mapnik/src/placement_finder.cpp

910 lines
32 KiB
C++
Raw Normal View History

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2006 Artem Pavlenko
* Copyright (C) 2006 10East Corp.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
//$Id$
2007-10-08 19:42:41 +02:00
//mapnik
#include <mapnik/placement_finder.hpp>
#include <mapnik/geometry.hpp>
#include <mapnik/text_path.hpp>
// agg
#include "agg_path_length.h"
#include "agg_conv_clip_polyline.h"
// boost
#include <boost/shared_ptr.hpp>
#include <boost/utility.hpp>
#include <boost/ptr_container/ptr_vector.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/tuple/tuple.hpp>
2007-10-08 19:42:41 +02:00
//stl
#include <string>
#include <vector>
2006-11-28 11:38:56 +01:00
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
namespace mapnik
{
placement::placement(string_info & info_,
shield_symbolizer const& sym)
2007-02-25 11:54:36 +01:00
: info(info_),
displacement_(sym.get_displacement()),
label_placement(sym.get_label_placement()),
wrap_width(sym.get_wrap_width()),
text_ratio(sym.get_text_ratio()),
label_spacing(sym.get_label_spacing()),
label_position_tolerance(sym.get_label_position_tolerance()),
force_odd_labels(sym.get_force_odd_labels()),
max_char_angle_delta(sym.get_max_char_angle_delta()),
minimum_distance(sym.get_minimum_distance()),
avoid_edges(sym.get_avoid_edges()),
has_dimensions(true),
dimensions(std::make_pair(sym.get_image()->width(),
sym.get_image()->height()))
2007-02-25 11:54:36 +01:00
{
}
placement::placement(string_info & info_,
text_symbolizer const& sym)
2007-02-25 11:54:36 +01:00
: info(info_),
displacement_(sym.get_displacement()),
label_placement(sym.get_label_placement()),
wrap_width(sym.get_wrap_width()),
text_ratio(sym.get_text_ratio()),
label_spacing(sym.get_label_spacing()),
label_position_tolerance(sym.get_label_position_tolerance()),
force_odd_labels(sym.get_force_odd_labels()),
max_char_angle_delta(sym.get_max_char_angle_delta()),
minimum_distance(sym.get_minimum_distance()),
avoid_edges(sym.get_avoid_edges()),
has_dimensions(false),
dimensions()
2007-02-25 11:54:36 +01:00
{
}
placement::~placement()
{
}
template<typename T>
std::pair<double, double> get_position_at_distance(double target_distance, T & shape_path)
2007-02-25 11:54:36 +01:00
{
double x1 = 0.0;
double y1 = 0.0;
double x2 = 0.0;
double y2 = 0.0;
2007-02-25 11:54:36 +01:00
double distance = 0.0;
bool first = true;
unsigned cmd;
double x = 0.0;
double y = 0.0;
2007-02-25 11:54:36 +01:00
shape_path.rewind(0);
while (!agg::is_stop(cmd = shape_path.vertex(&x2,&y2)))
2007-02-25 11:54:36 +01:00
{
if (first || agg::is_move_to(cmd))
2007-02-25 11:54:36 +01:00
{
first = false;
2007-02-25 11:54:36 +01:00
}
else
2007-02-25 11:54:36 +01:00
{
double dx = x2-x1;
double dy = y2-y1;
double segment_length = ::sqrt(dx*dx + dy*dy);
distance +=segment_length;
if (distance > target_distance)
{
x = x2 - dx * (distance - target_distance)/segment_length;
y = y2 - dy * (distance - target_distance)/segment_length;
break;
}
2007-02-25 11:54:36 +01:00
}
x1 = x2;
y1 = y2;
2007-02-25 11:54:36 +01:00
}
return std::pair<double, double>(x, y);
2007-02-25 11:54:36 +01:00
}
template<typename T>
double get_total_distance(T & shape_path)
2007-02-25 11:54:36 +01:00
{
return agg::path_length(shape_path);
2007-02-25 11:54:36 +01:00
}
template <typename DetectorT>
placement_finder<DetectorT>::placement_finder(DetectorT & detector,Envelope<double> const& e)
: detector_(detector),
dimensions_(e)
2007-02-25 11:54:36 +01:00
{
}
template <typename DetectorT>
void placement_finder<DetectorT>::get_ideal_placements(placement & p, double distance, std::vector<double> & ideal_label_distances)
2007-02-25 11:54:36 +01:00
{
std::pair<double, double> string_dimensions = p.info.get_dimensions();
2007-02-25 11:54:36 +01:00
double string_width = string_dimensions.first;
if (p.label_placement == LINE_PLACEMENT && string_width > distance)
2007-02-25 11:54:36 +01:00
{
//Empty!
