(app)
|
|
app.mount("/static", StaticFiles(directory=web_directory), name="static")
|
|
return app
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def client(
|
|
content_config: ContentConfig,
|
|
search_config: SearchConfig,
|
|
api_user: KhojApiUser,
|
|
):
|
|
state.config.content_type = content_config
|
|
state.config.search_type = search_config
|
|
state.SearchType = configure_search_types()
|
|
state.embeddings_model = dict()
|
|
state.embeddings_model["default"] = EmbeddingsModel()
|
|
state.cross_encoder_model = dict()
|
|
state.cross_encoder_model["default"] = CrossEncoderModel()
|
|
|
|
# These lines help us Mock the Search models for these search types
|
|
text_search.setup(
|
|
OrgToEntries,
|
|
get_sample_data("org"),
|
|
regenerate=False,
|
|
user=api_user.user,
|
|
)
|
|
text_search.setup(
|
|
PlaintextToEntries,
|
|
get_sample_data("plaintext"),
|
|
regenerate=False,
|
|
user=api_user.user,
|
|
)
|
|
|
|
state.anonymous_mode = False
|
|
|
|
app = FastAPI()
|
|
configure_routes(app)
|
|
configure_middleware(app)
|
|
app.mount("/static", StaticFiles(directory=web_directory), name="static")
|
|
return TestClient(app)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def client_offline_chat(search_config: SearchConfig, default_user2: KhojUser):
|
|
# Initialize app state
|
|
state.config.search_type = search_config
|
|
state.SearchType = configure_search_types()
|
|
|
|
LocalMarkdownConfig.objects.create(
|
|
input_files=None,
|
|
input_filter=["tests/data/markdown/*.markdown"],
|
|
user=default_user2,
|
|
)
|
|
|
|
all_files = fs_syncer.collect_files(user=default_user2)
|
|
configure_content(all_files, user=default_user2)
|
|
|
|
# Initialize Processor from Config
|
|
ChatModelOptionsFactory(
|
|
chat_model="NousResearch/Hermes-2-Pro-Mistral-7B-GGUF",
|
|
tokenizer=None,
|
|
max_prompt_size=None,
|
|
model_type="offline",
|
|
)
|
|
UserConversationProcessorConfigFactory(user=default_user2)
|
|
|
|
state.anonymous_mode = True
|
|
|
|
app = FastAPI()
|
|
|
|
configure_routes(app)
|
|
configure_middleware(app)
|
|
app.mount("/static", StaticFiles(directory=web_directory), name="static")
|
|
return TestClient(app)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def new_org_file(default_user: KhojUser, content_config: ContentConfig):
|
|
# Setup
|
|
org_config = LocalOrgConfig.objects.filter(user=default_user).first()
|
|
input_filters = org_config.input_filter
|
|
new_org_file = Path(input_filters[0]).parent / "new_file.org"
|
|
new_org_file.touch()
|
|
|
|
yield new_org_file
|
|
|
|
# Cleanup
|
|
if new_org_file.exists():
|
|
new_org_file.unlink()
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def org_config_with_only_new_file(new_org_file: Path, default_user: KhojUser):
|
|
LocalOrgConfig.objects.update(input_files=[str(new_org_file)], input_filter=None)
|
|
return LocalOrgConfig.objects.filter(user=default_user).first()
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def pdf_configured_user1(default_user: KhojUser):
|
|
LocalPdfConfig.objects.create(
|
|
input_files=None,
|
|
input_filter=["tests/data/pdf/singlepage.pdf"],
|
|
user=default_user,
|
|
)
|
|
# Index Markdown Content for Search
|
|
all_files = fs_syncer.collect_files(user=default_user)
|
|
success = configure_content(all_files, user=default_user)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def sample_org_data():
|
|
return get_sample_data("org")
|
|
|
|
|
|
def get_sample_data(type):
|
|
sample_data = {
|
|
"org": {
|
|
"elisp.org": """
|
|
* Emacs Khoj
|
|
/An Emacs interface for [[https://github.com/khoj-ai/khoj][khoj]]/
|
|
|
|
** Requirements
|
|
- Install and Run [[https://github.com/khoj-ai/khoj][khoj]]
|
|
|
|
** Installation
|
|
*** Direct
|
|
- Put ~khoj.el~ in your Emacs load path. For e.g. ~/.emacs.d/lisp
|
|
- Load via ~use-package~ in your ~/.emacs.d/init.el or .emacs file by adding below snippet
|
|
#+begin_src elisp
|
|
;; Khoj Package
|
|
(use-package khoj
|
|
:load-path "~/.emacs.d/lisp/khoj.el"
|
|
:bind ("C-c s" . 'khoj))
|
|
#+end_src
|
|
|
|
*** Using [[https://github.com/quelpa/quelpa#installation][Quelpa]]
|
|
- Ensure [[https://github.com/quelpa/quelpa#installation][Quelpa]], [[https://github.com/quelpa/quelpa-use-package#installation][quelpa-use-package]] are installed
|
|
- Add below snippet to your ~/.emacs.d/init.el or .emacs config file and execute it.
|
|
#+begin_src elisp
|
|
;; Khoj Package
|
|
(use-package khoj
|
|
:quelpa (khoj :fetcher url :url "https://raw.githubusercontent.com/khoj-ai/khoj/master/interface/emacs/khoj.el")
|
|
:bind ("C-c s" . 'khoj))
|
|
#+end_src
|
|
|
|
** Usage
|
|
1. Call ~khoj~ using keybinding ~C-c s~ or ~M-x khoj~
|
|
2. Enter Query in Natural Language
|
|
e.g. "What is the meaning of life?" "What are my life goals?"
|
|
3. Wait for results
|
|
*Note: It takes about 15s on a Mac M1 and a ~100K lines corpus of org-mode files*
|
|
4. (Optional) Narrow down results further
|
|
Include/Exclude specific words from results by adding to query
|
|
e.g. "What is the meaning of life? -god +none"
|
|
|
|
""",
|
|
"readme.org": """
|
|
* Khoj
|
|
/Allow natural language search on user content like notes, images using transformer based models/
|
|
|
|
All data is processed locally. User can interface with khoj app via [[./interface/emacs/khoj.el][Emacs]], API or Commandline
|
|
|
|
** Dependencies
|
|
- Python3
|
|
- [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]]
|
|
|
|
** Install
|
|
#+begin_src shell
|
|
git clone https://github.com/khoj-ai/khoj && cd khoj
|
|
conda env create -f environment.yml
|
|
conda activate khoj
|
|
#+end_src""",
|
|
},
|
|
"markdown": {
|
|
"readme.markdown": """
|
|
# Khoj
|
|
Allow natural language search on user content like notes, images using transformer based models
|
|
|
|
All data is processed locally. User can interface with khoj app via [Emacs](./interface/emacs/khoj.el), API or Commandline
|
|
|
|
## Dependencies
|
|
- Python3
|
|
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links)
|
|
|
|
## Install
|
|
```shell
|
|
git clone
|
|
conda env create -f environment.yml
|
|
conda activate khoj
|
|
```
|
|
"""
|
|
},
|
|
"plaintext": {
|
|
"readme.txt": """
|
|
Khoj
|
|
Allow natural language search on user content like notes, images using transformer based models
|
|
|
|
All data is processed locally. User can interface with khoj app via Emacs, API or Commandline
|
|
|
|
Dependencies
|
|
- Python3
|
|
- Miniconda
|
|
|
|
Install
|
|
git clone
|
|
conda env create -f environment.yml
|
|
conda activate khoj
|
|
"""
|
|
},
|
|
}
|
|
|
|
return sample_data[type]
|