Merge pull request #1337 from rjw57/rjw57-python-plugin

Request for comments: python: a new plugin to use arbitrary Python as a data source
This commit is contained in:
Artem Pavlenko 2012-08-06 05:09:29 -07:00
commit 189322ef9f
19 changed files with 1169 additions and 0 deletions

View file

@ -57,5 +57,6 @@ Mapnik is written by Artem Pavlenko with contributions from:
* Andreas Volz
* Lennard voor den Dag
* Shaun Walbridge
* Rich Wareham
* Nick Whitelegg
* Leslie Wu

View file

@ -110,6 +110,7 @@ PLUGINS = { # plugins with external dependencies
'raster': {'default':True,'path':None,'inc':None,'lib':None,'lang':'C++'},
'geojson': {'default':True,'path':None,'inc':None,'lib':None,'lang':'C++'},
'kismet': {'default':False,'path':None,'inc':None,'lib':None,'lang':'C++'},
'python': {'default':True,'path':None,'inc':None,'lib':None,'lang':'C++'},
}

View file

@ -39,6 +39,7 @@ Several things happen when you do:
"""
import itertools
import os
import sys
import warnings
@ -594,6 +595,75 @@ def Geos(**keywords):
keywords['type'] = 'geos'
return CreateDatasource(keywords)
def Python(**keywords):
"""Create a Python Datasource.
>>> from mapnik import Python, PythonDatasource
>>> datasource = Python('PythonDataSource')
>>> lyr = Layer('Python datasource')
>>> lyr.datasource = datasource
"""
keywords['type'] = 'python'
return CreateDatasource(keywords)
class PythonDatasource(object):
"""A base class for a Python data source.
Optional arguments:
envelope -- a mapnik.Box2d (minx, miny, maxx, maxy) envelope of the data source, default (-180,-90,180,90)
geometry_type -- one of the DataGeometryType enumeration values, default Point
data_type -- one of the DataType enumerations, default Vector
"""
def __init__(self, envelope=None, geometry_type=None, data_type=None):
self.envelope = envelope or Box2d(-180, -90, 180, 90)
self.geometry_type = geometry_type or DataGeometryType.Point
self.data_type = data_type or DataType.Vector
def features(self, query):
"""Return an iterable which yields instances of Feature for features within the passed query.
Required arguments:
query -- a Query instance specifying the region for which features should be returned
"""
return None
def features_at_point(self, point):
"""Rarely uses. Return an iterable which yields instances of Feature for the specified point."""
return None
@classmethod
def wkb_features(cls, keys, features):
"""A convenience function to wrap an iterator yielding pairs of WKB format geometry and dictionaries of
key-value pairs into mapnik features. Return this from PythonDatasource.features() passing it a sequence of keys
to appear in the output and an iterator yielding features.
For example. One might have a features() method in a derived class like the following:
def features(self, query):
# ... create WKB features feat1 and feat2
return mapnik.PythonDatasource.wkb_features(
keys = ( 'name', 'author' ),
features = [
(feat1, { 'name': 'feat1', 'author': 'alice' }),
(feat2, { 'name': 'feat2', 'author': 'bob' }),
]
)
"""
ctx = Context()
[ctx.push(x) for x in keys]
def make_it(feat, idx):
f = Feature(ctx, idx)
geom, attrs = feat
f.add_geometries_from_wkb(geom)
for k, v in attrs.iteritems():
f[k] = v
return f
return itertools.imap(make_it, features, itertools.count(1))
class _TextSymbolizer(TextSymbolizer,_injector):
@property
def text_size(self):

