mapnik/src/value.cpp

922 lines
21 KiB
C++
Raw Normal View History

2016-02-23 23:05:19 +01:00
/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2016 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
// mapnik
#include <mapnik/value.hpp>
#include <mapnik/value_types.hpp>
#include <mapnik/util/conversions.hpp>
// stl
#include <cmath>
#include <string>
#include <type_traits>
// icu
#include <unicode/unistr.h>
#include <unicode/ustring.h>
namespace mapnik {
namespace detail {
namespace {
template <typename T, typename U>
struct both_arithmetic : std::integral_constant<bool,
std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value> {};
struct equals
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
-> decltype(lhs == rhs)
{
return lhs == rhs;
}
};
struct not_equal
{
// back compatibility shim to equate empty string with null for != test
// https://github.com/mapnik/mapnik/issues/1859
// TODO - consider removing entire specialization at Mapnik 3.1.x
static bool apply(value_null, value_unicode_string const& rhs)
{
if (rhs.isEmpty()) return false;
return true;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
-> decltype(lhs != rhs)
{
return lhs != rhs;
}
};
struct greater_than
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
-> decltype(lhs > rhs)
{
return lhs > rhs;
}
};
struct greater_or_equal
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
-> decltype(lhs >= rhs)
{
return lhs >= rhs;
}
};
struct less_than
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
-> decltype(lhs < rhs)
{
return lhs < rhs;
}
};
struct less_or_equal
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
-> decltype(lhs <= rhs)
{
return lhs <= rhs;
}
};
}
template <typename Op, bool default_result>
struct comparison
{
// special case for unicode_strings (fixes MSVC C4800)
bool operator()(value_unicode_string const& lhs,
value_unicode_string const& rhs) const
{
return Op::apply(lhs, rhs) ? true : false;
}
//////////////////////////////////////////////////////////////////////////
// special case for unicode_string and value_null
//////////////////////////////////////////////////////////////////////////
bool operator()(value_null const& lhs, value_unicode_string const& rhs) const
{
return Op::apply(lhs, rhs);
}
//////////////////////////////////////////////////////////////////////////
// same types
template <typename T>
bool operator()(T lhs, T rhs) const
{
return Op::apply(lhs, rhs);
}
// both types are arithmetic - promote to the common type
template <typename T, typename U, typename std::enable_if<both_arithmetic<T, U>::value, int>::type = 0>
bool operator()(T const& lhs, U const& rhs) const
{
using common_type = typename std::common_type<T, U>::type;
return Op::apply(static_cast<common_type>(lhs), static_cast<common_type>(rhs));
}
//
template <typename T, typename U, typename std::enable_if<!both_arithmetic<T, U>::value, int>::type = 0>
bool operator()(T const& lhs, U const& rhs) const
{
return default_result;
}
};
template <typename V>
struct add
{
using value_type = V;
value_type operator()(value_unicode_string const& lhs,
value_unicode_string const& rhs) const
{
return lhs + rhs;
}
value_type operator()(value_null const& lhs,
value_null const& rhs) const
{
return lhs;
}
value_type operator()(value_unicode_string const& lhs, value_null) const
{
return lhs;
}
value_type operator()(value_null, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator()(L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator()(value_null const&, R const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator()(L const& lhs, value_unicode_string const& rhs) const
{
std::string val;
if (util::to_string(val, lhs))
return value_unicode_string(val.c_str()) + rhs;
return rhs;
}
template <typename R>
value_type operator()(value_unicode_string const& lhs, R const& rhs) const
{
std::string val;
if (util::to_string(val, rhs))
return lhs + value_unicode_string(val.c_str());
return lhs;
}
template <typename T1, typename T2>
value_type operator()(T1 const& lhs, T2 const& rhs) const
{
return typename std::common_type<T1, T2>::type{lhs + rhs};
}
value_type operator()(value_bool lhs, value_bool rhs) const
{
return value_integer(lhs + rhs);
}
};
template <typename V>
struct sub
{
using value_type = V;
value_type operator()(value_null const& lhs,
value_null const& rhs) const
{
return lhs;
}
value_type operator()(value_null, value_unicode_string const& rhs) const
{
return rhs;
}
value_type operator()(value_unicode_string const& lhs, value_null) const
{
return lhs;
}
template <typename R>
value_type operator()(value_unicode_string const& lhs, R const&) const
{
return lhs;
}
template <typename L>
value_type operator()(L const&, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator()(L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator()(value_null const&, R const& rhs) const
{
return rhs;
}
template <typename T>
value_type operator()(T lhs, T rhs) const
{
return lhs - rhs;
}
value_type operator()(value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
template <typename T1, typename T2>
value_type operator()(T1 const& lhs, T2 const& rhs) const
{
return typename std::common_type<T1, T2>::type{lhs - rhs};
}
value_type operator()(value_bool lhs, value_bool rhs) const
{
return value_integer(lhs - rhs);
