mapnik/agg/include/agg_basics.h

531 lines
16 KiB
C
Raw Normal View History

2006-02-01 00:09:52 +01:00
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_BASICS_INCLUDED
#define AGG_BASICS_INCLUDED
#include <math.h>
#include "agg_config.h"
//---------------------------------------------------------AGG_CUSTOM_ALLOCATOR
#ifdef AGG_CUSTOM_ALLOCATOR
#include "agg_allocator.h"
#else
namespace agg
{
// The policy of all AGG containers and memory allocation strategy
// in general is that no allocated data requires explicit construction.
// It means that the allocator can be really simple; you can even
// replace new/delete to malloc/free. The constructors and destructors
// won't be called in this case, however everything will remain working.
// The second argument of deallocate() is the size of the allocated
// block. You can use this information if you wish.
//------------------------------------------------------------pod_allocator
template<class T> struct pod_allocator
{
static T* allocate(unsigned num) { return new T [num]; }
static void deallocate(T* ptr, unsigned) { delete [] ptr; }
};
// Single object allocator. It's also can be replaced with your custom
// allocator. The difference is that it can only allocate a single
// object and the constructor and destructor must be called.
// In AGG there is no need to allocate an array of objects with
// calling their constructors (only single ones). So that, if you
// replace these new/delete to malloc/free make sure that the in-place
// new is called and take care of calling the destructor too.
//------------------------------------------------------------obj_allocator
template<class T> struct obj_allocator
{
static T* allocate() { return new T; }
static void deallocate(T* ptr) { delete ptr; }
};
}
#endif
2006-02-01 00:09:52 +01:00
//-------------------------------------------------------- Default basic types
//
// If the compiler has different capacity of the basic types you can redefine
// them via the compiler command line or by generating agg_config.h that is
// empty by default.
//
#ifndef AGG_INT8
#define AGG_INT8 signed char
#endif
#ifndef AGG_INT8U
#define AGG_INT8U unsigned char
#endif
#ifndef AGG_INT16
#define AGG_INT16 short
#endif
#ifndef AGG_INT16U
#define AGG_INT16U unsigned short
#endif
#ifndef AGG_INT32
#define AGG_INT32 int
#endif
#ifndef AGG_INT32U
#define AGG_INT32U unsigned
#endif
#ifndef AGG_INT64
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64 signed __int64
#else
#define AGG_INT64 signed long long
#endif
#endif
#ifndef AGG_INT64U
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64U unsigned __int64
#else
#define AGG_INT64U unsigned long long
#endif
#endif
//------------------------------------------------ Some fixes for MS Visual C++
#if defined(_MSC_VER)
#pragma warning(disable:4786) // Identifier was truncated...
#endif
#if defined(_MSC_VER)
#define AGG_INLINE __forceinline
#else
#define AGG_INLINE inline
#endif
namespace agg
{
//-------------------------------------------------------------------------
typedef AGG_INT8 int8; //----int8
typedef AGG_INT8U int8u; //----int8u
typedef AGG_INT16 int16; //----int16
typedef AGG_INT16U int16u; //----int16u
typedef AGG_INT32 int32; //----int32
typedef AGG_INT32U int32u; //----int32u
typedef AGG_INT64 int64; //----int64
typedef AGG_INT64U int64u; //----int64u
#if defined(AGG_FISTP)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
AGG_INLINE int iround(double v) //-------iround
{
int t;
2006-02-01 00:09:52 +01:00
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
2006-02-01 00:09:52 +01:00
}
AGG_INLINE unsigned uround(double v) //-------uround
{
unsigned t;
2006-02-01 00:09:52 +01:00
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
2006-02-01 00:09:52 +01:00
}
#pragma warning(pop)
AGG_INLINE unsigned ufloor(double v) //-------ufloor
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v) //--------uceil
{
return unsigned(ceil(v));
}
#elif defined(AGG_QIFIST)
AGG_INLINE int iround(double v)
{
return int(v);
}
AGG_INLINE int uround(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#else
AGG_INLINE int iround(double v)
{
return int((v < 0.0) ? v - 0.5 : v + 0.5);
}
AGG_INLINE int uround(double v)
{
return unsigned(v + 0.5);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#endif
//---------------------------------------------------------------saturation
template<int Limit> struct saturation
{
AGG_INLINE static int iround(double v)
{
if(v < double(-Limit)) return -Limit;
if(v > double( Limit)) return Limit;
return agg::iround(v);
}
};
//------------------------------------------------------------------mul_one
template<unsigned Shift> struct mul_one
{
AGG_INLINE static unsigned mul(unsigned a, unsigned b)
{
register unsigned q = a * b + (1 << (Shift-1));
return (q + (q >> Shift)) >> Shift;
}
};
//-------------------------------------------------------------------------
typedef unsigned char cover_type; //----cover_type
enum cover_scale_e
{
cover_shift = 8, //----cover_shift
cover_size = 1 << cover_shift, //----cover_size
cover_mask = cover_size - 1, //----cover_mask
cover_none = 0, //----cover_none
cover_full = cover_mask //----cover_full
};
//----------------------------------------------------poly_subpixel_scale_e
// These constants determine the subpixel accuracy, to be more precise,
// the number of bits of the fractional part of the coordinates.