return ;
2007-02-25 11:54:36 +01:00
}
int num_labels = 0;
if (p.label_spacing && p.label_placement == LINE_PLACEMENT)
{
num_labels = static_cast<int> (floor(distance / (p.label_spacing + string_width)));
}
else if (p.label_spacing && p.label_placement == POINT_PLACEMENT)
{
num_labels = static_cast<int> (floor(distance / p.label_spacing));
}
if (p.force_odd_labels && num_labels%2 == 0)
2007-02-25 11:54:36 +01:00
num_labels--;
if (num_labels <= 0)
num_labels = 1;
2007-02-25 11:54:36 +01:00
double ideal_spacing = distance/num_labels;
double middle; //try draw text centered
if (p.label_placement == LINE_PLACEMENT)
middle = (distance / 2.0) - (string_width/2.0);
else // (p.label_placement == point_placement)
middle = distance / 2.0;
2007-02-25 11:54:36 +01:00
if (num_labels % 2) //odd amount of labels
{
for (int a = 0; a < (num_labels+1)/2; a++)
{
ideal_label_distances.push_back(middle - (a*ideal_spacing));
2007-02-25 11:54:36 +01:00
if (a != 0)
ideal_label_distances.push_back(middle + (a*ideal_spacing));
}
}
else //even amount of labels
{
for (int a = 0; a < num_labels/2; a++)
{
ideal_label_distances.push_back(middle - (ideal_spacing/2.0) - (a*ideal_spacing));
ideal_label_distances.push_back(middle + (ideal_spacing/2.0) + (a*ideal_spacing));
}
}
if (p.label_position_tolerance == 0)
2007-02-25 11:54:36 +01:00
{
p.label_position_tolerance = unsigned(ideal_spacing/2.0);
2007-02-25 11:54:36 +01:00
}
}
template <typename DetectorT>
template <typename T>
void placement_finder<DetectorT>::find_placements(placement & p, T & shape_path)
2007-02-25 11:54:36 +01:00
{
double distance = get_total_distance<T>(shape_path);
std::vector<double> ideal_label_distances;
get_ideal_placements(p,distance,ideal_label_distances);
std::vector<double>::const_iterator itr = ideal_label_distances.begin();
std::vector<double>::const_iterator end = ideal_label_distances.end();
for (; itr != end; ++itr)
2007-02-25 11:54:36 +01:00
{
if ((p.label_placement == LINE_PLACEMENT &&
build_path_follow(p, *itr , shape_path ) ) ||
(p.label_placement == POINT_PLACEMENT &&
build_path_horizontal(p, *itr, shape_path)) )
2007-02-25 11:54:36 +01:00
{
update_detector(p);
break;
2007-02-25 11:54:36 +01:00
}
}
}
template <typename DetectorT>
void placement_finder<DetectorT>::find_point_placement(placement & p,
double label_x, double label_y)
{
double x, y;
std::auto_ptr<placement_element> current_placement(new placement_element);
std::pair<double, double> string_dimensions = p.info.get_dimensions();
double string_width = string_dimensions.first;
double string_height = string_dimensions.second;
// check if we need to wrap the string
double wrap_at = string_width + 1;
if (p.wrap_width && string_width > p.wrap_width)
{
if (p.text_ratio)
for (int i = 1; ((wrap_at = string_width/i)/(string_height*i)) > p.text_ratio && (string_width/i) > p.wrap_width; ++i);
else
wrap_at = p.wrap_width;
}
// work out where our line breaks need to be
std::vector<int> line_breaks;
std::vector<double> line_widths;
if (wrap_at < string_width && p.info.num_characters() > 0)
{
int line_count=0;
int last_space = 0;
string_width = 0;
string_height = 0;
double line_width = 0;
double line_height = 0;
double word_width = 0;
double word_height = 0;
for (unsigned int ii = 0; ii < p.info.num_characters(); ii++)
{
character_info ci;
ci = p.info.at(ii);
unsigned c = ci.character;
word_width += ci.width;
word_height = word_height > ci.height ? word_height : ci.height;
++line_count;
