remove tinyxml, no longer needed by boost ptree as it bundles rapidxml now

This commit is contained in:
Dane Springmeyer 2011-10-11 20:02:50 -07:00
parent ed23abf554
commit 28ed3e5fdf
156 changed files with 57942 additions and 5736 deletions

31
deps/agg/build.py vendored Normal file
View file

@ -0,0 +1,31 @@
# This file is part of Mapnik (c++ mapping toolkit)
# Copyright (C) 2005 Artem Pavlenko, Jean-Francois Doyon
#
# Mapnik is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# $Id$
import glob
Import('env')
agg_env = env.Clone()
if env['SUNCC']:
cxxflags = env['CUSTOM_CXXFLAGS'] + ' -O -KPIC -DNDEBUG'
else:
cxxflags = env['CUSTOM_CXXFLAGS'] + ' -O%s -fPIC -DNDEBUG' % env['OPTIMIZATION']
agg_env.StaticLibrary('agg', glob.glob('./src/' + '*.cpp'), LIBS=[], CPPPATH='./include', CXXFLAGS=cxxflags, LINKFLAGS=env['CUSTOM_LDFLAGS'])

11
deps/agg/copying vendored Normal file
View file

@ -0,0 +1,11 @@
The Anti-Grain Geometry Project
A high quality rendering engine for C++
http://antigrain.com
Anti-Grain Geometry - Version 2.3
Copyright (C) 2002-2005 Maxim Shemanarev (McSeem)
Permission to copy, use, modify, sell and distribute this software
is granted provided this copyright notice appears in all copies.
This software is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.

499
deps/agg/include/agg_alpha_mask_u8.h vendored Normal file
View file

@ -0,0 +1,499 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// scanline_u8 class
//
//----------------------------------------------------------------------------
#ifndef AGG_ALPHA_MASK_U8_INCLUDED
#define AGG_ALPHA_MASK_U8_INCLUDED
#include <string.h>
#include "agg_basics.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//===================================================one_component_mask_u8
struct one_component_mask_u8
{
static unsigned calculate(const int8u* p) { return *p; }
};
//=====================================================rgb_to_gray_mask_u8
template<unsigned R, unsigned G, unsigned B>
struct rgb_to_gray_mask_u8
{
static unsigned calculate(const int8u* p)
{
return (p[R]*77 + p[G]*150 + p[B]*29) >> 8;
}
};
//==========================================================alpha_mask_u8
template<unsigned Step=1, unsigned Offset=0, class MaskF=one_component_mask_u8>
class alpha_mask_u8
{
public:
typedef int8u cover_type;
typedef alpha_mask_u8<Step, Offset, MaskF> self_type;
enum cover_scale_e
{
cover_shift = 8,
cover_none = 0,
cover_full = 255
};
alpha_mask_u8() : m_rbuf(0) {}
explicit alpha_mask_u8(rendering_buffer& rbuf) : m_rbuf(&rbuf) {}
void attach(rendering_buffer& rbuf) { m_rbuf = &rbuf; }
MaskF& mask_function() { return m_mask_function; }
const MaskF& mask_function() const { return m_mask_function; }
//--------------------------------------------------------------------
cover_type pixel(int x, int y) const
{
if(x >= 0 && y >= 0 &&
x < (int)m_rbuf->width() &&
y < (int)m_rbuf->height())
{
return (cover_type)m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset);
}
return 0;
}
//--------------------------------------------------------------------
cover_type combine_pixel(int x, int y, cover_type val) const
{
if(x >= 0 && y >= 0 &&
x < (int)m_rbuf->width() &&
y < (int)m_rbuf->height())
{
return (cover_type)((cover_full + val *
m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset)) >>
cover_shift);
}
return 0;
}
//--------------------------------------------------------------------
void fill_hspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(y < 0 || y > ymax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(x < 0)
{
count += x;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -x * sizeof(cover_type));
covers -= x;
x = 0;
}
if(x + count > xmax)
{
int rest = x + count - xmax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers++ = (cover_type)m_mask_function.calculate(mask);
mask += Step;
}
while(--count);
}
//--------------------------------------------------------------------
void combine_hspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(y < 0 || y > ymax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(x < 0)
{
count += x;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -x * sizeof(cover_type));
covers -= x;
x = 0;
}
if(x + count > xmax)
{
int rest = x + count - xmax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers = (cover_type)((cover_full + (*covers) *
m_mask_function.calculate(mask)) >>
cover_shift);
++covers;
mask += Step;
}
while(--count);
}
//--------------------------------------------------------------------
void fill_vspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(x < 0 || x > xmax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(y < 0)
{
count += y;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -y * sizeof(cover_type));
covers -= y;
y = 0;
}
if(y + count > ymax)
{
int rest = y + count - ymax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers++ = (cover_type)m_mask_function.calculate(mask);
mask += m_rbuf->stride();
}
while(--count);
}
//--------------------------------------------------------------------
void combine_vspan(int x, int y, cover_type* dst, int num_pix) const
{
int xmax = m_rbuf->width() - 1;
int ymax = m_rbuf->height() - 1;
int count = num_pix;
cover_type* covers = dst;
if(x < 0 || x > xmax)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
if(y < 0)
{
count += y;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers, 0, -y * sizeof(cover_type));
covers -= y;
y = 0;
}
if(y + count > ymax)
{
int rest = y + count - ymax - 1;
count -= rest;
if(count <= 0)
{
memset(dst, 0, num_pix * sizeof(cover_type));
return;
}
memset(covers + count, 0, rest * sizeof(cover_type));
}
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*covers = (cover_type)((cover_full + (*covers) *
m_mask_function.calculate(mask)) >>
cover_shift);
++covers;
mask += m_rbuf->stride();
}
while(--count);
}
private:
alpha_mask_u8(const self_type&);
const self_type& operator = (const self_type&);
rendering_buffer* m_rbuf;
MaskF m_mask_function;
};
typedef alpha_mask_u8<1, 0> alpha_mask_gray8; //----alpha_mask_gray8
typedef alpha_mask_u8<3, 0> alpha_mask_rgb24r; //----alpha_mask_rgb24r
typedef alpha_mask_u8<3, 1> alpha_mask_rgb24g; //----alpha_mask_rgb24g
typedef alpha_mask_u8<3, 2> alpha_mask_rgb24b; //----alpha_mask_rgb24b
typedef alpha_mask_u8<3, 2> alpha_mask_bgr24r; //----alpha_mask_bgr24r
typedef alpha_mask_u8<3, 1> alpha_mask_bgr24g; //----alpha_mask_bgr24g
typedef alpha_mask_u8<3, 0> alpha_mask_bgr24b; //----alpha_mask_bgr24b
typedef alpha_mask_u8<4, 0> alpha_mask_rgba32r; //----alpha_mask_rgba32r
typedef alpha_mask_u8<4, 1> alpha_mask_rgba32g; //----alpha_mask_rgba32g
typedef alpha_mask_u8<4, 2> alpha_mask_rgba32b; //----alpha_mask_rgba32b
typedef alpha_mask_u8<4, 3> alpha_mask_rgba32a; //----alpha_mask_rgba32a
typedef alpha_mask_u8<4, 1> alpha_mask_argb32r; //----alpha_mask_argb32r
typedef alpha_mask_u8<4, 2> alpha_mask_argb32g; //----alpha_mask_argb32g
typedef alpha_mask_u8<4, 3> alpha_mask_argb32b; //----alpha_mask_argb32b
typedef alpha_mask_u8<4, 0> alpha_mask_argb32a; //----alpha_mask_argb32a
typedef alpha_mask_u8<4, 2> alpha_mask_bgra32r; //----alpha_mask_bgra32r
typedef alpha_mask_u8<4, 1> alpha_mask_bgra32g; //----alpha_mask_bgra32g
typedef alpha_mask_u8<4, 0> alpha_mask_bgra32b; //----alpha_mask_bgra32b
typedef alpha_mask_u8<4, 3> alpha_mask_bgra32a; //----alpha_mask_bgra32a
typedef alpha_mask_u8<4, 3> alpha_mask_abgr32r; //----alpha_mask_abgr32r
typedef alpha_mask_u8<4, 2> alpha_mask_abgr32g; //----alpha_mask_abgr32g
typedef alpha_mask_u8<4, 1> alpha_mask_abgr32b; //----alpha_mask_abgr32b
typedef alpha_mask_u8<4, 0> alpha_mask_abgr32a; //----alpha_mask_abgr32a
typedef alpha_mask_u8<3, 0, rgb_to_gray_mask_u8<0, 1, 2> > alpha_mask_rgb24gray; //----alpha_mask_rgb24gray
typedef alpha_mask_u8<3, 0, rgb_to_gray_mask_u8<2, 1, 0> > alpha_mask_bgr24gray; //----alpha_mask_bgr24gray
typedef alpha_mask_u8<4, 0, rgb_to_gray_mask_u8<0, 1, 2> > alpha_mask_rgba32gray; //----alpha_mask_rgba32gray
typedef alpha_mask_u8<4, 1, rgb_to_gray_mask_u8<0, 1, 2> > alpha_mask_argb32gray; //----alpha_mask_argb32gray
typedef alpha_mask_u8<4, 0, rgb_to_gray_mask_u8<2, 1, 0> > alpha_mask_bgra32gray; //----alpha_mask_bgra32gray
typedef alpha_mask_u8<4, 1, rgb_to_gray_mask_u8<2, 1, 0> > alpha_mask_abgr32gray; //----alpha_mask_abgr32gray
//==========================================================amask_no_clip_u8
template<unsigned Step=1, unsigned Offset=0, class MaskF=one_component_mask_u8>
class amask_no_clip_u8
{
public:
typedef int8u cover_type;
typedef amask_no_clip_u8<Step, Offset, MaskF> self_type;
enum cover_scale_e
{
cover_shift = 8,
cover_none = 0,
cover_full = 255
};
amask_no_clip_u8() : m_rbuf(0) {}
explicit amask_no_clip_u8(rendering_buffer& rbuf) : m_rbuf(&rbuf) {}
void attach(rendering_buffer& rbuf) { m_rbuf = &rbuf; }
MaskF& mask_function() { return m_mask_function; }
const MaskF& mask_function() const { return m_mask_function; }
//--------------------------------------------------------------------
cover_type pixel(int x, int y) const
{
return (cover_type)m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset);
}
//--------------------------------------------------------------------
cover_type combine_pixel(int x, int y, cover_type val) const
{
return (cover_type)((cover_full + val *
m_mask_function.calculate(
m_rbuf->row_ptr(y) + x * Step + Offset)) >>
cover_shift);
}
//--------------------------------------------------------------------
void fill_hspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst++ = (cover_type)m_mask_function.calculate(mask);
mask += Step;
}
while(--num_pix);
}
//--------------------------------------------------------------------
void combine_hspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst = (cover_type)((cover_full + (*dst) *
m_mask_function.calculate(mask)) >>
cover_shift);
++dst;
mask += Step;
}
while(--num_pix);
}
//--------------------------------------------------------------------
void fill_vspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst++ = (cover_type)m_mask_function.calculate(mask);
mask += m_rbuf->stride();
}
while(--num_pix);
}
//--------------------------------------------------------------------
void combine_vspan(int x, int y, cover_type* dst, int num_pix) const
{
const int8u* mask = m_rbuf->row_ptr(y) + x * Step + Offset;
do
{
*dst = (cover_type)((cover_full + (*dst) *
m_mask_function.calculate(mask)) >>
cover_shift);
++dst;
mask += m_rbuf->stride();
}
while(--num_pix);
}
private:
amask_no_clip_u8(const self_type&);
const self_type& operator = (const self_type&);
rendering_buffer* m_rbuf;
MaskF m_mask_function;
};
typedef amask_no_clip_u8<1, 0> amask_no_clip_gray8; //----amask_no_clip_gray8
typedef amask_no_clip_u8<3, 0> amask_no_clip_rgb24r; //----amask_no_clip_rgb24r
typedef amask_no_clip_u8<3, 1> amask_no_clip_rgb24g; //----amask_no_clip_rgb24g
typedef amask_no_clip_u8<3, 2> amask_no_clip_rgb24b; //----amask_no_clip_rgb24b
typedef amask_no_clip_u8<3, 2> amask_no_clip_bgr24r; //----amask_no_clip_bgr24r
typedef amask_no_clip_u8<3, 1> amask_no_clip_bgr24g; //----amask_no_clip_bgr24g
typedef amask_no_clip_u8<3, 0> amask_no_clip_bgr24b; //----amask_no_clip_bgr24b
typedef amask_no_clip_u8<4, 0> amask_no_clip_rgba32r; //----amask_no_clip_rgba32r
typedef amask_no_clip_u8<4, 1> amask_no_clip_rgba32g; //----amask_no_clip_rgba32g
typedef amask_no_clip_u8<4, 2> amask_no_clip_rgba32b; //----amask_no_clip_rgba32b
typedef amask_no_clip_u8<4, 3> amask_no_clip_rgba32a; //----amask_no_clip_rgba32a
typedef amask_no_clip_u8<4, 1> amask_no_clip_argb32r; //----amask_no_clip_argb32r
typedef amask_no_clip_u8<4, 2> amask_no_clip_argb32g; //----amask_no_clip_argb32g
typedef amask_no_clip_u8<4, 3> amask_no_clip_argb32b; //----amask_no_clip_argb32b
typedef amask_no_clip_u8<4, 0> amask_no_clip_argb32a; //----amask_no_clip_argb32a
typedef amask_no_clip_u8<4, 2> amask_no_clip_bgra32r; //----amask_no_clip_bgra32r
typedef amask_no_clip_u8<4, 1> amask_no_clip_bgra32g; //----amask_no_clip_bgra32g
typedef amask_no_clip_u8<4, 0> amask_no_clip_bgra32b; //----amask_no_clip_bgra32b
typedef amask_no_clip_u8<4, 3> amask_no_clip_bgra32a; //----amask_no_clip_bgra32a
typedef amask_no_clip_u8<4, 3> amask_no_clip_abgr32r; //----amask_no_clip_abgr32r
typedef amask_no_clip_u8<4, 2> amask_no_clip_abgr32g; //----amask_no_clip_abgr32g
typedef amask_no_clip_u8<4, 1> amask_no_clip_abgr32b; //----amask_no_clip_abgr32b
typedef amask_no_clip_u8<4, 0> amask_no_clip_abgr32a; //----amask_no_clip_abgr32a
typedef amask_no_clip_u8<3, 0, rgb_to_gray_mask_u8<0, 1, 2> > amask_no_clip_rgb24gray; //----amask_no_clip_rgb24gray
typedef amask_no_clip_u8<3, 0, rgb_to_gray_mask_u8<2, 1, 0> > amask_no_clip_bgr24gray; //----amask_no_clip_bgr24gray
typedef amask_no_clip_u8<4, 0, rgb_to_gray_mask_u8<0, 1, 2> > amask_no_clip_rgba32gray; //----amask_no_clip_rgba32gray
typedef amask_no_clip_u8<4, 1, rgb_to_gray_mask_u8<0, 1, 2> > amask_no_clip_argb32gray; //----amask_no_clip_argb32gray
typedef amask_no_clip_u8<4, 0, rgb_to_gray_mask_u8<2, 1, 0> > amask_no_clip_bgra32gray; //----amask_no_clip_bgra32gray
typedef amask_no_clip_u8<4, 1, rgb_to_gray_mask_u8<2, 1, 0> > amask_no_clip_abgr32gray; //----amask_no_clip_abgr32gray
}
#endif