}
};
template <typename V>
struct mult
{
using value_type = V;
value_type operator()(value_null const& lhs,
value_null const& rhs) const
{
return lhs;
}
value_type operator()(value_unicode_string const& lhs, value_null) const
{
return lhs;
}
value_type operator()(value_null, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator()(L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator()(value_null const&, R const& rhs) const
{
return rhs;
}
template <typename R>
value_type operator()(value_unicode_string const& lhs, R const&) const
{
return lhs;
}
template <typename L>
value_type operator()(L const&, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename T>
value_type operator()(T lhs, T rhs) const
{
return lhs * rhs;
}
value_type operator()(value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
template <typename T1, typename T2>
value_type operator()(T1 const& lhs, T2 const& rhs) const
{
return typename std::common_type<T1, T2>::type{lhs * rhs};
}
value_type operator()(value_bool lhs, value_bool rhs) const
{
return value_integer(lhs * rhs);
}
};
template <typename V>
struct div
{
using value_type = V;
value_type operator()(value_null const& lhs,
value_null const& rhs) const
{
return lhs;
}
value_type operator()(value_unicode_string const& lhs, value_null) const
{
return lhs;
}
value_type operator()(value_null, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator()(L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator()(value_null const&, R const& rhs) const
{
return rhs;
}
template <typename T>
value_type operator()(T lhs, T rhs) const
{
if (rhs == 0) return value_type();
return lhs / rhs;
}
value_type operator()(value_bool lhs, value_bool rhs) const
{
if (rhs == 0) return lhs;
return value_integer(lhs) / value_integer(rhs);
}
value_type operator()(value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
template <typename R>
value_type operator()(value_unicode_string const& lhs, R const&) const
{
return lhs;
}
template <typename L>
value_type operator()(L const&, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename T1, typename T2>
value_type operator()(T1 const& lhs, T2 const& rhs) const
{
if (rhs == 0) return value_type();
using common_type = typename std::common_type<T1, T2>::type;
return common_type(lhs) / common_type(rhs);
}
};
template <typename V>
struct mod
{
using value_type = V;
template <typename T1, typename T2>
value_type operator()(T1 const& lhs, T2 const&) const
{
return lhs;
}
template <typename T>
value_type operator()(T lhs, T rhs) const
{
return lhs % rhs;
}
value_type operator()(value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
value_type operator()(value_bool,
value_bool) const
{
return false;
}
value_type operator()(value_double lhs, value_integer rhs) const
{
return std::fmod(lhs, static_cast<value_double>(rhs));
}
value_type operator()(value_integer lhs, value_double rhs) const
{
return std::fmod(static_cast<value_double>(lhs), rhs);
}
value_type operator()(value_double lhs, value_double rhs) const
{
return std::fmod(lhs, rhs);
}
};
template <typename V>
struct negate
{
using value_type = V;
template <typename T>
value_type operator()(T val) const
{
return -val;
}
value_type operator()(value_null val) const
{
return val;
}
value_type operator()(value_bool val) const
{
return val ? value_integer(-1) : value_integer(0);
}
value_type operator()(value_unicode_string const&) const
{
return value_type();
}
};
// converters
template <typename T>
struct convert
{
};
template <>
struct convert<value_bool>
{
value_bool operator()(value_bool val) const
{
return val;
}
value_bool operator()(value_unicode_string const& ustr) const
{
return !ustr.isEmpty();
}
value_bool operator()(value_null const&) const
{
return false;
}
template <typename T>
value_bool operator()(T val) const
{
return val > 0 ? true : false;
}
};
template <>
struct convert<value_double>
{
value_double operator()(value_double val) const
{
return val;
}
value_double operator()(value_integer val) const
{
return static_cast<value_double>(val);
}
value_double operator()(value_bool val) const
{
return static_cast<value_double>(val);
}
value_double operator()(std::string const& val) const
{
value_double result;
if (util::string2double(val, result))
return result;
return 0;
}
value_double operator()(value_unicode_string const& val) const
{
std::string utf8;
val.toUTF8String(utf8);
return operator()(utf8);
}
value_double operator()(value_null const&) const
{
return 0.0;
}
};
template <>
struct convert<value_integer>
{
value_integer operator()(value_integer val) const
{
return val;
}
value_integer operator()(value_double val) const
{
return static_cast<value_integer>(rint(val));
}
value_integer operator()(value_bool val) const
{
return static_cast<value_integer>(val);
}
value_integer operator()(std::string const& val) const
{
value_integer result;
if (util::string2int(val, result))
return result;
return value_integer(0);
}
value_integer operator()(value_unicode_string const& val) const
{
std::string utf8;
val.toUTF8String(utf8);
return operator()(utf8);
}
value_integer operator()(value_null const&) const
{
return value_integer(0);
}
};
template <>
struct convert<std::string>
{
template <typename T>
std::string operator()(T val) const
{
std::string str;