if (c == ' ')
{
last_space = ii;
line_width += word_width;
line_height = line_height > word_height ? line_height : word_height;
word_width = 0;
word_height = 0;
}
if (line_width > 0 && line_width > wrap_at)
{
string_width = string_width > line_width ? string_width : line_width;
string_height += line_height;
line_breaks.push_back(last_space);
line_widths.push_back(line_width);
ii = last_space;
line_count = 0;
line_width = 0;
line_height = 0;
word_width = 0;
word_height = 0;
}
}
line_width += word_width;
string_width = string_width > line_width ? string_width : line_width;
line_breaks.push_back(p.info.num_characters() + 1);
line_widths.push_back(line_width);
}
if (line_breaks.size() == 0)
{
line_breaks.push_back(p.info.num_characters() + 1);
line_widths.push_back(string_width);
2007-02-25 11:54:36 +01:00
}
p.info.set_dimensions(string_width, string_height);
current_placement->starting_x = label_x;
current_placement->starting_y = label_y;
current_placement->starting_x += boost::tuples::get<0>(p.displacement_);
current_placement->starting_y += boost::tuples::get<1>(p.displacement_);
double line_height = 0;
unsigned int line_number = 0;
unsigned int index_to_wrap_at = line_breaks[line_number];
double line_width = line_widths[line_number];
x = -line_width/2.0 - 1.0;
y = -string_height/2.0 + 1.0;
for (unsigned i = 0; i < p.info.num_characters(); i++)
2007-02-25 11:54:36 +01:00
{
character_info ci;;
ci = p.info.at(i);
unsigned c = ci.character;
if (i == index_to_wrap_at)
{
index_to_wrap_at = line_breaks[++line_number];
line_width = line_widths[line_number];
y -= line_height;
x = -line_width/2.0;
line_height = 0;
continue;
}
else
{
current_placement->add_node(c, x, y, 0.0);
Envelope<double> e;
if (p.has_dimensions)
{
e.init(current_placement->starting_x - (p.dimensions.first/2.0),
current_placement->starting_y - (p.dimensions.second/2.0),
current_placement->starting_x + (p.dimensions.first/2.0),
current_placement->starting_y + (p.dimensions.second/2.0));
}
else
{
e.init(current_placement->starting_x + x,
current_placement->starting_y - y,
current_placement->starting_x + x + ci.width,
current_placement->starting_y - y - ci.height);
}
if (!dimensions_.intersects(e) || !detector_.has_placement(e, p.info.get_string(), p.minimum_distance))
{
return ;
}
p.envelopes.push(e);
}
x += ci.width;
line_height = line_height > ci.height ? line_height : ci.height;
}
p.placements.push_back(current_placement.release());
update_detector(p);
}
template <typename DetectorT>
template <typename PathT>
void placement_finder<DetectorT>::find_placements_with_spacing(placement & p, PathT & shape_path)
{
double new_x = 0.0;
double new_y = 0.0;
double old_x = 0.0;
double old_y = 0.0;
double x = 0.0;
double y = 0.0;
double next_char_x = 0.0;
double next_char_y = 0.0;
shape_path.rewind(0);
unsigned cmd;
bool first = true;
double distance = 0.0;
std::pair<double, double> string_dimensions = p.info.get_dimensions();
double string_height = string_dimensions.second;
double spacing = p.label_spacing;
double angle = 0.0;
int orientation = 0;
double displacement = boost::tuples::get<1>(p.displacement_); // displace by dy
double target_distance = spacing;
while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y)))
{
if (first || agg::is_move_to(cmd))
{
first = false;
}
else
{
double dx = new_x - old_x;
double dy = new_y - old_y;
double segment_length = ::sqrt(dx*dx + dy*dy);
distance += segment_length;
while (distance > target_distance)