74
deps/agg/include/agg_arc.h vendored Normal file
View file

@ -0,0 +1,74 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Arc vertex generator
//
//----------------------------------------------------------------------------
#ifndef AGG_ARC_INCLUDED
#define AGG_ARC_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//=====================================================================arc
//
// See Implementation agg_arc.cpp
//
class arc
{
public:
arc() : m_scale(1.0), m_initialized(false) {}
arc(double x, double y,
double rx, double ry,
double a1, double a2,
bool ccw=true);
void init(double x, double y,
double rx, double ry,
double a1, double a2,
bool ccw=true);
void approximation_scale(double s);
double approximation_scale() const { return m_scale; }
void rewind(unsigned);
unsigned vertex(double* x, double* y);
private:
void normalize(double a1, double a2, bool ccw);
double m_x;
double m_y;
double m_rx;
double m_ry;
double m_angle;
double m_start;
double m_end;
double m_scale;
double m_da;
bool m_ccw;
bool m_initialized;
unsigned m_path_cmd;
};
}
#endif

1119
deps/agg/include/agg_array.h vendored Normal file

File diff suppressed because it is too large Load diff

82
deps/agg/include/agg_arrowhead.h vendored Normal file
View file

@ -0,0 +1,82 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Simple arrowhead/arrowtail generator
//
//----------------------------------------------------------------------------
#ifndef AGG_ARROWHEAD_INCLUDED
#define AGG_ARROWHEAD_INCLUDED
#include "agg_basics.h"
namespace agg
{
//===============================================================arrowhead
//
// See implementation agg_arrowhead.cpp
//
class arrowhead
{
public:
arrowhead();
void head(double d1, double d2, double d3, double d4)
{
m_head_d1 = d1;
m_head_d2 = d2;
m_head_d3 = d3;
m_head_d4 = d4;
m_head_flag = true;
}
void head() { m_head_flag = true; }
void no_head() { m_head_flag = false; }
void tail(double d1, double d2, double d3, double d4)
{
m_tail_d1 = d1;
m_tail_d2 = d2;
m_tail_d3 = d3;
m_tail_d4 = d4;
m_tail_flag = true;
}
void tail() { m_tail_flag = true; }
void no_tail() { m_tail_flag = false; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
double m_head_d1;
double m_head_d2;
double m_head_d3;
double m_head_d4;
double m_tail_d1;
double m_tail_d2;
double m_tail_d3;
double m_tail_d4;
bool m_head_flag;
bool m_tail_flag;
double m_coord[16];
unsigned m_cmd[8];
unsigned m_curr_id;
unsigned m_curr_coord;
};
}
#endif