View file

@ -0,0 +1,241 @@
# Python plugin
This plugin allows you to write data sources in the Python programming language.
This is useful if you want to rapidly prototype a plugin, perform some custom
manipulation on data or if you want to bind mapnik to a datasource which is most
conveniently accessed through Python.
The plugin may be used from the existing mapnik Python bindings or it can embed
the Python interpreter directly allowing it to be used from C++, XML or even
JavaScript.
## Rationale
Mapnik already has excellent Python bindings but they only directly support
calling *into* mapnik *from* Python. This forces mapnik and its input plugins to
be the lowest layer of the stack. The role of this plugin is to allow mapnik to
call *into* Python itself. This allows mapnik to sit as rendering middleware
between a custom Python frontend and a custom Python datasource. This increases
the utility of mapnik as a component in a larger system.
There already exists MemoryDatasource which can be used to dynamically create
geometry in Python. It suffers from the problem that it does not allow
generating only the geometry which is seen by a particular query. Similarly the
entire geometry must exist in memory before rendering can progress. By using a
custom iterator object or by using generator expressions this plugin allows
geometry to be created on demand and to be destroyed after use. This can have a
great impact on memory efficiency. Since geometry is generated on-demand as
rendering progresses there can be arbitrarily complex 'cleverness' optimising
the geometry generated for a particular query. Obvious examples of this would
be generating only geometry within the query bounding box and generating
geometry with an appropriate level of detail for the output resolution.
## Initialization
Only the `factory` parameter is required. This is of the form
`[module:]callable`. If `module` is present then `module` will be imported and
its attribute named `callable` will be used as a factory callable. If `module`
is omitted, then `__main__` is used. Any other parameter aside from `factory` or
`type` will be passed directly to the callable as keyword arguments. Note that
these will always be passed as strings even if the parameter can be parsed as an
integer of floating point value.
The callable should return an object with the following required attributes:
* `envelope` - a 4-tuple giving the (minx, miny, maxx, maxy) extent of the
datasource;
* `data_type` - a `mapnik.DataType` instance giving the type of data stored in
this datasource. This will usually be one of `mapnik.DataType.Vector` or
`mapnik.DataType.Raster`.
The following attributes are optional:
* `geometry_type` - if the dataset is a vector dataset, this is an instance of
`mapnik.DataGeometryType` giving the type of geometry returned by the
datasource.
The following methods must be present:
* `features(query)` - takes a single argument which is an instance of
`mapnik.Query` and returns an iterable of `mapnik.Feature` instances for that
query.
* `features_at_point(point)` - almost never used. Takes a single argument which
is an instance of `mapnik.Point` (I think) and returns an iterable of
features associated with that point.
## Convenience classes
The standard `mapnik` module provides a convenience class called
`mapnik.PythonDatasource` which has default implementations for the required
methods and accepts the geometry type, data type and envelope as constructor
arguments. It also provides some convenience class methods which take care of
constructing features for you:
* `mapnik.PythonDatasource.wkb_features` - constructs features from
well-known-binary (WKB) format geometry. Takes two keyword arguments: `keys`
which is a sequence of keys associated with each feature and `features` which
is a sequence of pairs. The first element in each pair is the WKB
representation of the feature and the second element is a dictionary mapping
keys to values.
# Caveats
* If used directly from C++, `Py_Initialize()` must have been called before the
plugin is loaded to initialise the interpreter correctly.
* When inside the interpreter the global interpreter lock is held each time a
feature is fetched and so multi-threaded rendering performance may suffer. You
can mitigate this by making sure that the feature iterator yields its value as
quickly as possible, potentially from an in-memory buffer filled fom another
process over IPC.
# Examples
In XML:
```xml
<?xml version="1.0" encoding="utf-8"?>
<Map srs="+init=epsg:4326" background-color="white">
<Style name="style">
<Rule>
<PointSymbolizer />
<TextSymbolizer name="[label]" face_name="DejaVu Sans Book" size="10" dx="5" dy="5"/>
</Rule>
</Style>
<Layer name="test" srs="+init=epsg:4326">
<StyleName>style</StyleName>
<Datasource>
<Parameter name="type">python</Parameter>
<Parameter name="factory">test:TestDatasource</Parameter>
</Datasource>
</Layer>
</Map>
```
In Python using the shapely geometry library:
```python
import mapnik
from shapely.geometry import *
class TestDatasource(mapnik.PythonDatasource):
def __init__(self):
super(TestDatasource, self).__init__()
def features(self, query):
return mapnik.PythonDatasource.wkb_features(
keys = ('label',),
features = (
( Point(5,6).wkb, { 'label': 'foo-bar'} ),
( Point(100,60).wkb, { 'label': 'buzz-quux'} ),
)
)
if __name__ == '__main__':
m = mapnik.Map(1280,1024)
m.background = mapnik.Color('white')
s = mapnik.Style()
r = mapnik.Rule()
r.symbols.append(mapnik.PointSymbolizer())
t = mapnik.TextSymbolizer(mapnik.Expression("[label]"),"DejaVu Sans Book",10,mapnik.Color('black'))
t.displacement = (5,5)
r.symbols.append(t)
s.rules.append(r)
m.append_style('point_style',s)
ds = mapnik.Python(factory='TestDatasource')
layer = mapnik.Layer('python')
layer.datasource = ds
layer.styles.append('point_style')
m.layers.append(layer)
m.zoom_all()
mapnik.render_to_file(m,'map.png', 'png')
```
A more complex Python example which makes use of iterators to generate geometry
dynamically:
```python
"""A more complex example which renders an infinite series of concentric
circles centred on a point.
The circles are represented by a Python iterator which will yield only the
circles which intersect the query's bounding box. The advantage of this
approach over a MemoryDatasource is that a) only those circles which intersect
the viewport are actually generated and b) only the memory for the largest
circle need be available since each circle is created on demand and destroyed
when finished with.
"""
import math
import mapnik
from shapely.geometry import *
def box2d_to_shapely(box):
import shapely.geometry
return shapely.geometry.box(box.minx, box.miny, box.maxx, box.maxy)
class ConcentricCircles(object):
def __init__(self, centre, bounds, step=1):
self.centre = centre
self.bounds = bounds
self.step = step
class Iterator(object):
def __init__(self, container):
self.container = container
centre = self.container.centre
bounds = self.container.bounds
step = self.container.step
if centre.within(bounds):
self.radius = 0
else:
self.radius = math.ceil(centre.distance(bounds) / float(step)) * step
def next(self):
circle = self.container.centre.buffer(self.radius)
self.radius += self.container.step
# has the circle grown so large that the boundary is entirely within it?
if circle.contains(self.container.bounds):
raise StopIteration()
return ( circle.wkb, { } )
def __iter__(self):
return ConcentricCircles.Iterator(self)
class TestDatasource(mapnik.PythonDatasource):
def __init__(self):
super(TestDatasource, self).__init__(geometry_type=mapnik.DataGeometryType.Polygon)
def features(self, query):
# Get the query bounding-box as a shapely bounding box
bounding_box = box2d_to_shapely(query.bbox)
centre = Point(-20, 0)
return mapnik.PythonDatasource.wkb_features(
keys = (),
features = ConcentricCircles(centre, bounding_box, 0.5)
)
if __name__ == '__main__':
m = mapnik.Map(640, 320)
m.background = mapnik.Color('white')
s = mapnik.Style()
r = mapnik.Rule()
r.symbols.append(mapnik.LineSymbolizer())
s.rules.append(r)
m.append_style('point_style',s)
ds = mapnik.Python(factory='TestDatasource')
layer = mapnik.Layer('python')
layer.datasource = ds
layer.styles.append('point_style')
m.layers.append(layer)
box = mapnik.Box2d(-60, -60, 0, -30)
m.zoom_to_box(box)
mapnik.render_to_file(m,'map.png', 'png')
```