{
// got initial segment
std::auto_ptr<placement_element> current_placement(new placement_element);
current_placement->starting_x = new_x - dx*(distance - target_distance)/segment_length;
current_placement->starting_y = new_y - dy*(distance - target_distance)/segment_length;
angle = atan2(-dy, dx);
orientation = (angle > 0.55*M_PI || angle < -0.45*M_PI) ? -1 : 1;
distance -= target_distance;
// now find the placement of each character starting from our initial segment
// determined above
double last_angle = angle;
bool status = true;
for (unsigned i = 0; i < p.info.num_characters(); ++i)
{
character_info ci;
unsigned c;
// grab the next character according to the orientation
ci = orientation > 0 ? p.info.at(i) : p.info.at(p.info.num_characters() - i - 1);
c = ci.character;
double angle_delta = 0;
// if the distance remaining in this segment is less than the character width
// move to the next segment
if (distance <= ci.width)
{
last_angle = angle;
while (distance <= ci.width)
{
old_x = new_x;
old_y = new_y;
if (agg::is_stop(shape_path.vertex(&new_x,&new_y)))
{
status = false;
break;
}
dx = new_x - old_x;
dy = new_y - old_y;
angle = atan2(-dy, dx );
distance += sqrt(dx*dx+dy*dy);
}
// since our rendering angle has changed then check against our
// max allowable angle change.
angle_delta = last_angle - angle;
// normalise between -180 and 180
while (angle_delta > M_PI)
angle_delta -= 2*M_PI;
while (angle_delta < -M_PI)
angle_delta += 2*M_PI;
if (p.max_char_angle_delta > 0 && fabs(angle_delta) > p.max_char_angle_delta*(M_PI/180))
{
status = false;
}
}
Envelope<double> e;
if (p.has_dimensions)
{
e.init(x, y, x + p.dimensions.first, y + p.dimensions.second);
}
double render_angle = angle;
x = new_x - (distance)*cos(angle);
y = new_y + (distance)*sin(angle);
//Center the text on the line, unless displacement != 0
if (displacement == 0.0)
{
x -= (((double)string_height/2.0) - 1.0)*cos(render_angle+M_PI/2);
y += (((double)string_height/2.0) - 1.0)*sin(render_angle+M_PI/2);
}
else if (displacement*orientation > 0.0)
{
x -= ((fabs(displacement) - (double)string_height) + 1.0)*cos(render_angle+M_PI/2);
y += ((fabs(displacement) - (double)string_height) + 1.0)*sin(render_angle+M_PI/2);
}
else
{ // displacement < 0
x -= ((fabs(displacement) + (double)string_height) - 1.0)*cos(render_angle+M_PI/2);
y += ((fabs(displacement) + (double)string_height) - 1.0)*sin(render_angle+M_PI/2);
}
distance -= ci.width;
next_char_x = ci.width*cos(render_angle);
next_char_y = ci.width*sin(render_angle);
double render_x = x;
double render_y = y;
if (!p.has_dimensions)
{
// put four corners of the letter into envelope
e.init(render_x, render_y, render_x + ci.width*cos(render_angle),
render_y - ci.width*sin(render_angle));
e.expand_to_include(render_x - ci.height*sin(render_angle),
render_y - ci.height*cos(render_angle));
e.expand_to_include(render_x + (ci.width*cos(render_angle) - ci.height*sin(render_angle)),
render_y - (ci.width*sin(render_angle) + ci.height*cos(render_angle)));
}
if (!dimensions_.intersects(e) ||
!detector_.has_placement(e, p.info.get_string(), p.minimum_distance))
{
status = false;
}
if (p.avoid_edges && !dimensions_.contains(e))
{
status = false;
}
p.envelopes.push(e);
if (orientation < 0)
{
// rotate in place
render_x += ci.width*cos(render_angle) - (string_height-2)*sin(render_angle);
render_y -= ci.width*sin(render_angle) + (string_height-2)*cos(render_angle);
render_angle += M_PI;
}