530
deps/agg/include/agg_basics.h vendored Normal file
View file

@ -0,0 +1,530 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_BASICS_INCLUDED
#define AGG_BASICS_INCLUDED
#include <math.h>
#include "agg_config.h"
//---------------------------------------------------------AGG_CUSTOM_ALLOCATOR
#ifdef AGG_CUSTOM_ALLOCATOR
#include "agg_allocator.h"
#else
namespace agg
{
// The policy of all AGG containers and memory allocation strategy
// in general is that no allocated data requires explicit construction.
// It means that the allocator can be really simple; you can even
// replace new/delete to malloc/free. The constructors and destructors
// won't be called in this case, however everything will remain working.
// The second argument of deallocate() is the size of the allocated
// block. You can use this information if you wish.
//------------------------------------------------------------pod_allocator
template<class T> struct pod_allocator
{
static T* allocate(unsigned num) { return new T [num]; }
static void deallocate(T* ptr, unsigned) { delete [] ptr; }
};
// Single object allocator. It's also can be replaced with your custom
// allocator. The difference is that it can only allocate a single
// object and the constructor and destructor must be called.
// In AGG there is no need to allocate an array of objects with
// calling their constructors (only single ones). So that, if you
// replace these new/delete to malloc/free make sure that the in-place
// new is called and take care of calling the destructor too.
//------------------------------------------------------------obj_allocator
template<class T> struct obj_allocator
{
static T* allocate() { return new T; }
static void deallocate(T* ptr) { delete ptr; }
};
}
#endif
//-------------------------------------------------------- Default basic types
//
// If the compiler has different capacity of the basic types you can redefine
// them via the compiler command line or by generating agg_config.h that is
// empty by default.
//
#ifndef AGG_INT8
#define AGG_INT8 signed char
#endif
#ifndef AGG_INT8U
#define AGG_INT8U unsigned char
#endif
#ifndef AGG_INT16
#define AGG_INT16 short
#endif
#ifndef AGG_INT16U
#define AGG_INT16U unsigned short
#endif
#ifndef AGG_INT32
#define AGG_INT32 int
#endif
#ifndef AGG_INT32U
#define AGG_INT32U unsigned
#endif
#ifndef AGG_INT64
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64 signed __int64
#else
#define AGG_INT64 signed long long
#endif
#endif
#ifndef AGG_INT64U
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64U unsigned __int64
#else
#define AGG_INT64U unsigned long long
#endif
#endif
//------------------------------------------------ Some fixes for MS Visual C++
#if defined(_MSC_VER)
#pragma warning(disable:4786) // Identifier was truncated...
#endif
#if defined(_MSC_VER)
#define AGG_INLINE __forceinline
#else
#define AGG_INLINE inline
#endif
namespace agg
{
//-------------------------------------------------------------------------
typedef AGG_INT8 int8; //----int8
typedef AGG_INT8U int8u; //----int8u
typedef AGG_INT16 int16; //----int16
typedef AGG_INT16U int16u; //----int16u
typedef AGG_INT32 int32; //----int32
typedef AGG_INT32U int32u; //----int32u
typedef AGG_INT64 int64; //----int64
typedef AGG_INT64U int64u; //----int64u
#if defined(AGG_FISTP)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
AGG_INLINE int iround(double v) //-------iround
{
int t;
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
}
AGG_INLINE unsigned uround(double v) //-------uround
{
unsigned t;
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
}
#pragma warning(pop)
AGG_INLINE unsigned ufloor(double v) //-------ufloor
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v) //--------uceil
{
return unsigned(ceil(v));
}
#elif defined(AGG_QIFIST)
AGG_INLINE int iround(double v)
{
return int(v);
}
AGG_INLINE int uround(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#else
AGG_INLINE int iround(double v)
{
return int((v < 0.0) ? v - 0.5 : v + 0.5);
}
AGG_INLINE int uround(double v)
{
return unsigned(v + 0.5);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#endif
//---------------------------------------------------------------saturation
template<int Limit> struct saturation
{
AGG_INLINE static int iround(double v)
{
if(v < double(-Limit)) return -Limit;
if(v > double( Limit)) return Limit;
return agg::iround(v);
}
};
//------------------------------------------------------------------mul_one
template<unsigned Shift> struct mul_one
{
AGG_INLINE static unsigned mul(unsigned a, unsigned b)
{
register unsigned q = a * b + (1 << (Shift-1));
return (q + (q >> Shift)) >> Shift;
}
};
//-------------------------------------------------------------------------
typedef unsigned char cover_type; //----cover_type
enum cover_scale_e
{
cover_shift = 8, //----cover_shift
cover_size = 1 << cover_shift, //----cover_size
cover_mask = cover_size - 1, //----cover_mask
cover_none = 0, //----cover_none
cover_full = cover_mask //----cover_full
};
//----------------------------------------------------poly_subpixel_scale_e
// These constants determine the subpixel accuracy, to be more precise,
// the number of bits of the fractional part of the coordinates.
// The possible coordinate capacity in bits can be calculated by formula:
// sizeof(int) * 8 - poly_subpixel_shift, i.e, for 32-bit integers and
// 8-bits fractional part the capacity is 24 bits.
enum poly_subpixel_scale_e
{
poly_subpixel_shift = 8, //----poly_subpixel_shift
poly_subpixel_scale = 1<<poly_subpixel_shift, //----poly_subpixel_scale
poly_subpixel_mask = poly_subpixel_scale-1 //----poly_subpixel_mask
};
//----------------------------------------------------------filling_rule_e
enum filling_rule_e
{
fill_non_zero,
fill_even_odd
};
//-----------------------------------------------------------------------pi
const double pi = 3.14159265358979323846;
//------------------------------------------------------------------deg2rad
inline double deg2rad(double deg)
{
return deg * pi / 180.0;
}
//------------------------------------------------------------------rad2deg
inline double rad2deg(double rad)
{
return rad * 180.0 / pi;
}
//----------------------------------------------------------------rect_base
template<class T> struct rect_base
{
typedef T value_type;
typedef rect_base<T> self_type;
T x1, y1, x2, y2;
rect_base() {}
rect_base(T x1_, T y1_, T x2_, T y2_) :
x1(x1_), y1(y1_), x2(x2_), y2(y2_) {}
void init(T x1_, T y1_, T x2_, T y2_)
{
x1 = x1_; y1 = y1_; x2 = x2_; y2 = y2_;
}
const self_type& normalize()
{
T t;
if(x1 > x2) { t = x1; x1 = x2; x2 = t; }
if(y1 > y2) { t = y1; y1 = y2; y2 = t; }
return *this;
}
bool clip(const self_type& r)
{
if(x2 > r.x2) x2 = r.x2;
if(y2 > r.y2) y2 = r.y2;
if(x1 < r.x1) x1 = r.x1;
if(y1 < r.y1) y1 = r.y1;
return x1 <= x2 && y1 <= y2;
}
bool is_valid() const
{
return x1 <= x2 && y1 <= y2;
}
bool hit_test(T x, T y) const
{
return (x >= x1 && x <= x2 && y >= y1 && y <= y2);
}
};
//-----------------------------------------------------intersect_rectangles
template<class Rect>
inline Rect intersect_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
// First process x2,y2 because the other order
// results in Internal Compiler Error under
// Microsoft Visual C++ .NET 2003 69462-335-0000007-18038 in
// case of "Maximize Speed" optimization option.
//-----------------
if(r.x2 > r2.x2) r.x2 = r2.x2;
if(r.y2 > r2.y2) r.y2 = r2.y2;
if(r.x1 < r2.x1) r.x1 = r2.x1;
if(r.y1 < r2.y1) r.y1 = r2.y1;
return r;
}
//---------------------------------------------------------unite_rectangles
template<class Rect>
inline Rect unite_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
if(r.x2 < r2.x2) r.x2 = r2.x2;
if(r.y2 < r2.y2) r.y2 = r2.y2;
if(r.x1 > r2.x1) r.x1 = r2.x1;
if(r.y1 > r2.y1) r.y1 = r2.y1;
return r;
}
typedef rect_base<int> rect_i; //----rect_i
typedef rect_base<float> rect_f; //----rect_f
typedef rect_base<double> rect_d; //----rect_d
//---------------------------------------------------------path_commands_e
enum path_commands_e
{
path_cmd_stop = 0, //----path_cmd_stop
path_cmd_move_to = 1, //----path_cmd_move_to
path_cmd_line_to = 2, //----path_cmd_line_to
path_cmd_curve3 = 3, //----path_cmd_curve3
path_cmd_curve4 = 4, //----path_cmd_curve4
path_cmd_curveN = 5, //----path_cmd_curveN
path_cmd_catrom = 6, //----path_cmd_catrom
path_cmd_ubspline = 7, //----path_cmd_ubspline
path_cmd_end_poly = 0x0F, //----path_cmd_end_poly
path_cmd_mask = 0x0F //----path_cmd_mask
};
//------------------------------------------------------------path_flags_e
enum path_flags_e
{
path_flags_none = 0, //----path_flags_none
path_flags_ccw = 0x10, //----path_flags_ccw
path_flags_cw = 0x20, //----path_flags_cw
path_flags_close = 0x40, //----path_flags_close
path_flags_mask = 0xF0 //----path_flags_mask
};
//---------------------------------------------------------------is_vertex
inline bool is_vertex(unsigned c)
{
return c >= path_cmd_move_to && c < path_cmd_end_poly;
}
//--------------------------------------------------------------is_drawing
inline bool is_drawing(unsigned c)
{
return c >= path_cmd_line_to && c < path_cmd_end_poly;
}
//-----------------------------------------------------------------is_stop
inline bool is_stop(unsigned c)
{
return c == path_cmd_stop;
}
//--------------------------------------------------------------is_move_to
inline bool is_move_to(unsigned c)
{
return c == path_cmd_move_to;
}
//--------------------------------------------------------------is_line_to
inline bool is_line_to(unsigned c)
{
return c == path_cmd_line_to;
}
//----------------------------------------------------------------is_curve
inline bool is_curve(unsigned c)
{
return c == path_cmd_curve3 || c == path_cmd_curve4;
}
//---------------------------------------------------------------is_curve3
inline bool is_curve3(unsigned c)
{
return c == path_cmd_curve3;
}
//---------------------------------------------------------------is_curve4
inline bool is_curve4(unsigned c)
{
return c == path_cmd_curve4;
}
//-------------------------------------------------------------is_end_poly
inline bool is_end_poly(unsigned c)
{
return (c & path_cmd_mask) == path_cmd_end_poly;
}
//----------------------------------------------------------------is_close
inline bool is_close(unsigned c)
{
return (c & ~(path_flags_cw | path_flags_ccw)) ==
(path_cmd_end_poly | path_flags_close);
}
//------------------------------------------------------------is_next_poly
inline bool is_next_poly(unsigned c)
{
return is_stop(c) || is_move_to(c) || is_end_poly(c);
}
//-------------------------------------------------------------------is_cw
inline bool is_cw(unsigned c)
{
return (c & path_flags_cw) != 0;
}
//------------------------------------------------------------------is_ccw
inline bool is_ccw(unsigned c)
{
return (c & path_flags_ccw) != 0;
}
//-------------------------------------------------------------is_oriented
inline bool is_oriented(unsigned c)
{
return (c & (path_flags_cw | path_flags_ccw)) != 0;
}
//---------------------------------------------------------------is_closed
inline bool is_closed(unsigned c)
{
return (c & path_flags_close) != 0;
}
//----------------------------------------------------------get_close_flag
inline unsigned get_close_flag(unsigned c)
{
return c & path_flags_close;
}
//-------------------------------------------------------clear_orientation
inline unsigned clear_orientation(unsigned c)
{
return c & ~(path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------get_orientation
inline unsigned get_orientation(unsigned c)
{
return c & (path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------set_orientation
inline unsigned set_orientation(unsigned c, unsigned o)
{
return clear_orientation(c) | o;
}
//--------------------------------------------------------------point_base
template<class T> struct point_base
{
typedef T value_type;
T x,y;
point_base() {}
point_base(T x_, T y_) : x(x_), y(y_) {}
};
typedef point_base<int> point_i; //-----point_i
typedef point_base<float> point_f; //-----point_f
typedef point_base<double> point_d; //-----point_d
//-------------------------------------------------------------vertex_base
template<class T> struct vertex_base
{
typedef T value_type;
T x,y;
unsigned cmd;
vertex_base() {}
vertex_base(T x_, T y_, unsigned cmd_) : x(x_), y(y_), cmd(cmd_) {}
};
typedef vertex_base<int> vertex_i; //-----vertex_i
typedef vertex_base<float> vertex_f; //-----vertex_f
typedef vertex_base<double> vertex_d; //-----vertex_d
//----------------------------------------------------------------row_info
template<class T> struct row_info
{
int x1, x2;
T* ptr;
row_info() {}
row_info(int x1_, int x2_, T* ptr_) : x1(x1_), x2(x2_), ptr(ptr_) {}
};
//----------------------------------------------------------const_row_info
template<class T> struct const_row_info
{
int x1, x2;
const T* ptr;
const_row_info() {}
const_row_info(int x1_, int x2_, const T* ptr_) :
x1(x1_), x2(x2_), ptr(ptr_) {}
};
//------------------------------------------------------------is_equal_eps
template<class T> inline bool is_equal_eps(T v1, T v2, T epsilon)
{
return fabs(v1 - v2) <= double(epsilon);
}
}
#endif