util::to_string(str, val);
return str;
}
// specializations
std::string operator()(value_unicode_string const& val) const
{
std::string utf8;
val.toUTF8String(utf8);
return utf8;
}
std::string operator()(value_double val) const
{
std::string str;
util::to_string(str, val); // TODO set precision(16)
return str;
}
std::string operator()(value_bool val) const
{
return val ? "true" : "false";
}
std::string operator()(value_null const&) const
{
return std::string();
}
};
struct to_unicode_impl
{
template <typename T>
value_unicode_string operator()(T val) const
{
std::string str;
util::to_string(str, val);
return value_unicode_string(str.c_str());
}
// specializations
value_unicode_string const& operator()(value_unicode_string const& val) const
{
return val;
}
value_unicode_string operator()(value_double val) const
{
std::string str;
util::to_string(str, val);
return value_unicode_string(str.c_str());
}
value_unicode_string operator()(value_bool val) const
{
return value_unicode_string(val ? "true" : "false");
}
value_unicode_string operator()(value_null const&) const
{
return value_unicode_string();
}
};
struct to_expression_string_impl
{
struct EscapingByteSink : U_NAMESPACE_QUALIFIER ByteSink
{
std::string dest_;
char quote_;
explicit EscapingByteSink(char quote)
: quote_(quote)
{
}
virtual void Append(const char* data, int32_t n)
{
// reserve enough room to hold the appended chunk and quotes;
// if another chunk follows, or any character needs escaping,
// the string will grow naturally
if (dest_.empty())
{
dest_.reserve(2 + static_cast<std::size_t>(n));
dest_.append(1, quote_);
}
else
{
dest_.reserve(dest_.size() + n + 1);
}
for (auto end = data + n; data < end; ++data)
{
if (*data == '\\' || *data == quote_)
dest_.append(1, '\\');
dest_.append(1, *data);
}
}
virtual void Flush()
{
if (dest_.empty())
dest_.append(2, quote_);
else
dest_.append(1, quote_);
}
};
explicit to_expression_string_impl(char quote = '\'')
: quote_(quote) {}
std::string operator()(value_unicode_string const& val) const
{
EscapingByteSink sink(quote_);
val.toUTF8(sink);
return sink.dest_;
}
std::string operator()(value_integer val) const
{
std::string output;
util::to_string(output, val);
return output;
}
std::string operator()(value_double val) const
{
std::string output;
util::to_string(output, val); // TODO precision(16)
return output;
}
std::string operator()(value_bool val) const
{
return val ? "true" : "false";
}
std::string operator()(value_null const&) const
{
return "null";
}
const char quote_;
};
} // ns detail
namespace value_adl_barrier {
bool value::operator==(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::equals, false>(), *this, other);
}
bool value::operator!=(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::not_equal, true>(), *this, other);
}
bool value::operator>(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::greater_than, false>(), *this, other);
}
bool value::operator>=(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::greater_or_equal, false>(), *this, other);
}
bool value::operator<(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::less_than, false>(), *this, other);
}
bool value::operator<=(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::less_or_equal, false>(), *this, other);
}
value value::operator-() const
{
return util::apply_visitor(detail::negate<value>(), *this);
}
value_bool value::to_bool() const
{
return util::apply_visitor(detail::convert<value_bool>(), *this);
}
std::string value::to_expression_string(char quote) const
{
return util::apply_visitor(detail::to_expression_string_impl(quote), *this);
}
std::string value::to_string() const
{
return util::apply_visitor(detail::convert<std::string>(), *this);
}
value_unicode_string value::to_unicode() const
{
return util::apply_visitor(detail::to_unicode_impl(), *this);
}
value_double value::to_double() const
{
return util::apply_visitor(detail::convert<value_double>(), *this);
}
value_integer value::to_int() const
{
return util::apply_visitor(detail::convert<value_integer>(), *this);
}
bool value::is_null() const
{
return util::apply_visitor(mapnik::detail::is_null_visitor(), *this);
}
template <>
value_double value::convert() const
{
return util::apply_visitor(detail::convert<value_double>(), *this);
}
template <>
value_integer value::convert() const
{
return util::apply_visitor(detail::convert<value_integer>(), *this);
}
template <>
value_bool value::convert() const
{
return util::apply_visitor(detail::convert<value_bool>(), *this);
}
template <>
std::string value::convert() const
{
return util::apply_visitor(detail::convert<std::string>(), *this);
}
//
value operator+(value const& p1, value const& p2)
{
return value(util::apply_visitor(detail::add<value>(), p1, p2));
}
value operator-(value const& p1, value const& p2)
{
return value(util::apply_visitor(detail::sub<value>(), p1, p2));
}
value operator*(value const& p1, value const& p2)
{
return value(util::apply_visitor(detail::mult<value>(), p1, p2));
}
value operator/(value const& p1, value const& p2)
{
return value(util::apply_visitor(detail::div<value>(), p1, p2));
}
value operator%(value const& p1, value const& p2)
{
return value(util::apply_visitor(detail::mod<value>(), p1, p2));
}
} // namespace value_adl_barrier
} // namespace mapnik