// The possible coordinate capacity in bits can be calculated by formula:
// sizeof(int) * 8 - poly_subpixel_shift, i.e, for 32-bit integers and
// 8-bits fractional part the capacity is 24 bits.
enum poly_subpixel_scale_e
{
poly_subpixel_shift = 8, //----poly_subpixel_shift
poly_subpixel_scale = 1<<poly_subpixel_shift, //----poly_subpixel_scale
poly_subpixel_mask = poly_subpixel_scale-1, //----poly_subpixel_mask
};
2006-02-04 22:30:08 +01:00
//----------------------------------------------------------filling_rule_e
enum filling_rule_e
{
fill_non_zero,
fill_even_odd
};
2006-02-01 00:09:52 +01:00
//-----------------------------------------------------------------------pi
const double pi = 3.14159265358979323846;
//------------------------------------------------------------------deg2rad
inline double deg2rad(double deg)
{
return deg * pi / 180.0;
}
//------------------------------------------------------------------rad2deg
inline double rad2deg(double rad)
{
return rad * 180.0 / pi;
}
//----------------------------------------------------------------rect_base
template<class T> struct rect_base
{
typedef T value_type;
2006-02-01 00:09:52 +01:00
typedef rect_base<T> self_type;
T x1, y1, x2, y2;
2006-02-01 00:09:52 +01:00
rect_base() {}
rect_base(T x1_, T y1_, T x2_, T y2_) :
x1(x1_), y1(y1_), x2(x2_), y2(y2_) {}
void init(T x1_, T y1_, T x2_, T y2_)
{
x1 = x1_; y1 = y1_; x2 = x2_; y2 = y2_;
}
2006-02-01 00:09:52 +01:00
const self_type& normalize()
{
T t;
if(x1 > x2) { t = x1; x1 = x2; x2 = t; }
if(y1 > y2) { t = y1; y1 = y2; y2 = t; }
return *this;
}
bool clip(const self_type& r)
{
if(x2 > r.x2) x2 = r.x2;
if(y2 > r.y2) y2 = r.y2;
if(x1 < r.x1) x1 = r.x1;
if(y1 < r.y1) y1 = r.y1;
return x1 <= x2 && y1 <= y2;
}
bool is_valid() const
{
return x1 <= x2 && y1 <= y2;
}
bool hit_test(T x, T y) const
{
return (x >= x1 && x <= x2 && y >= y1 && y <= y2);
}
2006-02-01 00:09:52 +01:00
};
//-----------------------------------------------------intersect_rectangles
template<class Rect>
inline Rect intersect_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
// First process x2,y2 because the other order
// results in Internal Compiler Error under
// Microsoft Visual C++ .NET 2003 69462-335-0000007-18038 in
// case of "Maximize Speed" optimization option.
//-----------------
if(r.x2 > r2.x2) r.x2 = r2.x2;
if(r.y2 > r2.y2) r.y2 = r2.y2;
if(r.x1 < r2.x1) r.x1 = r2.x1;
if(r.y1 < r2.y1) r.y1 = r2.y1;
return r;
}
//---------------------------------------------------------unite_rectangles
template<class Rect>
inline Rect unite_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
if(r.x2 < r2.x2) r.x2 = r2.x2;
if(r.y2 < r2.y2) r.y2 = r2.y2;
if(r.x1 > r2.x1) r.x1 = r2.x1;
if(r.y1 > r2.y1) r.y1 = r2.y1;
return r;
}
typedef rect_base<int> rect_i; //----rect_i
typedef rect_base<float> rect_f; //----rect_f
typedef rect_base<double> rect_d; //----rect_d
//---------------------------------------------------------path_commands_e
enum path_commands_e
{
path_cmd_stop = 0, //----path_cmd_stop
path_cmd_move_to = 1, //----path_cmd_move_to
path_cmd_line_to = 2, //----path_cmd_line_to
path_cmd_curve3 = 3, //----path_cmd_curve3
path_cmd_curve4 = 4, //----path_cmd_curve4
path_cmd_curveN = 5, //----path_cmd_curveN
path_cmd_catrom = 6, //----path_cmd_catrom
path_cmd_ubspline = 7, //----path_cmd_ubspline
path_cmd_end_poly = 0x0F, //----path_cmd_end_poly
path_cmd_mask = 0x0F //----path_cmd_mask
};
//------------------------------------------------------------path_flags_e
enum path_flags_e
{
path_flags_none = 0, //----path_flags_none
path_flags_ccw = 0x10, //----path_flags_ccw
path_flags_cw = 0x20, //----path_flags_cw
path_flags_close = 0x40, //----path_flags_close
path_flags_mask = 0xF0 //----path_flags_mask
};
//---------------------------------------------------------------is_vertex
inline bool is_vertex(unsigned c)
{
return c >= path_cmd_move_to && c < path_cmd_end_poly;
}
//--------------------------------------------------------------is_drawing
inline bool is_drawing(unsigned c)
{
return c >= path_cmd_line_to && c < path_cmd_end_poly;