159
deps/agg/include/agg_bezier_arc.h vendored Normal file
View file

@ -0,0 +1,159 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Arc generator. Produces at most 4 consecutive cubic bezier curves, i.e.,
// 4, 7, 10, or 13 vertices.
//
//----------------------------------------------------------------------------
#ifndef AGG_BEZIER_ARC_INCLUDED
#define AGG_BEZIER_ARC_INCLUDED
#include "agg_conv_transform.h"
namespace agg
{
//-----------------------------------------------------------------------
void arc_to_bezier(double cx, double cy, double rx, double ry,
double start_angle, double sweep_angle,
double* curve);
//==============================================================bezier_arc
//
// See implemantaion agg_bezier_arc.cpp
//
class bezier_arc
{
public:
//--------------------------------------------------------------------
bezier_arc() : m_vertex(26), m_num_vertices(0), m_cmd(path_cmd_line_to) {}
bezier_arc(double x, double y,
double rx, double ry,
double start_angle,
double sweep_angle)
{
init(x, y, rx, ry, start_angle, sweep_angle);
}
//--------------------------------------------------------------------
void init(double x, double y,
double rx, double ry,
double start_angle,
double sweep_angle);
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_vertex = 0;
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
if(m_vertex >= m_num_vertices) return path_cmd_stop;
*x = m_vertices[m_vertex];
*y = m_vertices[m_vertex + 1];
m_vertex += 2;
return (m_vertex == 2) ? (unsigned)path_cmd_move_to : m_cmd;
}
// Supplemantary functions. num_vertices() actually returns doubled
// number of vertices. That is, for 1 vertex it returns 2.
//--------------------------------------------------------------------
unsigned num_vertices() const { return m_num_vertices; }
const double* vertices() const { return m_vertices; }
double* vertices() { return m_vertices; }
private:
unsigned m_vertex;
unsigned m_num_vertices;
double m_vertices[26];
unsigned m_cmd;
};
//==========================================================bezier_arc_svg
// Compute an SVG-style bezier arc.
//
// Computes an elliptical arc from (x1, y1) to (x2, y2). The size and
// orientation of the ellipse are defined by two radii (rx, ry)
// and an x-axis-rotation, which indicates how the ellipse as a whole
// is rotated relative to the current coordinate system. The center
// (cx, cy) of the ellipse is calculated automatically to satisfy the
// constraints imposed by the other parameters.
// large-arc-flag and sweep-flag contribute to the automatic calculations
// and help determine how the arc is drawn.
class bezier_arc_svg
{
public:
//--------------------------------------------------------------------
bezier_arc_svg() : m_arc(), m_radii_ok(false) {}
bezier_arc_svg(double x1, double y1,
double rx, double ry,
double angle,
bool large_arc_flag,
bool sweep_flag,
double x2, double y2) :
m_arc(), m_radii_ok(false)
{
init(x1, y1, rx, ry, angle, large_arc_flag, sweep_flag, x2, y2);
}
//--------------------------------------------------------------------
void init(double x1, double y1,
double rx, double ry,
double angle,
bool large_arc_flag,
bool sweep_flag,
double x2, double y2);
//--------------------------------------------------------------------
bool radii_ok() const { return m_radii_ok; }
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_arc.rewind(0);
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
return m_arc.vertex(x, y);
}
// Supplemantary functions. num_vertices() actually returns doubled
// number of vertices. That is, for 1 vertex it returns 2.
//--------------------------------------------------------------------
unsigned num_vertices() const { return m_arc.num_vertices(); }
const double* vertices() const { return m_arc.vertices(); }
double* vertices() { return m_arc.vertices(); }
private:
bezier_arc m_arc;
bool m_radii_ok;
};
}
#endif

54
deps/agg/include/agg_bitset_iterator.h vendored Normal file
View file

@ -0,0 +1,54 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_BITSET_ITERATOR_INCLUDED
#define AGG_BITSET_ITERATOR_INCLUDED
#include "agg_basics.h"
namespace agg
{
class bitset_iterator
{
public:
bitset_iterator(const int8u* bits, unsigned offset = 0) :
m_bits(bits + (offset >> 3)),
m_mask(0x80 >> (offset & 7))
{}
void operator ++ ()
{
m_mask >>= 1;
if(m_mask == 0)
{
++m_bits;
m_mask = 0x80;
}
}
unsigned bit() const
{
return (*m_bits) & m_mask;
}
private:
const int8u* m_bits;
int8u m_mask;
};
}
#endif

1294
deps/agg/include/agg_blur.h vendored Normal file

File diff suppressed because it is too large Load diff

116
deps/agg/include/agg_bounding_rect.h vendored Normal file
View file

@ -0,0 +1,116 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// bounding_rect function template
//
//----------------------------------------------------------------------------
#ifndef AGG_BOUNDING_RECT_INCLUDED
#define AGG_BOUNDING_RECT_INCLUDED
#include "agg_basics.h"
namespace agg
{
//-----------------------------------------------------------bounding_rect
template<class VertexSource, class GetId, class CoordT>
bool bounding_rect(VertexSource& vs, GetId& gi,
unsigned start, unsigned num,
CoordT* x1, CoordT* y1, CoordT* x2, CoordT* y2)
{
unsigned i;
double x;
double y;
bool first = true;
*x1 = CoordT(1);
*y1 = CoordT(1);
*x2 = CoordT(0);
*y2 = CoordT(0);
for(i = 0; i < num; i++)
{
vs.rewind(gi[start + i]);
unsigned cmd;
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
if(is_vertex(cmd))
{
if(first)
{
*x1 = CoordT(x);
*y1 = CoordT(y);
*x2 = CoordT(x);
*y2 = CoordT(y);
first = false;
}
else
{
if(CoordT(x) < *x1) *x1 = CoordT(x);
if(CoordT(y) < *y1) *y1 = CoordT(y);
if(CoordT(x) > *x2) *x2 = CoordT(x);
if(CoordT(y) > *y2) *y2 = CoordT(y);
}
}
}
}
return *x1 <= *x2 && *y1 <= *y2;
}
//-----------------------------------------------------bounding_rect_single
template<class VertexSource, class CoordT>
bool bounding_rect_single(VertexSource& vs, unsigned path_id,
CoordT* x1, CoordT* y1, CoordT* x2, CoordT* y2)
{
double x;
double y;
bool first = true;
*x1 = CoordT(1);
*y1 = CoordT(1);
*x2 = CoordT(0);
*y2 = CoordT(0);
vs.rewind(path_id);
unsigned cmd;
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
if(is_vertex(cmd))
{
if(first)
{
*x1 = CoordT(x);
*y1 = CoordT(y);
*x2 = CoordT(x);
*y2 = CoordT(y);
first = false;
}
else
{
if(CoordT(x) < *x1) *x1 = CoordT(x);
if(CoordT(y) < *y1) *y1 = CoordT(y);
if(CoordT(x) > *x2) *x2 = CoordT(x);
if(CoordT(y) > *y2) *y2 = CoordT(y);
}
}
}
return *x1 <= *x2 && *y1 <= *y2;
}
}
#endif

76
deps/agg/include/agg_bspline.h vendored Normal file
View file

@ -0,0 +1,76 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class bspline
//
//----------------------------------------------------------------------------
#ifndef AGG_BSPLINE_INCLUDED
#define AGG_BSPLINE_INCLUDED
#include "agg_array.h"
namespace agg
{
//----------------------------------------------------------------bspline
// A very simple class of Bi-cubic Spline interpolation.
// First call init(num, x[], y[]) where num - number of source points,
// x, y - arrays of X and Y values respectively. Here Y must be a function
// of X. It means that all the X-coordinates must be arranged in the ascending
// order.
// Then call get(x) that calculates a value Y for the respective X.
// The class supports extrapolation, i.e. you can call get(x) where x is
// outside the given with init() X-range. Extrapolation is a simple linear
// function.
//
// See Implementation agg_bspline.cpp
//------------------------------------------------------------------------
class bspline
{
public:
bspline();
bspline(int num);
bspline(int num, const double* x, const double* y);
void init(int num);
void add_point(double x, double y);
void prepare();
void init(int num, const double* x, const double* y);
double get(double x) const;
double get_stateful(double x) const;
private:
bspline(const bspline&);
const bspline& operator = (const bspline&);
static void bsearch(int n, const double *x, double x0, int *i);
double extrapolation_left(double x) const;
double extrapolation_right(double x) const;
double interpolation(double x, int i) const;
int m_max;
int m_num;
double* m_x;
double* m_y;
pod_array<double> m_am;
mutable int m_last_idx;
};
}
#endif

333
deps/agg/include/agg_clip_liang_barsky.h vendored Normal file
View file

@ -0,0 +1,333 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Liang-Barsky clipping
//
//----------------------------------------------------------------------------
#ifndef AGG_CLIP_LIANG_BARSKY_INCLUDED
#define AGG_CLIP_LIANG_BARSKY_INCLUDED
#include "agg_basics.h"
namespace agg
{
//------------------------------------------------------------------------
enum clipping_flags_e
{
clipping_flags_x1_clipped = 4,
clipping_flags_x2_clipped = 1,
clipping_flags_y1_clipped = 8,
clipping_flags_y2_clipped = 2,
clipping_flags_x_clipped = clipping_flags_x1_clipped | clipping_flags_x2_clipped,
clipping_flags_y_clipped = clipping_flags_y1_clipped | clipping_flags_y2_clipped
};
//----------------------------------------------------------clipping_flags
// Determine the clipping code of the vertex according to the
// Cyrus-Beck line clipping algorithm
//
// | |
// 0110 | 0010 | 0011
// | |
// -------+--------+-------- clip_box.y2
// | |
// 0100 | 0000 | 0001
// | |
// -------+--------+-------- clip_box.y1
// | |
// 1100 | 1000 | 1001
// | |
// clip_box.x1 clip_box.x2
//
//
template<class T>
inline unsigned clipping_flags(T x, T y, const rect_base<T>& clip_box)
{
return (x > clip_box.x2) |
((y > clip_box.y2) << 1) |
((x < clip_box.x1) << 2) |
((y < clip_box.y1) << 3);
}
//--------------------------------------------------------clipping_flags_x
template<class T>
inline unsigned clipping_flags_x(T x, const rect_base<T>& clip_box)
{
return (x > clip_box.x2) | ((x < clip_box.x1) << 2);
}
//--------------------------------------------------------clipping_flags_y
template<class T>
inline unsigned clipping_flags_y(T y, const rect_base<T>& clip_box)
{
return ((y > clip_box.y2) << 1) | ((y < clip_box.y1) << 3);
}
//-------------------------------------------------------clip_liang_barsky
template<class T>
inline unsigned clip_liang_barsky(T x1, T y1, T x2, T y2,
const rect_base<T>& clip_box,
T* x, T* y)
{
const double nearzero = 1e-30;
double deltax = x2 - x1;
double deltay = y2 - y1;
double xin;
double xout;
double yin;
double yout;
double tinx;
double tiny;
double toutx;
double touty;
double tin1;
double tin2;
double tout1;
unsigned np = 0;
if(deltax == 0.0)
{
// bump off of the vertical
deltax = (x1 > clip_box.x1) ? -nearzero : nearzero;
}
if(deltay == 0.0)
{
// bump off of the horizontal
deltay = (y1 > clip_box.y1) ? -nearzero : nearzero;
}
if(deltax > 0.0)
{
// points to right
xin = clip_box.x1;
xout = clip_box.x2;
}
else
{
xin = clip_box.x2;
xout = clip_box.x1;
}
if(deltay > 0.0)
{
// points up
yin = clip_box.y1;
yout = clip_box.y2;
}
else
{
yin = clip_box.y2;
yout = clip_box.y1;
}
tinx = (xin - x1) / deltax;
tiny = (yin - y1) / deltay;
if (tinx < tiny)
{
// hits x first
tin1 = tinx;
tin2 = tiny;
}
else
{
// hits y first
tin1 = tiny;
tin2 = tinx;
}
if(tin1 <= 1.0)
{
if(0.0 < tin1)
{
*x++ = (T)xin;
*y++ = (T)yin;
++np;
}
if(tin2 <= 1.0)
{
toutx = (xout - x1) / deltax;
touty = (yout - y1) / deltay;
tout1 = (toutx < touty) ? toutx : touty;
if(tin2 > 0.0 || tout1 > 0.0)
{
if(tin2 <= tout1)
{
if(tin2 > 0.0)
{
if(tinx > tiny)
{
*x++ = (T)xin;
*y++ = (T)(y1 + tinx * deltay);
}
else
{
*x++ = (T)(x1 + tiny * deltax);
*y++ = (T)yin;
}
++np;
}
if(tout1 < 1.0)
{
if(toutx < touty)
{
*x++ = (T)xout;
*y++ = (T)(y1 + toutx * deltay);
}
else
{
*x++ = (T)(x1 + touty * deltax);
*y++ = (T)yout;
}
}
else
{
*x++ = x2;
*y++ = y2;
}
++np;
}
else
{
if(tinx > tiny)
{
*x++ = (T)xin;
*y++ = (T)yout;
}
else
{
*x++ = (T)xout;
*y++ = (T)yin;
}
++np;
}
}
}
}
return np;
}
//----------------------------------------------------------------------------
template<class T>
bool clip_move_point(T x1, T y1, T x2, T y2,
const rect_base<T>& clip_box,
T* x, T* y, unsigned flags)
{
T bound;
if(flags & clipping_flags_x_clipped)
{
if(x1 == x2)
{
return false;
}
bound = (flags & clipping_flags_x1_clipped) ? clip_box.x1 : clip_box.x2;
*y = (T)(double(bound - x1) * (y2 - y1) / (x2 - x1) + y1);
*x = bound;
}
flags = clipping_flags_y(*y, clip_box);
if(flags & clipping_flags_y_clipped)
{
if(y1 == y2)
{
return false;
}
bound = (flags & clipping_flags_y1_clipped) ? clip_box.y1 : clip_box.y2;
*x = (T)(double(bound - y1) * (x2 - x1) / (y2 - y1) + x1);
*y = bound;
}
return true;
}
//-------------------------------------------------------clip_line_segment
// Returns: ret >= 4 - Fully clipped
// (ret & 1) != 0 - First point has been moved
// (ret & 2) != 0 - Second point has been moved
//
template<class T>
unsigned clip_line_segment(T* x1, T* y1, T* x2, T* y2,
const rect_base<T>& clip_box)
{
unsigned f1 = clipping_flags(*x1, *y1, clip_box);
unsigned f2 = clipping_flags(*x2, *y2, clip_box);
unsigned ret = 0;
if((f2 | f1) == 0)
{
// Fully visible
return 0;
}
if((f1 & clipping_flags_x_clipped) != 0 &&
(f1 & clipping_flags_x_clipped) == (f2 & clipping_flags_x_clipped))
{
// Fully clipped
return 4;
}
if((f1 & clipping_flags_y_clipped) != 0 &&
(f1 & clipping_flags_y_clipped) == (f2 & clipping_flags_y_clipped))
{
// Fully clipped
return 4;
}
T tx1 = *x1;
T ty1 = *y1;
T tx2 = *x2;
T ty2 = *y2;
if(f1)
{
if(!clip_move_point(tx1, ty1, tx2, ty2, clip_box, x1, y1, f1))
{
return 4;
}
if(*x1 == *x2 && *y1 == *y2)
{
return 4;
}
ret |= 1;
}
if(f2)
{
if(!clip_move_point(tx1, ty1, tx2, ty2, clip_box, x2, y2, f2))
{
return 4;
}
if(*x1 == *x2 && *y1 == *y2)
{
return 4;
}
ret |= 2;
}
return ret;
}
}
#endif