current_placement->add_node(c,render_x - current_placement->starting_x,
-render_y + current_placement->starting_y,
render_angle);
x += next_char_x;
y -= next_char_y;
}
if (status)
{
p.placements.push_back(current_placement.release());
update_detector(p);
}
}
2007-02-25 11:54:36 +01:00
}
old_x = new_x;
old_y = new_y;
}
2007-02-25 11:54:36 +01:00
}
template <typename DetectorT>
void placement_finder<DetectorT>::update_detector(placement & p)
2007-02-25 11:54:36 +01:00
{
while (!p.envelopes.empty())
2007-02-25 11:54:36 +01:00
{
Envelope<double> e = p.envelopes.front();
detector_.insert(e, p.info.get_string());
p.envelopes.pop();
2007-02-25 11:54:36 +01:00
}
}
template <typename DetectorT>
template <typename PathT>
bool placement_finder<DetectorT>::build_path_follow(placement & p, double target_distance, PathT & shape_path)
2007-02-25 11:54:36 +01:00
{
double new_x = 0.0;
double new_y = 0.0;
double old_x = 0.0;
double old_y = 0.0;
double next_char_x = 0.0;
double next_char_y = 0.0;
2007-02-25 11:54:36 +01:00
double angle = 0.0;
int orientation = 0;
double displacement = boost::tuples::get<1>(p.displacement_); // displace by dy
std::auto_ptr<placement_element> current_placement(new placement_element);
double x = 0.0;
double y = 0.0;
2007-02-25 11:54:36 +01:00
double distance = 0.0;
std::pair<double, double> string_dimensions = p.info.get_dimensions();
2007-02-25 11:54:36 +01:00
double string_height = string_dimensions.second;
2007-02-25 11:54:36 +01:00
// find the segment that our text should start on
shape_path.rewind(0);
unsigned cmd;
bool first = true;
while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y)))
2007-02-25 11:54:36 +01:00
{
if (first || agg::is_move_to(cmd))
2007-02-25 11:54:36 +01:00
{
first = false;
}
else
{
double dx = new_x - old_x;
double dy = new_y - old_y;
double segment_length = sqrt(dx*dx + dy*dy);
distance += segment_length;
if (distance > target_distance)
{
current_placement->starting_x = new_x - dx*(distance - target_distance)/segment_length;
current_placement->starting_y = new_y - dy*(distance - target_distance)/segment_length;
// angle text starts at and orientation
angle = atan2(-dy, dx);
orientation = (angle > 0.55*M_PI || angle < -0.45*M_PI) ? -1 : 1;
distance -= target_distance;
break;
}
2007-02-25 11:54:36 +01:00
}
old_x = new_x;
old_y = new_y;
2007-02-25 11:54:36 +01:00
}
2007-02-25 11:54:36 +01:00
// now find the placement of each character starting from our initial segment
// determined above
double last_angle = angle;
for (unsigned i = 0; i < p.info.num_characters(); ++i)
2007-02-25 11:54:36 +01:00
{
character_info ci;
unsigned c;
// grab the next character according to the orientation
ci = orientation > 0 ? p.info.at(i) : p.info.at(p.info.num_characters() - i - 1);
2007-02-25 11:54:36 +01:00
c = ci.character;
2007-02-25 11:54:36 +01:00
double angle_delta = 0;
// if the distance remaining in this segment is less than the character width
// move to the next segment
if (distance <= ci.width)
{
last_angle = angle;
while (distance <= ci.width)
{
2007-02-25 11:54:36 +01:00
double dx, dy;
old_x = new_x;
old_y = new_y;
if (agg::is_stop(shape_path.vertex(&new_x,&new_y)))
return false;
2007-02-25 11:54:36 +01:00
dx = new_x - old_x;
dy = new_y - old_y;
2007-02-25 11:54:36 +01:00
angle = atan2(-dy, dx );
distance += sqrt(dx*dx+dy*dy);
}
2007-02-25 11:54:36 +01:00
// since our rendering angle has changed then check against our
// max allowable angle change.