View file

@ -0,0 +1,149 @@
#!/usr/bin/env python
# Mapnik uses the build tool SCons.
# This python file is run to compile a plugin
# It must be called from the main 'SConstruct' file like:
# SConscript('path/to/this/file.py')
# see docs at: http://www.scons.org/wiki/SConscript()
import os
# Give this plugin a name
# here this happens to be the same as the directory
PLUGIN_NAME = 'python'
# Here we pull from the SCons environment exported from the main instance
Import ('plugin_base')
Import ('env')
# the below install details are also pulled from the
# main SConstruct file where configuration happens
# plugins can go anywhere, and be registered in custom locations by Mapnik
# but the standard location is '/usr/local/lib/mapnik/input'
install_dest = env['MAPNIK_INPUT_PLUGINS_DEST']
# clone the environment here
# so that if we modify the env it in this file
# those changes to not pollute other builds later on...
plugin_env = plugin_base.Clone()
# Add the cpp files that need to be compiled
plugin_sources = Split(
"""
%(PLUGIN_NAME)s_datasource.cpp
%(PLUGIN_NAME)s_featureset.cpp
""" % locals()
)
# Add any external libraries this plugin should
# directly link to
libraries = [ '' ] # eg 'libfoo'
libraries.append('mapnik')
libraries.append('boost_system%s' % env['BOOST_APPEND'])
# link libicuuc, but ICU_LIB_NAME is used custom builds of icu can
# have different library names like osx which offers /usr/lib/libicucore.dylib
libraries.append(env['ICU_LIB_NAME'])
libraries.append(env['BOOST_PYTHON_LIB'])
# TODO - do solaris/fedora need direct linking too?
if env['PLATFORM'] == 'Darwin':
if not env['PYTHON_DYNAMIC_LOOKUP']:
libraries.append('png')
if env['JPEG']:
libraries.append('jpeg')
libraries.append(env['ICU_LIB_NAME'])
libraries.append('boost_regex%s' % env['BOOST_APPEND'])
if env['THREADING'] == 'multi':
libraries.append('boost_thread%s' % env['BOOST_APPEND'])
##### Python linking on OS X is tricky ###
# Confounding problems are:
# 1) likelyhood of multiple python installs of the same major.minor version
# because apple supplies python built-in and many users may have installed
# further versions using macports
# 2) boost python directly links to a python version
# 3) the below will directly link _mapnik.so to a python version
# 4) _mapnik.so must link to the same python lib as boost_python.dylib otherwise
# python will Abort with a Version Mismatch error.
# See http://trac.mapnik.org/ticket/453 for the seeds of a better approach
# for now we offer control over method of direct linking...
# The default below is to link against the python dylib in the form of
#/path/to/Python.framework/Python instead of -lpython
# http://developer.apple.com/mac/library/DOCUMENTATION/Darwin/Reference/ManPages/man1/ld.1.html
if env['PYTHON_DYNAMIC_LOOKUP']:
python_link_flag = '-undefined dynamic_lookup'
elif env['FRAMEWORK_PYTHON']:
if env['FRAMEWORK_SEARCH_PATH']:
# if the user has supplied a custom root path to search for
# a given Python framework, then use that to direct the linker
python_link_flag = '-F%s -framework Python -Z' % env['FRAMEWORK_SEARCH_PATH']
else:
# otherwise be as explicit as possible for linking to the same Framework
# as the executable we are building with (or is pointed to by the PYTHON variable)
# otherwise we may accidentally link against either:
# /System/Library/Frameworks/Python.framework/Python/Versions/
# or
# /Library/Frameworks/Python.framework/Python/Versions/
# See: http://trac.mapnik.org/ticket/380
link_prefix = env['PYTHON_SYS_PREFIX']
if '.framework' in link_prefix:
python_link_flag = '-F%s -framework Python -Z' % os.path.dirname(link_prefix.split('.')[0])
elif '/System' in link_prefix:
python_link_flag = '-F/System/Library/Frameworks/ -framework Python -Z'
else:
# should we fall back to -lpython here?
python_link_flag = '-F/ -framework Python'
# if we are not linking to a framework then use the *nix standard approach
else:
# TODO - do we need to pass -L/?
python_link_flag = '-lpython%s' % env['PYTHON_VERSION']
elif env['PLATFORM'] == 'SunOS':
# make sure to explicitly link mapnik.so against
# libmapnik in its installed location
python_link_flag = '-R%s' % env['MAPNIK_LIB_BASE']
else:
# all other platforms we don't directly link python
python_link_flag = ''
if env['CUSTOM_LDFLAGS']:
linkflags = '%s %s' % (env['CUSTOM_LDFLAGS'], python_link_flag)
else:
linkflags = python_link_flag
plugin_env.Append(CPPPATH = env['PYTHON_INCLUDES'])
TARGET = plugin_env.SharedLibrary(
# the name of the target to build, eg 'sqlite.input'
'../%s' % PLUGIN_NAME,
# prefix - normally none used
SHLIBPREFIX='',
# extension, mapnik expects '.input'
SHLIBSUFFIX='.input',
# list of source files to compile
source=plugin_sources,
# libraries to link to
LIBS=libraries,
# any custom linkflags, eg. LDFLAGS
# in this case CUSTOM_LDFLAGS comes
# from Mapnik's main SConstruct file
# and can be removed here if you do
# not need it
LINKFLAGS=env.get('CUSTOM_LDFLAGS')
)
# if 'uninstall' is not passed on the command line
# then we actually create the install targets that
# scons will install if 'install' is passed as an arg
if 'uninstall' not in COMMAND_LINE_TARGETS:
env.Install(install_dest, TARGET)
env.Alias('install', install_dest)

View file

@ -0,0 +1,83 @@
"""A more complex example which renders an infinite series of concentric
circles centred on a point.
The circles are represented by a Python iterator which will yield only the
circles which intersect the query's bounding box. The advantage of this
approach over a MemoryDatasource is that a) only those circles which intersect
the viewport are actually generated and b) only the memory for the largest
circle need be available since each circle is created on demand and destroyed
when finished with.
"""
import math
import mapnik
from shapely.geometry import *
def box2d_to_shapely(box):
import shapely.geometry
return shapely.geometry.box(box.minx, box.miny, box.maxx, box.maxy)
class ConcentricCircles(object):
def __init__(self, centre, bounds, step=1):
self.centre = centre
self.bounds = bounds
self.step = step
class Iterator(object):
def __init__(self, container):
self.container = container
centre = self.container.centre
bounds = self.container.bounds
step = self.container.step
if centre.within(bounds):
self.radius = 0
else:
self.radius = math.ceil(centre.distance(bounds) / float(step)) * step
def next(self):
circle = self.container.centre.buffer(self.radius)
self.radius += self.container.step
# has the circle grown so large that the boundary is entirely within it?
if circle.contains(self.container.bounds):
raise StopIteration()
return ( circle.wkb, { } )
def __iter__(self):
return ConcentricCircles.Iterator(self)
class TestDatasource(mapnik.PythonDatasource):
def __init__(self):
super(TestDatasource, self).__init__(
geometry_type=mapnik.DataGeometryType.Polygon
)
def features(self, query):
# Get the query bounding-box as a shapely bounding box
bounding_box = box2d_to_shapely(query.bbox)
centre = Point(-20, 0)
return mapnik.PythonDatasource.wkb_features(
keys = (),
features = ConcentricCircles(centre, bounding_box, 0.5)
)
if __name__ == '__main__':
m = mapnik.Map(640, 320)
m.background = mapnik.Color('white')
s = mapnik.Style()
r = mapnik.Rule()
r.symbols.append(mapnik.LineSymbolizer())
s.rules.append(r)
m.append_style('point_style',s)
ds = mapnik.Python(factory='TestDatasource')
layer = mapnik.Layer('python')
layer.datasource = ds
layer.styles.append('point_style')
m.layers.append(layer)
box = mapnik.Box2d(-60, -60, 0, -30)
m.zoom_to_box(box)
mapnik.render_to_file(m,'map.png', 'png')