414
deps/agg/include/agg_color_gray.h vendored Normal file
View file

@ -0,0 +1,414 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
//
// color types gray8, gray16
//
//----------------------------------------------------------------------------
#ifndef AGG_COLOR_GRAY_INCLUDED
#define AGG_COLOR_GRAY_INCLUDED
#include "agg_basics.h"
#include "agg_color_rgba.h"
namespace agg
{
//===================================================================gray8
struct gray8
{
typedef int8u value_type;
typedef int32u calc_type;
typedef int32 long_type;
enum base_scale_e
{
base_shift = 8,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef gray8 self_type;
value_type v;
value_type a;
//--------------------------------------------------------------------
gray8() {}
//--------------------------------------------------------------------
gray8(unsigned v_, unsigned a_=base_mask) :
v(int8u(v_)), a(int8u(a_)) {}
//--------------------------------------------------------------------
gray8(const self_type& c, unsigned a_) :
v(c.v), a(value_type(a_)) {}
//--------------------------------------------------------------------
gray8(const rgba& c) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
gray8(const rgba& c, double a_) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
gray8(const rgba8& c) :
v((c.r*77 + c.g*150 + c.b*29) >> 8),
a(c.a) {}
//--------------------------------------------------------------------
gray8(const rgba8& c, unsigned a_) :
v((c.r*77 + c.g*150 + c.b*29) >> 8),
a(a_) {}
//--------------------------------------------------------------------
void clear()
{
v = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
void opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
v = value_type((calc_type(v) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
v = a = 0;
return *this;
}
calc_type v_ = (calc_type(v) * a_) / a;
v = value_type((v_ > a_) ? a_ : v_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
calc_type v_ = (calc_type(v) * base_mask) / a;
v = value_type((v_ > base_mask) ? (value_type)base_mask : v_);
return *this;
}
//--------------------------------------------------------------------
self_type gradient(self_type c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.v = value_type(calc_type(v) + (((calc_type(c.v) - v) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cv, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cv = v + c.v; v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cv = v + ((c.v * cover + cover_mask/2) >> cover_shift);
ca = a + ((c.a * cover + cover_mask/2) >> cover_shift);
v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0); }
};
//-------------------------------------------------------------gray8_pre
inline gray8 gray8_pre(unsigned v, unsigned a = gray8::base_mask)
{
return gray8(v,a).premultiply();
}
inline gray8 gray8_pre(const gray8& c, unsigned a)
{
return gray8(c,a).premultiply();
}
inline gray8 gray8_pre(const rgba& c)
{
return gray8(c).premultiply();
}
inline gray8 gray8_pre(const rgba& c, double a)
{
return gray8(c,a).premultiply();
}
inline gray8 gray8_pre(const rgba8& c)
{
return gray8(c).premultiply();
}
inline gray8 gray8_pre(const rgba8& c, unsigned a)
{
return gray8(c,a).premultiply();
}
//==================================================================gray16
struct gray16
{
typedef int16u value_type;
typedef int32u calc_type;
typedef int64 long_type;
enum base_scale_e
{
base_shift = 16,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef gray16 self_type;
value_type v;
value_type a;
//--------------------------------------------------------------------
gray16() {}
//--------------------------------------------------------------------
gray16(unsigned v_, unsigned a_=base_mask) :
v(int16u(v_)), a(int16u(a_)) {}
//--------------------------------------------------------------------
gray16(const self_type& c, unsigned a_) :
v(c.v), a(value_type(a_)) {}
//--------------------------------------------------------------------
gray16(const rgba& c) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
gray16(const rgba& c, double a_) :
v((value_type)uround((0.299*c.r + 0.587*c.g + 0.114*c.b) * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
gray16(const rgba8& c) :
v(c.r*77 + c.g*150 + c.b*29),
a((value_type(c.a) << 8) | c.a) {}
//--------------------------------------------------------------------
gray16(const rgba8& c, unsigned a_) :
v(c.r*77 + c.g*150 + c.b*29),
a((value_type(a_) << 8) | c.a) {}
//--------------------------------------------------------------------
void clear()
{
v = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
void opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
v = value_type((calc_type(v) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
v = a = 0;
return *this;
}
calc_type v_ = (calc_type(v) * a_) / a;
v = value_type((v_ > a_) ? a_ : v_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
v = 0;
return *this;
}
calc_type v_ = (calc_type(v) * base_mask) / a;
v = value_type((v_ > base_mask) ? base_mask : v_);
return *this;
}
//--------------------------------------------------------------------
self_type gradient(self_type c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.v = value_type(calc_type(v) + (((calc_type(c.v) - v) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cv, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cv = v + c.v; v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cv = v + ((c.v * cover + cover_mask/2) >> cover_shift);
ca = a + ((c.a * cover + cover_mask/2) >> cover_shift);
v = (cv > calc_type(base_mask)) ? calc_type(base_mask) : cv;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0); }
};
//------------------------------------------------------------gray16_pre
inline gray16 gray16_pre(unsigned v, unsigned a = gray16::base_mask)
{
return gray16(v,a).premultiply();
}
inline gray16 gray16_pre(const gray16& c, unsigned a)
{
return gray16(c,a).premultiply();
}
inline gray16 gray16_pre(const rgba& c)
{
return gray16(c).premultiply();
}
inline gray16 gray16_pre(const rgba& c, double a)
{
return gray16(c,a).premultiply();
}
inline gray16 gray16_pre(const rgba8& c)
{
return gray16(c).premultiply();
}
inline gray16 gray16_pre(const rgba8& c, unsigned a)
{
return gray16(c,a).premultiply();
}
}
#endif