angle_delta = last_angle - angle;
// normalise between -180 and 180
while (angle_delta > M_PI)
angle_delta -= 2*M_PI;
while (angle_delta < -M_PI)
angle_delta += 2*M_PI;
if (p.max_char_angle_delta > 0 && fabs(angle_delta) > p.max_char_angle_delta*(M_PI/180))
{
2007-02-25 11:54:36 +01:00
return false;
}
2007-02-25 11:54:36 +01:00
}
2007-02-25 11:54:36 +01:00
Envelope<double> e;
if (p.has_dimensions)
2007-02-25 11:54:36 +01:00
{
e.init(x, y, x + p.dimensions.first, y + p.dimensions.second);
2007-02-25 11:54:36 +01:00
}
double render_angle = angle;
x = new_x - (distance)*cos(angle);
y = new_y + (distance)*sin(angle);
//Center the text on the line, unless displacement != 0
if (displacement == 0.0) {
x -= (((double)string_height/2.0) - 1.0)*cos(render_angle+M_PI/2);
y += (((double)string_height/2.0) - 1.0)*sin(render_angle+M_PI/2);
} else if (displacement*orientation > 0.0) {
x -= ((fabs(displacement) - (double)string_height) + 1.0)*cos(render_angle+M_PI/2);
y += ((fabs(displacement) - (double)string_height) + 1.0)*sin(render_angle+M_PI/2);
} else { // displacement < 0
x -= ((fabs(displacement) + (double)string_height) - 1.0)*cos(render_angle+M_PI/2);
y += ((fabs(displacement) + (double)string_height) - 1.0)*sin(render_angle+M_PI/2);
}
2007-02-25 11:54:36 +01:00
distance -= ci.width;
next_char_x = ci.width*cos(render_angle);
next_char_y = ci.width*sin(render_angle);
double render_x = x;
double render_y = y;
if (!p.has_dimensions)
2007-02-25 11:54:36 +01:00
{
// put four corners of the letter into envelope
e.init(render_x, render_y, render_x + ci.width*cos(render_angle), render_y - ci.width*sin(render_angle));
e.expand_to_include(render_x - ci.height*sin(render_angle), render_y - ci.height*cos(render_angle));
e.expand_to_include(render_x + (ci.width*cos(render_angle) - ci.height*sin(render_angle)),
render_y - (ci.width*sin(render_angle) + ci.height*cos(render_angle)));
2007-02-25 11:54:36 +01:00
}
if (!dimensions_.intersects(e) ||
!detector_.has_placement(e, p.info.get_string(), p.minimum_distance))
2007-02-25 11:54:36 +01:00
{
return false;
}
if (p.avoid_edges && !dimensions_.contains(e))
{
return false;
}
p.envelopes.push(e);
2007-02-25 11:54:36 +01:00
if (orientation < 0)
{
// rotate in place
render_x += ci.width*cos(render_angle) - (string_height-2)*sin(render_angle);
render_y -= ci.width*sin(render_angle) + (string_height-2)*cos(render_angle);
render_angle += M_PI;
}
current_placement->add_node(c,render_x - current_placement->starting_x,
-render_y + current_placement->starting_y,
render_angle);
2007-02-25 11:54:36 +01:00
x += next_char_x;
y -= next_char_y;
}
p.placements.push_back(current_placement.release());
2007-02-25 11:54:36 +01:00
return true;
}
template <typename DetectorT>
template <typename PathT>
bool placement_finder<DetectorT>::build_path_horizontal(placement & p, double target_distance, PathT & shape_path)
2007-02-25 11:54:36 +01:00
{
double x, y;
std::auto_ptr<placement_element> current_placement(new placement_element);
std::pair<double, double> string_dimensions = p.info.get_dimensions();
2007-02-25 11:54:36 +01:00
double string_width = string_dimensions.first;
double string_height = string_dimensions.second;
2007-02-25 11:54:36 +01:00
// check if we need to wrap the string
double wrap_at = string_width + 1;
if (p.wrap_width && string_width > p.wrap_width)
2007-02-25 11:54:36 +01:00
{
if (p.text_ratio)
for (int i = 1; ((wrap_at = string_width/i)/(string_height*i)) > p.text_ratio && (string_width/i) > p.wrap_width; ++i);
2007-02-25 11:54:36 +01:00
else
wrap_at = p.wrap_width;
2007-02-25 11:54:36 +01:00
}
// work out where our line breaks need to be
std::vector<int> line_breaks;
std::vector<double> line_widths;
if (wrap_at < string_width && p.info.num_characters() > 0)