View file

@ -0,0 +1,34 @@
import mapnik
from shapely.geometry import *
class TestDatasource(mapnik.PythonDatasource):
def __init__(self):
super(TestDatasource, self).__init__()
def features(self, query):
return mapnik.PythonDatasource.wkb_features(
keys = ('label',),
features = (
( Point(5,6).wkb, { 'label': 'foo-bar'} ),
( Point(100,60).wkb, { 'label': 'buzz-quux'} ),
)
)
if __name__ == '__main__':
m = mapnik.Map(1280,1024)
m.background = mapnik.Color('white')
s = mapnik.Style()
r = mapnik.Rule()
r.symbols.append(mapnik.PointSymbolizer())
t = mapnik.TextSymbolizer(mapnik.Expression("[label]"),"DejaVu Sans Book",10,mapnik.Color('black'))
t.displacement = (5,5)
r.symbols.append(t)
s.rules.append(r)
m.append_style('point_style',s)
ds = mapnik.Python(factory='TestDatasource')
layer = mapnik.Layer('python')
layer.datasource = ds
layer.styles.append('point_style')
m.layers.append(layer)
m.zoom_all()
mapnik.render_to_file(m,'map.png', 'png')

View file

@ -0,0 +1,8 @@
import mapnik
stylesheet = 'simple_xml.xml'
image = 'simple_xml.png'
m = mapnik.Map(600, 300)
mapnik.load_map(m, stylesheet)
m.zoom_all()
mapnik.render_to_file(m, image)
print "rendered image to '%s'" % image

View file

@ -0,0 +1,16 @@
<?xml version="1.0" encoding="utf-8"?>
<Map srs="+init=epsg:4326" background-color="white">
<Style name="style">
<Rule>
<PointSymbolizer />
<TextSymbolizer name="[label]" face-name="DejaVu Sans Book" size="10" dx="5" dy="5"/>
</Rule>
</Style>
<Layer name="test" srs="+init=epsg:4326">
<StyleName>style</StyleName>
<Datasource>
<Parameter name="type">python</Parameter>
<Parameter name="factory">test:TestDatasource</Parameter>
</Datasource>
</Layer>
</Map>