743
deps/agg/include/agg_color_rgba.h vendored Normal file
View file

@ -0,0 +1,743 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_COLOR_RGBA_INCLUDED
#define AGG_COLOR_RGBA_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
// Supported byte orders for RGB and RGBA pixel formats
//=======================================================================
struct order_rgb { enum rgb_e { R=0, G=1, B=2, rgb_tag }; }; //----order_rgb
struct order_bgr { enum bgr_e { B=0, G=1, R=2, rgb_tag }; }; //----order_bgr
struct order_rgba { enum rgba_e { R=0, G=1, B=2, A=3, rgba_tag }; }; //----order_rgba
struct order_argb { enum argb_e { A=0, R=1, G=2, B=3, rgba_tag }; }; //----order_argb
struct order_abgr { enum abgr_e { A=0, B=1, G=2, R=3, rgba_tag }; }; //----order_abgr
struct order_bgra { enum bgra_e { B=0, G=1, R=2, A=3, rgba_tag }; }; //----order_bgra
//====================================================================rgba
struct rgba
{
typedef double value_type;
double r;
double g;
double b;
double a;
//--------------------------------------------------------------------
rgba() {}
//--------------------------------------------------------------------
rgba(double r_, double g_, double b_, double a_=1.0) :
r(r_), g(g_), b(b_), a(a_) {}
//--------------------------------------------------------------------
rgba(const rgba& c, double a_) : r(c.r), g(c.g), b(c.b), a(a_) {}
//--------------------------------------------------------------------
void clear()
{
r = g = b = a = 0;
}
//--------------------------------------------------------------------
const rgba& transparent()
{
a = 0.0;
return *this;
}
//--------------------------------------------------------------------
const rgba& opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = a_;
return *this;
}
//--------------------------------------------------------------------
double opacity() const
{
return a;
}
//--------------------------------------------------------------------
const rgba& premultiply()
{
r *= a;
g *= a;
b *= a;
return *this;
}
//--------------------------------------------------------------------
const rgba& premultiply(double a_)
{
if(a <= 0.0 || a_ <= 0.0)
{
r = g = b = a = 0.0;
return *this;
}
a_ /= a;
r *= a_;
g *= a_;
b *= a_;
a = a_;
return *this;
}
//--------------------------------------------------------------------
const rgba& demultiply()
{
if(a == 0)
{
r = g = b = 0;
return *this;
}
double a_ = 1.0 / a;
r *= a_;
g *= a_;
b *= a_;
return *this;
}
//--------------------------------------------------------------------
rgba gradient(rgba c, double k) const
{
rgba ret;
ret.r = r + (c.r - r) * k;
ret.g = g + (c.g - g) * k;
ret.b = b + (c.b - b) * k;
ret.a = a + (c.a - a) * k;
return ret;
}
//--------------------------------------------------------------------
static rgba no_color() { return rgba(0,0,0,0); }
//--------------------------------------------------------------------
static rgba from_wavelength(double wl, double gamma = 1.0);
//--------------------------------------------------------------------
explicit rgba(double wavelen, double gamma=1.0)
{
*this = from_wavelength(wavelen, gamma);
}
};
//----------------------------------------------------------------rgba_pre
inline rgba rgba_pre(double r, double g, double b, double a=1.0)
{
return rgba(r, g, b, a).premultiply();
}
inline rgba rgba_pre(const rgba& c)
{
return rgba(c).premultiply();
}
inline rgba rgba_pre(const rgba& c, double a)
{
return rgba(c, a).premultiply();
}
//------------------------------------------------------------------------
inline rgba rgba::from_wavelength(double wl, double gamma)
{
rgba t(0.0, 0.0, 0.0);
if(wl >= 380.0 && wl <= 440.0)
{
t.r = -1.0 * (wl - 440.0) / (440.0 - 380.0);
t.b = 1.0;
}
else
if(wl >= 440.0 && wl <= 490.0)
{
t.g = (wl - 440.0) / (490.0 - 440.0);
t.b = 1.0;
}
else
if(wl >= 490.0 && wl <= 510.0)
{
t.g = 1.0;
t.b = -1.0 * (wl - 510.0) / (510.0 - 490.0);
}
else
if(wl >= 510.0 && wl <= 580.0)
{
t.r = (wl - 510.0) / (580.0 - 510.0);
t.g = 1.0;
}
else
if(wl >= 580.0 && wl <= 645.0)
{
t.r = 1.0;
t.g = -1.0 * (wl - 645.0) / (645.0 - 580.0);
}
else
if(wl >= 645.0 && wl <= 780.0)
{
t.r = 1.0;
}
double s = 1.0;
if(wl > 700.0) s = 0.3 + 0.7 * (780.0 - wl) / (780.0 - 700.0);
else if(wl < 420.0) s = 0.3 + 0.7 * (wl - 380.0) / (420.0 - 380.0);
t.r = pow(t.r * s, gamma);
t.g = pow(t.g * s, gamma);
t.b = pow(t.b * s, gamma);
return t;
}
//===================================================================rgba8
struct rgba8
{
typedef int8u value_type;
typedef int32u calc_type;
typedef int32 long_type;
enum base_scale_e
{
base_shift = 8,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef rgba8 self_type;
value_type r;
value_type g;
value_type b;
value_type a;
//--------------------------------------------------------------------
rgba8() {}
//--------------------------------------------------------------------
rgba8(unsigned r_, unsigned g_, unsigned b_, unsigned a_=base_mask) :
r(value_type(r_)),
g(value_type(g_)),
b(value_type(b_)),
a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba8(const rgba& c, double a_) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
rgba8(const self_type& c, unsigned a_) :
r(c.r), g(c.g), b(c.b), a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba8(const rgba& c) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
void clear()
{
r = g = b = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
const self_type& opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
return *this;
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
r = value_type((calc_type(r) * a) >> base_shift);
g = value_type((calc_type(g) * a) >> base_shift);
b = value_type((calc_type(b) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
r = g = b = a = 0;
return *this;
}
calc_type r_ = (calc_type(r) * a_) / a;
calc_type g_ = (calc_type(g) * a_) / a;
calc_type b_ = (calc_type(b) * a_) / a;
r = value_type((r_ > a_) ? a_ : r_);
g = value_type((g_ > a_) ? a_ : g_);
b = value_type((b_ > a_) ? a_ : b_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
calc_type r_ = (calc_type(r) * base_mask) / a;
calc_type g_ = (calc_type(g) * base_mask) / a;
calc_type b_ = (calc_type(b) * base_mask) / a;
r = value_type((r_ > calc_type(base_mask)) ? calc_type(base_mask) : r_);
g = value_type((g_ > calc_type(base_mask)) ? calc_type(base_mask) : g_);
b = value_type((b_ > calc_type(base_mask)) ? calc_type(base_mask) : b_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE self_type gradient(const self_type& c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.r = value_type(calc_type(r) + (((calc_type(c.r) - r) * ik) >> base_shift));
ret.g = value_type(calc_type(g) + (((calc_type(c.g) - g) * ik) >> base_shift));
ret.b = value_type(calc_type(b) + (((calc_type(c.b) - b) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cr, cg, cb, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cr = r + c.r; r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
cg = g + c.g; g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
cb = b + c.b; b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cr = r + ((c.r * cover + cover_mask/2) >> cover_shift);
cg = g + ((c.g * cover + cover_mask/2) >> cover_shift);
cb = b + ((c.b * cover + cover_mask/2) >> cover_shift);
ca = a + ((c.a * cover + cover_mask/2) >> cover_shift);
r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_dir(const GammaLUT& gamma)
{
r = gamma.dir(r);
g = gamma.dir(g);
b = gamma.dir(b);
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_inv(const GammaLUT& gamma)
{
r = gamma.inv(r);
g = gamma.inv(g);
b = gamma.inv(b);
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0,0,0); }
//--------------------------------------------------------------------
static self_type from_wavelength(double wl, double gamma = 1.0)
{
return self_type(rgba::from_wavelength(wl, gamma));
}
};
//-------------------------------------------------------------rgba8_pre
inline rgba8 rgba8_pre(unsigned r, unsigned g, unsigned b,
unsigned a = rgba8::base_mask)
{
return rgba8(r,g,b,a).premultiply();
}
inline rgba8 rgba8_pre(const rgba8& c)
{
return rgba8(c).premultiply();
}
inline rgba8 rgba8_pre(const rgba8& c, unsigned a)
{
return rgba8(c,a).premultiply();
}
inline rgba8 rgba8_pre(const rgba& c)
{
return rgba8(c).premultiply();
}
inline rgba8 rgba8_pre(const rgba& c, double a)
{
return rgba8(c,a).premultiply();
}
//-------------------------------------------------------------rgb8_packed
inline rgba8 rgb8_packed(unsigned v)
{
return rgba8((v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF);
}
//-------------------------------------------------------------bgr8_packed
inline rgba8 bgr8_packed(unsigned v)
{
return rgba8(v & 0xFF, (v >> 8) & 0xFF, (v >> 16) & 0xFF);
}
//------------------------------------------------------------argb8_packed
inline rgba8 argb8_packed(unsigned v)
{
return rgba8((v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF, v >> 24);
}
//---------------------------------------------------------rgba8_gamma_dir
template<class GammaLUT>
rgba8 rgba8_gamma_dir(rgba8 c, const GammaLUT& gamma)
{
return rgba8(gamma.dir(c.r), gamma.dir(c.g), gamma.dir(c.b), c.a);
}
//---------------------------------------------------------rgba8_gamma_inv
template<class GammaLUT>
rgba8 rgba8_gamma_inv(rgba8 c, const GammaLUT& gamma)
{
return rgba8(gamma.inv(c.r), gamma.inv(c.g), gamma.inv(c.b), c.a);
}
//==================================================================rgba16
struct rgba16
{
typedef int16u value_type;
typedef int32u calc_type;
typedef int64 long_type;
enum base_scale_e
{
base_shift = 16,
base_scale = 1 << base_shift,
base_mask = base_scale - 1
};
typedef rgba16 self_type;
value_type r;
value_type g;
value_type b;
value_type a;
//--------------------------------------------------------------------
rgba16() {}
//--------------------------------------------------------------------
rgba16(unsigned r_, unsigned g_, unsigned b_, unsigned a_=base_mask) :
r(value_type(r_)),
g(value_type(g_)),
b(value_type(b_)),
a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba16(const self_type& c, unsigned a_) :
r(c.r), g(c.g), b(c.b), a(value_type(a_)) {}
//--------------------------------------------------------------------
rgba16(const rgba& c) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(c.a * double(base_mask))) {}
//--------------------------------------------------------------------
rgba16(const rgba& c, double a_) :
r((value_type)uround(c.r * double(base_mask))),
g((value_type)uround(c.g * double(base_mask))),
b((value_type)uround(c.b * double(base_mask))),
a((value_type)uround(a_ * double(base_mask))) {}
//--------------------------------------------------------------------
rgba16(const rgba8& c) :
r(value_type((value_type(c.r) << 8) | c.r)),
g(value_type((value_type(c.g) << 8) | c.g)),
b(value_type((value_type(c.b) << 8) | c.b)),
a(value_type((value_type(c.a) << 8) | c.a)) {}
//--------------------------------------------------------------------
rgba16(const rgba8& c, unsigned a_) :
r(value_type((value_type(c.r) << 8) | c.r)),
g(value_type((value_type(c.g) << 8) | c.g)),
b(value_type((value_type(c.b) << 8) | c.b)),
a(value_type(( a_ << 8) | c.a)) {}
//--------------------------------------------------------------------
void clear()
{
r = g = b = a = 0;
}
//--------------------------------------------------------------------
const self_type& transparent()
{
a = 0;
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = (value_type)uround(a_ * double(base_mask));
return *this;
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / double(base_mask);
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
r = value_type((calc_type(r) * a) >> base_shift);
g = value_type((calc_type(g) * a) >> base_shift);
b = value_type((calc_type(b) * a) >> base_shift);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& premultiply(unsigned a_)
{
if(a == base_mask && a_ >= base_mask) return *this;
if(a == 0 || a_ == 0)
{
r = g = b = a = 0;
return *this;
}
calc_type r_ = (calc_type(r) * a_) / a;
calc_type g_ = (calc_type(g) * a_) / a;
calc_type b_ = (calc_type(b) * a_) / a;
r = value_type((r_ > a_) ? a_ : r_);
g = value_type((g_ > a_) ? a_ : g_);
b = value_type((b_ > a_) ? a_ : b_);
a = value_type(a_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE const self_type& demultiply()
{
if(a == base_mask) return *this;
if(a == 0)
{
r = g = b = 0;
return *this;
}
calc_type r_ = (calc_type(r) * base_mask) / a;
calc_type g_ = (calc_type(g) * base_mask) / a;
calc_type b_ = (calc_type(b) * base_mask) / a;
r = value_type((r_ > calc_type(base_mask)) ? calc_type(base_mask) : r_);
g = value_type((g_ > calc_type(base_mask)) ? calc_type(base_mask) : g_);
b = value_type((b_ > calc_type(base_mask)) ? calc_type(base_mask) : b_);
return *this;
}
//--------------------------------------------------------------------
AGG_INLINE self_type gradient(const self_type& c, double k) const
{
self_type ret;
calc_type ik = uround(k * base_scale);
ret.r = value_type(calc_type(r) + (((calc_type(c.r) - r) * ik) >> base_shift));
ret.g = value_type(calc_type(g) + (((calc_type(c.g) - g) * ik) >> base_shift));
ret.b = value_type(calc_type(b) + (((calc_type(c.b) - b) * ik) >> base_shift));
ret.a = value_type(calc_type(a) + (((calc_type(c.a) - a) * ik) >> base_shift));
return ret;
}
//--------------------------------------------------------------------
AGG_INLINE void add(const self_type& c, unsigned cover)
{
calc_type cr, cg, cb, ca;
if(cover == cover_mask)
{
if(c.a == base_mask)
{
*this = c;
}
else
{
cr = r + c.r; r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
cg = g + c.g; g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
cb = b + c.b; b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
ca = a + c.a; a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
else
{
cr = r + ((c.r * cover + cover_mask) >> cover_shift);
cg = g + ((c.g * cover + cover_mask) >> cover_shift);
cb = b + ((c.b * cover + cover_mask) >> cover_shift);
ca = a + ((c.a * cover + cover_mask) >> cover_shift);
r = (cr > calc_type(base_mask)) ? calc_type(base_mask) : cr;
g = (cg > calc_type(base_mask)) ? calc_type(base_mask) : cg;
b = (cb > calc_type(base_mask)) ? calc_type(base_mask) : cb;
a = (ca > calc_type(base_mask)) ? calc_type(base_mask) : ca;
}
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_dir(const GammaLUT& gamma)
{
r = gamma.dir(r);
g = gamma.dir(g);
b = gamma.dir(b);
}
//--------------------------------------------------------------------
template<class GammaLUT>
AGG_INLINE void apply_gamma_inv(const GammaLUT& gamma)
{
r = gamma.inv(r);
g = gamma.inv(g);
b = gamma.inv(b);
}
//--------------------------------------------------------------------
static self_type no_color() { return self_type(0,0,0,0); }
//--------------------------------------------------------------------
static self_type from_wavelength(double wl, double gamma = 1.0)
{
return self_type(rgba::from_wavelength(wl, gamma));
}
};
//--------------------------------------------------------------rgba16_pre
inline rgba16 rgba16_pre(unsigned r, unsigned g, unsigned b,
unsigned a = rgba16::base_mask)
{
return rgba16(r,g,b,a).premultiply();
}
inline rgba16 rgba16_pre(const rgba16& c, unsigned a)
{
return rgba16(c,a).premultiply();
}
inline rgba16 rgba16_pre(const rgba& c)
{
return rgba16(c).premultiply();
}
inline rgba16 rgba16_pre(const rgba& c, double a)
{
return rgba16(c,a).premultiply();
}
inline rgba16 rgba16_pre(const rgba8& c)
{
return rgba16(c).premultiply();
}
inline rgba16 rgba16_pre(const rgba8& c, unsigned a)
{
return rgba16(c,a).premultiply();
}
//------------------------------------------------------rgba16_gamma_dir
template<class GammaLUT>
rgba16 rgba16_gamma_dir(rgba16 c, const GammaLUT& gamma)
{
return rgba16(gamma.dir(c.r), gamma.dir(c.g), gamma.dir(c.b), c.a);
}
//------------------------------------------------------rgba16_gamma_inv
template<class GammaLUT>
rgba16 rgba16_gamma_inv(rgba16 c, const GammaLUT& gamma)
{
return rgba16(gamma.inv(c.r), gamma.inv(c.g), gamma.inv(c.b), c.a);
}
}
#endif