2007-02-25 11:54:36 +01:00
{
int line_count=0;
int last_space = 0;
string_width = 0;
string_height = 0;
double line_width = 0;
double line_height = 0;
double word_width = 0;
double word_height = 0;
for (unsigned int ii = 0; ii < p.info.num_characters(); ii++)
2007-02-25 11:54:36 +01:00
{
character_info ci;
ci = p.info.at(ii);
2007-02-25 11:54:36 +01:00
unsigned c = ci.character;
word_width += ci.width;
word_height = word_height > ci.height ? word_height : ci.height;
++line_count;
2007-02-25 11:54:36 +01:00
if (c == ' ')
{
last_space = ii;
line_width += word_width;
line_height = line_height > word_height ? line_height : word_height;
word_width = 0;
word_height = 0;
}
2007-02-25 11:54:36 +01:00
if (line_width > 0 && line_width > wrap_at)
{
string_width = string_width > line_width ? string_width : line_width;
string_height += line_height;
line_breaks.push_back(last_space);
line_widths.push_back(line_width);
ii = last_space;
line_count = 0;
line_width = 0;
line_height = 0;
word_width = 0;
word_height = 0;
}
}
line_width += word_width;
string_width = string_width > line_width ? string_width : line_width;
line_breaks.push_back(p.info.num_characters() + 1);
2007-02-25 11:54:36 +01:00
line_widths.push_back(line_width);
}
if (line_breaks.size() == 0)
{
line_breaks.push_back(p.info.num_characters() + 1);
2007-02-25 11:54:36 +01:00
line_widths.push_back(string_width);
}
p.info.set_dimensions(string_width, string_height);
std::pair<double, double> starting_pos =
get_position_at_distance<PathT>(target_distance,shape_path);
current_placement->starting_x = starting_pos.first;
current_placement->starting_y = starting_pos.second;
2007-02-25 11:54:36 +01:00
double line_height = 0;
unsigned int line_number = 0;
unsigned int index_to_wrap_at = line_breaks[line_number];
double line_width = line_widths[line_number];
x = -line_width/2.0 - 1.0;
2007-02-25 11:54:36 +01:00
y = -string_height/2.0 + 1.0;
for (unsigned i = 0; i < p.info.num_characters(); i++)
2007-02-25 11:54:36 +01:00
{
character_info ci;;
ci = p.info.at(i);
2007-02-25 11:54:36 +01:00
unsigned c = ci.character;
if (i == index_to_wrap_at)
{
index_to_wrap_at = line_breaks[++line_number];
line_width = line_widths[line_number];
y -= line_height;
x = -line_width/2.0;
line_height = 0;
continue;
}
else
{
current_placement->add_node(c, x, y, 0.0);
2007-02-25 11:54:36 +01:00
Envelope<double> e;
if (p.has_dimensions)
{
e.init(current_placement->starting_x - (p.dimensions.first/2.0),
current_placement->starting_y - (p.dimensions.second/2.0),
current_placement->starting_x + (p.dimensions.first/2.0),
current_placement->starting_y + (p.dimensions.second/2.0));
}
else
{
e.init(current_placement->starting_x + x,
current_placement->starting_y - y,
current_placement->starting_x + x + ci.width,
current_placement->starting_y - y - ci.height);
2007-02-25 11:54:36 +01:00
}
if (!dimensions_.intersects(e) ||
!detector_.has_placement(e, p.info.get_string(), p.minimum_distance))
2007-02-25 11:54:36 +01:00
{
return false;
}
if (p.avoid_edges && !dimensions_.contains(e))
{
return false;
}
p.envelopes.push(e);
2007-02-25 11:54:36 +01:00
}
x += ci.width;
line_height = line_height > ci.height ? line_height : ci.height;
}
p.placements.push_back(current_placement.release());
2007-02-25 11:54:36 +01:00
return true;
}
template <typename DetectorT>
void placement_finder<DetectorT>::clear()
{
detector_.clear();
}
typedef coord_transform2<CoordTransform,geometry2d> PathType;
typedef label_collision_detector4 DetectorType;
template class placement_finder<DetectorType>;
template void placement_finder<DetectorType>::find_placements<PathType> (placement&, PathType & );
template void placement_finder<DetectorType>::find_placements_with_spacing<PathType> (placement&, PathType & );
} // namespace