View file

@ -0,0 +1,208 @@
// file plugin
#include "python_datasource.hpp"
#include "python_featureset.hpp"
// stl
#include <string>
#include <vector>
// boost
#include <boost/foreach.hpp>
#include <boost/make_shared.hpp>
#include <boost/python.hpp>
#include <boost/python/stl_iterator.hpp>
#include <boost/algorithm/string.hpp>
#include "python_utils.hpp"
using mapnik::datasource;
using mapnik::parameters;
DATASOURCE_PLUGIN(python_datasource)
python_datasource::python_datasource(parameters const& params, bool bind)
: datasource(params),
desc_(*params_.get<std::string>("type"), *params_.get<std::string>("encoding","utf-8")),
factory_(*params_.get<std::string>("factory", ""))
{
// extract any remaining parameters as keyword args for the factory
BOOST_FOREACH(const mapnik::parameters::value_type& kv, params_)
{
if((kv.first != "type") && (kv.first != "factory"))
{
kwargs_.insert(std::make_pair(kv.first, *params_.get<std::string>(kv.first)));
}
}
if (bind)
{
this->bind();
}
}
python_datasource::~python_datasource() { }
// This name must match the plugin filename, eg 'python.input'
const char* python_datasource::name_="python";
const char* python_datasource::name()
{
return name_;
}
mapnik::layer_descriptor python_datasource::get_descriptor() const
{
if (!is_bound_) bind();
return desc_;
}
// The following methods call into the Python interpreter and hence require, unfortunately, that the GIL be held.
void python_datasource::bind() const
{
using namespace boost;
using namespace boost::python;
if (is_bound_) return;
// if no factory callable is defined, bind is a nop
if (factory_.empty()) return;
// split factory at ':' to parse out module and callable
std::vector<std::string> factory_split;
split(factory_split, factory_, is_any_of(":"));
if ((factory_split.size() < 1) || (factory_split.size() > 2))
{
// FIMXE: is this appropriate error reporting?
std::cerr << "python: factory string must be of the form '[module:]callable' when parsing \""
<< factory_ << '"' << std::endl;
return;
}
// extract the module and the callable
str module_name("__main__"), callable_name;
if (factory_split.size() == 1)
{
callable_name = str(factory_split[0]);
}
else
{
module_name = str(factory_split[0]);
callable_name = str(factory_split[1]);
}
{
ensure_gil lock;
// import the main module from Python (in case we're embedding the
// interpreter directly) and also import the callable.
object main_module = import("__main__");
object callable_module = import(module_name);
object callable = callable_module.attr(callable_name);
// prepare the arguments
dict kwargs;
typedef std::map<std::string, std::string>::value_type kv_type;
BOOST_FOREACH(const kv_type& kv, kwargs_)
{
kwargs[str(kv.first)] = str(kv.second);
}
// get our wrapped data source
datasource_ = callable(*boost::python::make_tuple(), **kwargs);
}
is_bound_ = true;
}
mapnik::datasource::datasource_t python_datasource::type() const
{
using namespace boost::python;
typedef boost::optional<mapnik::datasource::geometry_t> return_type;
if (!is_bound_) bind();
ensure_gil lock;
object data_type = datasource_.attr("data_type");
long data_type_integer = extract<long>(data_type);
return mapnik::datasource::datasource_t(data_type_integer);
}
mapnik::box2d<double> python_datasource::envelope() const
{
using namespace boost::python;
if (!is_bound_) bind();
ensure_gil lock;
return extract<mapnik::box2d<double> >(datasource_.attr("envelope"));
}
boost::optional<mapnik::datasource::geometry_t> python_datasource::get_geometry_type() const
{
using namespace boost::python;
typedef boost::optional<mapnik::datasource::geometry_t> return_type;
if (!is_bound_) bind();
ensure_gil lock;
// if the datasource object has no geometry_type attribute, return a 'none' value
if (!PyObject_HasAttrString(datasource_.ptr(), "geometry_type"))
return return_type();
object py_geometry_type = datasource_.attr("geometry_type");
// if the attribute value is 'None', return a 'none' value
if (py_geometry_type.ptr() == object().ptr())
return return_type();
long geom_type_integer = extract<long>(py_geometry_type);
return mapnik::datasource::geometry_t(geom_type_integer);
}
mapnik::featureset_ptr python_datasource::features(mapnik::query const& q) const
{
using namespace boost::python;
if (!is_bound_) bind();
// if the query box intersects our world extent then query for features
if (envelope().intersects(q.get_bbox()))
{
ensure_gil lock;
object features(datasource_.attr("features")(q));
// if 'None' was returned, return an empty feature set
if(features.ptr() == object().ptr())
return mapnik::featureset_ptr();
return boost::make_shared<python_featureset>(features);
}
// otherwise return an empty featureset pointer
return mapnik::featureset_ptr();
}
mapnik::featureset_ptr python_datasource::features_at_point(mapnik::coord2d const& pt) const
{
using namespace boost::python;
if (!is_bound_) bind();
ensure_gil lock;
object features(datasource_.attr("features_at_point")(pt));
// if we returned none, return an empty set
if(features.ptr() == object().ptr())
return mapnik::featureset_ptr();
// otherwise, return a feature set which can iterate over the iterator
return boost::make_shared<python_featureset>(features);
}

View file

@ -0,0 +1,56 @@
#ifndef PYTHON_DATASOURCE_HPP
#define PYTHON_DATASOURCE_HPP
// mapnik
#include <mapnik/datasource.hpp>
// boost
#include <boost/python.hpp>
class python_datasource : public mapnik::datasource
{
public:
// constructor
// arguments must not change
python_datasource(mapnik::parameters const& params, bool bind=true);
// destructor
virtual ~python_datasource ();
// mandatory: type of the plugin, used to match at runtime
mapnik::datasource::datasource_t type() const;
// mandatory: name of the plugin
static const char* name();
// mandatory: function to query features by box2d
// this is called when rendering, specifically in feature_style_processor.hpp
mapnik::featureset_ptr features(mapnik::query const& q) const;
// mandatory: function to query features by point (coord2d)
// not used by rendering, but available to calling applications
mapnik::featureset_ptr features_at_point(mapnik::coord2d const& pt) const;
// mandatory: return the box2d of the datasource
// called during rendering to determine if the layer should be processed
mapnik::box2d<double> envelope() const;
// mandatory: optionally return the overal geometry type of the datasource
boost::optional<mapnik::datasource::geometry_t> get_geometry_type() const;
// mandatory: return the layer descriptor
mapnik::layer_descriptor get_descriptor() const;
// mandatory: will bind the datasource given params
void bind() const;
private:
static const char* name_;
mutable mapnik::layer_descriptor desc_;
const std::string factory_;
std::map<std::string, std::string> kwargs_;
mutable boost::python::object datasource_;
};
#endif // PYTHON_DATASOURCE_HPP