45
deps/agg/include/agg_config.h vendored Normal file
View file

@ -0,0 +1,45 @@
#ifndef AGG_CONFIG_INCLUDED
#define AGG_CONFIG_INCLUDED
// This file can be used to redefine certain data types.
//---------------------------------------
// 1. Default basic types such as:
//
// AGG_INT8
// AGG_INT8U
// AGG_INT16
// AGG_INT16U
// AGG_INT32
// AGG_INT32U
// AGG_INT64
// AGG_INT64U
//
// Just replace this file with new defines if necessary.
// For example, if your compiler doesn't have a 64 bit integer type
// you can still use AGG if you define the follows:
//
// #define AGG_INT64 int
// #define AGG_INT64U unsigned
//
// It will result in overflow in 16 bit-per-component image/pattern resampling
// but it won't result any crash and the rest of the library will remain
// fully functional.
//---------------------------------------
// 2. Default rendering_buffer type. Can be:
//
// Provides faster access for massive pixel operations,
// such as blur, image filtering:
#define AGG_RENDERING_BUFFER row_ptr_cache<int8u>
//
// Provides cheaper creation and destruction (no mem allocs):
// #define AGG_RENDERING_BUFFER row_accessor<int8u>
//
// You can still use both of them simultaneouslyin your applications
// This #define is used only for default rendering_buffer type,
// in short hand typedefs like pixfmt_rgba32.
#endif

View file

@ -0,0 +1,157 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_ADAPTOR_VCGEN_INCLUDED
#define AGG_CONV_ADAPTOR_VCGEN_INCLUDED
#include "agg_basics.h"
namespace agg
{
//------------------------------------------------------------null_markers
struct null_markers
{
void remove_all() {}
void add_vertex(double, double, unsigned) {}
void prepare_src() {}
void rewind(unsigned) {}
unsigned vertex(double*, double*) { return path_cmd_stop; }
};
//------------------------------------------------------conv_adaptor_vcgen
template<class VertexSource,
class Generator,
class Markers=null_markers> class conv_adaptor_vcgen
{
enum status
{
initial,
accumulate,
generate
};
public:
explicit conv_adaptor_vcgen(VertexSource& source) :
m_source(&source),
m_status(initial)
{}
void attach(VertexSource& source) { m_source = &source; }
Generator& generator() { return m_generator; }
const Generator& generator() const { return m_generator; }
Markers& markers() { return m_markers; }
const Markers& markers() const { return m_markers; }
void rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_status = initial;
}
unsigned vertex(double* x, double* y);
private:
// Prohibit copying
conv_adaptor_vcgen(const conv_adaptor_vcgen<VertexSource, Generator, Markers>&);
const conv_adaptor_vcgen<VertexSource, Generator, Markers>&
operator = (const conv_adaptor_vcgen<VertexSource, Generator, Markers>&);
VertexSource* m_source;
Generator m_generator;
Markers m_markers;
status m_status;
unsigned m_last_cmd;
double m_start_x;
double m_start_y;
};
//------------------------------------------------------------------------
template<class VertexSource, class Generator, class Markers>
unsigned conv_adaptor_vcgen<VertexSource, Generator, Markers>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_stop;
bool done = false;
while(!done)
{
switch(m_status)
{
case initial:
m_markers.remove_all();
m_last_cmd = m_source->vertex(&m_start_x, &m_start_y);
m_status = accumulate;
case accumulate:
if(is_stop(m_last_cmd)) return path_cmd_stop;
m_generator.remove_all();
m_generator.add_vertex(m_start_x, m_start_y, path_cmd_move_to);
m_markers.add_vertex(m_start_x, m_start_y, path_cmd_move_to);
for(;;)
{
cmd = m_source->vertex(x, y);
if(is_vertex(cmd))
{
m_last_cmd = cmd;
if(is_move_to(cmd))
{
m_start_x = *x;
m_start_y = *y;
break;
}
m_generator.add_vertex(*x, *y, cmd);
m_markers.add_vertex(*x, *y, path_cmd_line_to);
}
else
{
if(is_stop(cmd))
{
m_last_cmd = path_cmd_stop;
break;
}
if(is_end_poly(cmd))
{
m_generator.add_vertex(*x, *y, cmd);
break;
}
}
}
m_generator.rewind(0);
m_status = generate;
case generate:
cmd = m_generator.vertex(x, y);
if(is_stop(cmd))
{
m_status = accumulate;
break;
}
done = true;
break;
}
}
return cmd;
}
}
#endif

View file

@ -0,0 +1,159 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_ADAPTOR_VPGEN_INCLUDED
#define AGG_CONV_ADAPTOR_VPGEN_INCLUDED
#include "agg_basics.h"
namespace agg
{
//======================================================conv_adaptor_vpgen
template<class VertexSource, class VPGen> class conv_adaptor_vpgen
{
public:
explicit conv_adaptor_vpgen(VertexSource& source) : m_source(&source) {}
void attach(VertexSource& source) { m_source = &source; }
VPGen& vpgen() { return m_vpgen; }
const VPGen& vpgen() const { return m_vpgen; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_adaptor_vpgen(const conv_adaptor_vpgen<VertexSource, VPGen>&);
const conv_adaptor_vpgen<VertexSource, VPGen>&
operator = (const conv_adaptor_vpgen<VertexSource, VPGen>&);
VertexSource* m_source;
VPGen m_vpgen;
double m_start_x;
double m_start_y;
unsigned m_poly_flags;
int m_vertices;
};
//------------------------------------------------------------------------
template<class VertexSource, class VPGen>
void conv_adaptor_vpgen<VertexSource, VPGen>::rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_vpgen.reset();
m_start_x = 0;
m_start_y = 0;
m_poly_flags = 0;
m_vertices = 0;
}
//------------------------------------------------------------------------
template<class VertexSource, class VPGen>
unsigned conv_adaptor_vpgen<VertexSource, VPGen>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_stop;
for(;;)
{
cmd = m_vpgen.vertex(x, y);
if(!is_stop(cmd)) break;
if(m_poly_flags && !m_vpgen.auto_unclose())
{
*x = 0.0;
*y = 0.0;
cmd = m_poly_flags;
m_poly_flags = 0;
break;
}
if(m_vertices < 0)
{
if(m_vertices < -1)
{
m_vertices = 0;
return path_cmd_stop;
}
m_vpgen.move_to(m_start_x, m_start_y);
m_vertices = 1;
continue;
}
double tx, ty;
cmd = m_source->vertex(&tx, &ty);
if(is_vertex(cmd))
{
if(is_move_to(cmd))
{
if(m_vpgen.auto_close() && m_vertices > 2)
{
m_vpgen.line_to(m_start_x, m_start_y);
m_poly_flags = path_cmd_end_poly | path_flags_close;
m_start_x = tx;
m_start_y = ty;
m_vertices = -1;
continue;
}
m_vpgen.move_to(tx, ty);
m_start_x = tx;
m_start_y = ty;
m_vertices = 1;
}
else
{
m_vpgen.line_to(tx, ty);
++m_vertices;
}
}
else
{
if(is_end_poly(cmd))
{
m_poly_flags = cmd;
if(is_closed(cmd) || m_vpgen.auto_close())
{
if(m_vpgen.auto_close()) m_poly_flags |= path_flags_close;
if(m_vertices > 2)
{
m_vpgen.line_to(m_start_x, m_start_y);
}
m_vertices = 0;
}
}
else
{
// path_cmd_stop
if(m_vpgen.auto_close() && m_vertices > 2)
{
m_vpgen.line_to(m_start_x, m_start_y);
m_poly_flags = path_cmd_end_poly | path_flags_close;
m_vertices = -2;
continue;
}
break;
}
}
}
return cmd;
}
}
#endif