}
//-----------------------------------------------------------------is_stop
inline bool is_stop(unsigned c)
{
return c == path_cmd_stop;
}
//--------------------------------------------------------------is_move_to
inline bool is_move_to(unsigned c)
{
return c == path_cmd_move_to;
}
//--------------------------------------------------------------is_line_to
inline bool is_line_to(unsigned c)
{
return c == path_cmd_line_to;
}
//----------------------------------------------------------------is_curve
inline bool is_curve(unsigned c)
{
return c == path_cmd_curve3 || c == path_cmd_curve4;
}
//---------------------------------------------------------------is_curve3
inline bool is_curve3(unsigned c)
{
return c == path_cmd_curve3;
}
//---------------------------------------------------------------is_curve4
inline bool is_curve4(unsigned c)
{
return c == path_cmd_curve4;
}
//-------------------------------------------------------------is_end_poly
inline bool is_end_poly(unsigned c)
{
return (c & path_cmd_mask) == path_cmd_end_poly;
}
//----------------------------------------------------------------is_close
inline bool is_close(unsigned c)
{
return (c & ~(path_flags_cw | path_flags_ccw)) ==
(path_cmd_end_poly | path_flags_close);
}
//------------------------------------------------------------is_next_poly
inline bool is_next_poly(unsigned c)
{
return is_stop(c) || is_move_to(c) || is_end_poly(c);
}
//-------------------------------------------------------------------is_cw
inline bool is_cw(unsigned c)
{
return (c & path_flags_cw) != 0;
}
//------------------------------------------------------------------is_ccw
inline bool is_ccw(unsigned c)
{
return (c & path_flags_ccw) != 0;
}
//-------------------------------------------------------------is_oriented
inline bool is_oriented(unsigned c)
{
return (c & (path_flags_cw | path_flags_ccw)) != 0;
}
//---------------------------------------------------------------is_closed
inline bool is_closed(unsigned c)
{
return (c & path_flags_close) != 0;
}
//----------------------------------------------------------get_close_flag
inline unsigned get_close_flag(unsigned c)
{
return c & path_flags_close;
}
//-------------------------------------------------------clear_orientation
inline unsigned clear_orientation(unsigned c)
{
return c & ~(path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------get_orientation
inline unsigned get_orientation(unsigned c)
{
return c & (path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------set_orientation
inline unsigned set_orientation(unsigned c, unsigned o)
{
return clear_orientation(c) | o;
}
//--------------------------------------------------------------point_base
template<class T> struct point_base
{
typedef T value_type;
T x,y;
point_base() {}
point_base(T x_, T y_) : x(x_), y(y_) {}
};
typedef point_base<int> point_i; //-----point_i
typedef point_base<float> point_f; //-----point_f
typedef point_base<double> point_d; //-----point_d
//-------------------------------------------------------------vertex_base
template<class T> struct vertex_base
{
typedef T value_type;
T x,y;
unsigned cmd;
vertex_base() {}
vertex_base(T x_, T y_, unsigned cmd_) : x(x_), y(y_), cmd(cmd_) {}
};
typedef vertex_base<int> vertex_i; //-----vertex_i
typedef vertex_base<float> vertex_f; //-----vertex_f
typedef vertex_base<double> vertex_d; //-----vertex_d
//----------------------------------------------------------------row_info
template<class T> struct row_info
{
int x1, x2;
T* ptr;
row_info() {}
row_info(int x1_, int x2_, T* ptr_) : x1(x1_), x2(x2_), ptr(ptr_) {}
};
//----------------------------------------------------------const_row_info
template<class T> struct const_row_info
{
int x1, x2;
const T* ptr;
const_row_info() {}
const_row_info(int x1_, int x2_, const T* ptr_) :
x1(x1_), x2(x2_), ptr(ptr_) {}
};
//------------------------------------------------------------is_equal_eps
template<class T> inline bool is_equal_eps(T v1, T v2, T epsilon)
{
return fabs(v1 - v2) <= double(epsilon);
}
2006-02-01 00:09:52 +01:00
}
#endif