View file

@ -0,0 +1,30 @@
// boost
#include <boost/python.hpp>
#include "python_featureset.hpp"
#include "python_utils.hpp"
python_featureset::python_featureset(boost::python::object iterator)
{
ensure_gil lock;
begin_ = boost::python::stl_input_iterator<mapnik::feature_ptr>(iterator);
}
python_featureset::~python_featureset()
{
ensure_gil lock;
begin_ = end_;
}
mapnik::feature_ptr python_featureset::next()
{
// checking to see if we've reached the end does not require the GIL.
if(begin_ == end_)
return mapnik::feature_ptr();
// getting the next feature might call into the interpreter and so the GIL must be held.
ensure_gil lock;
return *(begin_++);
}

View file

@ -0,0 +1,30 @@
#ifndef PYTHON_FEATURESET_HPP
#define PYTHON_FEATURESET_HPP
// boost
#include <boost/python.hpp>
#include <boost/python/stl_iterator.hpp>
// mapnik
#include <mapnik/datasource.hpp>
// extend the mapnik::Featureset defined in include/mapnik/datasource.hpp
class python_featureset : public mapnik::Featureset
{
public:
// this constructor can have any arguments you need
python_featureset(boost::python::object iterator);
// desctructor
virtual ~python_featureset();
// mandatory: you must expose a next() method, called when rendering
mapnik::feature_ptr next();
private:
typedef boost::python::stl_input_iterator<mapnik::feature_ptr> feature_iter;
feature_iter begin_, end_;
};
#endif // PYTHON_FEATURESET_HPP

View file

@ -0,0 +1,16 @@
#ifndef PYTHON_UTILS_HPP
#define PYTHON_UTILS_HPP
#include <boost/python.hpp>
// Use RAII to acquire and release the GIL as needed.
class ensure_gil
{
public:
ensure_gil() : gil_state_(PyGILState_Ensure()) {}
~ensure_gil() { PyGILState_Release( gil_state_ ); }
protected:
PyGILState_STATE gil_state_;
};
#endif // PYTHON_UTILS_HPP

View file

@ -0,0 +1,50 @@
<!DOCTYPE Map>
<Map background-color="#b5d0d0" srs="+init=epsg:4326" minimum-version="0.7.2">
<Style name="1">
<Rule>
<LineSymbolizer stroke="rgb(80%,0%,0%)" />
</Rule>
</Style>
<Style name="2">
<Rule>
<LineSymbolizer stroke="rgb(0%,80%,0%)" />
</Rule>
</Style>
<Style name="3">
<Rule>
<LineSymbolizer stroke="rgb(0%,0%,80%)" />
</Rule>
</Style>
<Layer name="circles1" srs="+init=epsg:4326">
<StyleName>1</StyleName>
<Datasource>
<Parameter name="type">python</Parameter>
<Parameter name="factory">python_plugin_test:CirclesDatasource</Parameter>
</Datasource>
</Layer>
<Layer name="circles2" srs="+init=epsg:4326">
<StyleName>2</StyleName>
<Datasource>
<Parameter name="type">python</Parameter>
<Parameter name="factory">python_plugin_test:CirclesDatasource</Parameter>
<Parameter name="centre_x">-20</Parameter>
<Parameter name="centre_y">50</Parameter>
</Datasource>
</Layer>
<Layer name="circles3" srs="+init=epsg:4326">
<StyleName>3</StyleName>
<Datasource>
<Parameter name="type">python</Parameter>
<Parameter name="factory">python_plugin_test:CirclesDatasource</Parameter>
<Parameter name="centre_x">60</Parameter>
<Parameter name="centre_y">140</Parameter>
<Parameter name="step">20</Parameter>
</Datasource>
</Layer>
</Map>

View file

@ -0,0 +1,18 @@
<!DOCTYPE Map>
<Map background-color="#b5d0d0" srs="+init=epsg:4326" minimum-version="0.7.2">
<Style name="1">
<Rule>
<TextSymbolizer size="10" dy="-5" face-name="DejaVu Sans Book" halo-radius="1">[label]</TextSymbolizer>
<PointSymbolizer/>
</Rule>
</Style>
<Layer name="point" srs="+init=epsg:4326">
<StyleName>1</StyleName>
<Datasource>
<Parameter name="type">python</Parameter>
<Parameter name="factory">python_plugin_test:PointDatasource</Parameter>
</Datasource>
</Layer>
</Map>

Binary file not shown.

After

Width:  |  Height:  |  Size: 135 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

View file

@ -0,0 +1,158 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import math
import mapnik
import sys
from utilities import execution_path
from nose.tools import *
try:
from shapely.geometry import Point
have_shapely = True
except ImportError:
print('Shapely is required for python data source test.')
have_shapely = False
def setup():
# All of the paths used are relative, if we run the tests
# from another directory we need to chdir()
os.chdir(execution_path('.'))
class PointDatasource(mapnik.PythonDatasource):
def __init__(self):
super(PointDatasource, self).__init__(
envelope = mapnik.Box2d(0,-10,100,110)
)
def features(self, query):
return mapnik.PythonDatasource.wkb_features(
keys = ('label',),
features = (
( Point(5,6).wkb, { 'label': 'foo-bar'} ),
( Point(60,50).wkb, { 'label': 'buzz-quux'} ),
)
)
def box2d_to_shapely(box):
import shapely.geometry
return shapely.geometry.box(box.minx, box.miny, box.maxx, box.maxy)
class ConcentricCircles(object):
def __init__(self, centre, bounds, step=1):
self.centre = centre
self.bounds = bounds
self.step = step
class Iterator(object):
def __init__(self, container):
self.container = container
centre = self.container.centre
bounds = self.container.bounds
step = self.container.step
if centre.within(bounds):
self.radius = step
else:
self.radius = math.ceil(centre.distance(bounds) / float(step)) * step
def next(self):
circle = self.container.centre.buffer(self.radius)
self.radius += self.container.step
# has the circle grown so large that the boundary is entirely within it?
if circle.contains(self.container.bounds):
raise StopIteration()
return ( circle.wkb, { } )
def __iter__(self):
return ConcentricCircles.Iterator(self)
class CirclesDatasource(mapnik.PythonDatasource):
def __init__(self, centre_x=-20, centre_y=0, step=10):
super(CirclesDatasource, self).__init__(
geometry_type=mapnik.DataGeometryType.Polygon
)
# note that the plugin loader will set all arguments to strings and will not try to parse them
centre_x = int(centre_x)
centre_y = int(centre_y)
step = int(step)
self.centre_x = centre_x
self.centre_y = centre_y
self.step = step
def features(self, query):
# Get the query bounding-box as a shapely bounding box
bounding_box = box2d_to_shapely(query.bbox)
centre = Point(self.centre_x, self.centre_y)
return mapnik.PythonDatasource.wkb_features(
keys = (),
features = ConcentricCircles(centre, bounding_box, self.step)
)
if 'python' in mapnik.DatasourceCache.instance().plugin_names() and have_shapely:
# make sure we can load from ourself as a module
sys.path.append(execution_path('.'))
def test_python_point_init():
ds = mapnik.Python(factory='python_plugin_test:PointDatasource')
e = ds.envelope()
assert_almost_equal(e.minx, 0, places=7)
assert_almost_equal(e.miny, -10, places=7)
assert_almost_equal(e.maxx, 100, places=7)
assert_almost_equal(e.maxy, 110, places=7)
def test_python_circle_init():
ds = mapnik.Python(factory='python_plugin_test:CirclesDatasource')
e = ds.envelope()
assert_almost_equal(e.minx, -180, places=7)
assert_almost_equal(e.miny, -90, places=7)
assert_almost_equal(e.maxx, 180, places=7)
assert_almost_equal(e.maxy, 90, places=7)
def test_python_circle_init_with_args():
ds = mapnik.Python(factory='python_plugin_test:CirclesDatasource', centre_x=40, centre_y=7)
e = ds.envelope()
assert_almost_equal(e.minx, -180, places=7)
assert_almost_equal(e.miny, -90, places=7)
assert_almost_equal(e.maxx, 180, places=7)
assert_almost_equal(e.maxy, 90, places=7)
def test_python_point_rendering():
m = mapnik.Map(512,512)
mapnik.load_map(m,'../data/good_maps/python_point_datasource.xml')
m.zoom_all()
im = mapnik.Image(512,512)
mapnik.render(m,im)
actual = '/tmp/mapnik-python-point-render1.png'
expected = 'images/support/mapnik-python-point-render1.png'
im.save(actual)
expected_im = mapnik.Image.open(expected)
eq_(im.tostring(),expected_im.tostring(),
'failed comparing actual (%s) and expected (%s)' % (actual,'tests/python_tests/'+ expected))
def test_python_circle_rendering():
m = mapnik.Map(512,512)
mapnik.load_map(m,'../data/good_maps/python_circle_datasource.xml')
m.zoom_all()
im = mapnik.Image(512,512)
mapnik.render(m,im)
actual = '/tmp/mapnik-python-circle-render1.png'
expected = 'images/support/mapnik-python-circle-render1.png'
im.save(actual)
expected_im = mapnik.Image.open(expected)
eq_(im.tostring(),expected_im.tostring(),
'failed comparing actual (%s) and expected (%s)' % (actual,'tests/python_tests/'+ expected))
if __name__ == "__main__":
setup()
[eval(run)() for run in dir() if 'test_' in run]