48
deps/agg/include/agg_conv_bspline.h vendored Normal file
View file

@ -0,0 +1,48 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_BSPLINE_INCLUDED
#define AGG_CONV_BSPLINE_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_bspline.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//---------------------------------------------------------conv_bspline
template<class VertexSource>
struct conv_bspline : public conv_adaptor_vcgen<VertexSource, vcgen_bspline>
{
typedef conv_adaptor_vcgen<VertexSource, vcgen_bspline> base_type;
conv_bspline(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_bspline>(vs) {}
void interpolation_step(double v) { base_type::generator().interpolation_step(v); }
double interpolation_step() const { return base_type::generator().interpolation_step(); }
private:
conv_bspline(const conv_bspline<VertexSource>&);
const conv_bspline<VertexSource>&
operator = (const conv_bspline<VertexSource>&);
};
}
#endif

View file

@ -0,0 +1,63 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Polygon clipping converter
// There an optimized Liang-Basky algorithm is used.
// The algorithm doesn't optimize the degenerate edges, i.e. it will never
// break a closed polygon into two or more ones, instead, there will be
// degenerate edges coinciding with the respective clipping boundaries.
// This is a sub-optimal solution, because that optimization would require
// extra, rather expensive math while the rasterizer tolerates it quite well,
// without any considerable overhead.
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CLIP_POLYGON_INCLUDED
#define AGG_CONV_CLIP_POLYGON_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vpgen.h"
#include "agg_vpgen_clip_polygon.h"
namespace agg
{
//=======================================================conv_clip_polygon
template<class VertexSource>
struct conv_clip_polygon : public conv_adaptor_vpgen<VertexSource, vpgen_clip_polygon>
{
typedef conv_adaptor_vpgen<VertexSource, vpgen_clip_polygon> base_type;
conv_clip_polygon(VertexSource& vs) :
conv_adaptor_vpgen<VertexSource, vpgen_clip_polygon>(vs) {}
void clip_box(double x1, double y1, double x2, double y2)
{
base_type::vpgen().clip_box(x1, y1, x2, y2);
}
double x1() const { return base_type::vpgen().x1(); }
double y1() const { return base_type::vpgen().y1(); }
double x2() const { return base_type::vpgen().x2(); }
double y2() const { return base_type::vpgen().y2(); }
private:
conv_clip_polygon(const conv_clip_polygon<VertexSource>&);
const conv_clip_polygon<VertexSource>&
operator = (const conv_clip_polygon<VertexSource>&);
};
}
#endif

View file

@ -0,0 +1,63 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// polyline clipping converter
// There an optimized Liang-Basky algorithm is used.
// The algorithm doesn't optimize the degenerate edges, i.e. it will never
// break a closed polyline into two or more ones, instead, there will be
// degenerate edges coinciding with the respective clipping boundaries.
// This is a sub-optimal solution, because that optimization would require
// extra, rather expensive math while the rasterizer tolerates it quite well,
// without any considerable overhead.
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CLIP_polyline_INCLUDED
#define AGG_CONV_CLIP_polyline_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vpgen.h"
#include "agg_vpgen_clip_polyline.h"
namespace agg
{
//=======================================================conv_clip_polyline
template<class VertexSource>
struct conv_clip_polyline : public conv_adaptor_vpgen<VertexSource, vpgen_clip_polyline>
{
typedef conv_adaptor_vpgen<VertexSource, vpgen_clip_polyline> base_type;
conv_clip_polyline(VertexSource& vs) :
conv_adaptor_vpgen<VertexSource, vpgen_clip_polyline>(vs) {}
void clip_box(double x1, double y1, double x2, double y2)
{
base_type::vpgen().clip_box(x1, y1, x2, y2);
}
double x1() const { return base_type::vpgen().x1(); }
double y1() const { return base_type::vpgen().y1(); }
double x2() const { return base_type::vpgen().x2(); }
double y2() const { return base_type::vpgen().y2(); }
private:
conv_clip_polyline(const conv_clip_polyline<VertexSource>&);
const conv_clip_polyline<VertexSource>&
operator = (const conv_clip_polyline<VertexSource>&);
};
}
#endif

View file

@ -0,0 +1,125 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CLOSE_POLYGON_INCLUDED
#define AGG_CONV_CLOSE_POLYGON_INCLUDED
#include "agg_basics.h"
namespace agg
{
//======================================================conv_close_polygon
template<class VertexSource> class conv_close_polygon
{
public:
explicit conv_close_polygon(VertexSource& vs) : m_source(&vs) {}
void attach(VertexSource& source) { m_source = &source; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_close_polygon(const conv_close_polygon<VertexSource>&);
const conv_close_polygon<VertexSource>&
operator = (const conv_close_polygon<VertexSource>&);
VertexSource* m_source;
unsigned m_cmd[2];
double m_x[2];
double m_y[2];
unsigned m_vertex;
bool m_line_to;
};
//------------------------------------------------------------------------
template<class VertexSource>
void conv_close_polygon<VertexSource>::rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_vertex = 2;
m_line_to = false;
}
//------------------------------------------------------------------------
template<class VertexSource>
unsigned conv_close_polygon<VertexSource>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_stop;
for(;;)
{
if(m_vertex < 2)
{
*x = m_x[m_vertex];
*y = m_y[m_vertex];
cmd = m_cmd[m_vertex];
++m_vertex;
break;
}
cmd = m_source->vertex(x, y);
if(is_end_poly(cmd))
{
cmd |= path_flags_close;
break;
}
if(is_stop(cmd))
{
if(m_line_to)
{
m_cmd[0] = path_cmd_end_poly | path_flags_close;
m_cmd[1] = path_cmd_stop;
m_vertex = 0;
m_line_to = false;
continue;
}
break;
}
if(is_move_to(cmd))
{
if(m_line_to)
{
m_x[0] = 0.0;
m_y[0] = 0.0;
m_cmd[0] = path_cmd_end_poly | path_flags_close;
m_x[1] = *x;
m_y[1] = *y;
m_cmd[1] = cmd;
m_vertex = 0;
m_line_to = false;
continue;
}
break;
}
if(is_vertex(cmd))
{
m_line_to = true;
break;
}
}
return cmd;
}
}
#endif

73
deps/agg/include/agg_conv_concat.h vendored Normal file
View file

@ -0,0 +1,73 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CONCAT_INCLUDED
#define AGG_CONV_CONCAT_INCLUDED
#include "agg_basics.h"
namespace agg
{
//=============================================================conv_concat
// Concatenation of two paths. Usually used to combine lines or curves
// with markers such as arrowheads
template<class VS1, class VS2> class conv_concat
{
public:
conv_concat(VS1& source1, VS2& source2) :
m_source1(&source1), m_source2(&source2), m_status(2) {}
void attach1(VS1& source) { m_source1 = &source; }
void attach2(VS2& source) { m_source2 = &source; }
void rewind(unsigned path_id)
{
m_source1->rewind(path_id);
m_source2->rewind(0);
m_status = 0;
}
unsigned vertex(double* x, double* y)
{
unsigned cmd;
if(m_status == 0)
{
cmd = m_source1->vertex(x, y);
if(!is_stop(cmd)) return cmd;
m_status = 1;
}
if(m_status == 1)
{
cmd = m_source2->vertex(x, y);
if(!is_stop(cmd)) return cmd;
m_status = 2;
}
return path_cmd_stop;
}
private:
conv_concat(const conv_concat<VS1, VS2>&);
const conv_concat<VS1, VS2>&
operator = (const conv_concat<VS1, VS2>&);
VS1* m_source1;
VS2* m_source2;
int m_status;
};
}
#endif

65
deps/agg/include/agg_conv_contour.h vendored Normal file
View file

@ -0,0 +1,65 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_stroke
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CONTOUR_INCLUDED
#define AGG_CONV_CONTOUR_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_contour.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//-----------------------------------------------------------conv_contour
template<class VertexSource>
struct conv_contour : public conv_adaptor_vcgen<VertexSource, vcgen_contour>
{
typedef conv_adaptor_vcgen<VertexSource, vcgen_contour> base_type;
conv_contour(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_contour>(vs)
{
}
void line_join(line_join_e lj) { base_type::generator().line_join(lj); }
void inner_join(inner_join_e ij) { base_type::generator().inner_join(ij); }
void width(double w) { base_type::generator().width(w); }
void miter_limit(double ml) { base_type::generator().miter_limit(ml); }
void miter_limit_theta(double t) { base_type::generator().miter_limit_theta(t); }
void inner_miter_limit(double ml) { base_type::generator().inner_miter_limit(ml); }
void approximation_scale(double as) { base_type::generator().approximation_scale(as); }
void auto_detect_orientation(bool v) { base_type::generator().auto_detect_orientation(v); }
line_join_e line_join() const { return base_type::generator().line_join(); }
inner_join_e inner_join() const { return base_type::generator().inner_join(); }
double width() const { return base_type::generator().width(); }
double miter_limit() const { return base_type::generator().miter_limit(); }
double inner_miter_limit() const { return base_type::generator().inner_miter_limit(); }
double approximation_scale() const { return base_type::generator().approximation_scale(); }
bool auto_detect_orientation() const { return base_type::generator().auto_detect_orientation(); }
private:
conv_contour(const conv_contour<VertexSource>&);
const conv_contour<VertexSource>&
operator = (const conv_contour<VertexSource>&);
};
}
#endif

201
deps/agg/include/agg_conv_curve.h vendored Normal file
View file

@ -0,0 +1,201 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// classes conv_curve
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_CURVE_INCLUDED
#define AGG_CONV_CURVE_INCLUDED
#include "agg_basics.h"
#include "agg_curves.h"
namespace agg
{
//---------------------------------------------------------------conv_curve
// Curve converter class. Any path storage can have Bezier curves defined
// by their control points. There're two types of curves supported: curve3
// and curve4. Curve3 is a conic Bezier curve with 2 endpoints and 1 control
// point. Curve4 has 2 control points (4 points in total) and can be used
// to interpolate more complicated curves. Curve4, unlike curve3 can be used
// to approximate arcs, both circular and elliptical. Curves are approximated
// with straight lines and one of the approaches is just to store the whole
// sequence of vertices that approximate our curve. It takes additional
// memory, and at the same time the consecutive vertices can be calculated
// on demand.
//
// Initially, path storages are not suppose to keep all the vertices of the
// curves (although, nothing prevents us from doing so). Instead, path_storage
// keeps only vertices, needed to calculate a curve on demand. Those vertices
// are marked with special commands. So, if the path_storage contains curves
// (which are not real curves yet), and we render this storage directly,
// all we will see is only 2 or 3 straight line segments (for curve3 and
// curve4 respectively). If we need to see real curves drawn we need to
// include this class into the conversion pipeline.
//
// Class conv_curve recognizes commands path_cmd_curve3 and path_cmd_curve4
// and converts these vertices into a move_to/line_to sequence.
//-----------------------------------------------------------------------
template<class VertexSource,
class Curve3=curve3,
class Curve4=curve4> class conv_curve
{
public:
typedef Curve3 curve3_type;
typedef Curve4 curve4_type;
typedef conv_curve<VertexSource, Curve3, Curve4> self_type;
explicit conv_curve(VertexSource& source) :
m_source(&source), m_last_x(0.0), m_last_y(0.0) {}
void attach(VertexSource& source) { m_source = &source; }
void approximation_method(curve_approximation_method_e v)
{
m_curve3.approximation_method(v);
m_curve4.approximation_method(v);
}
curve_approximation_method_e approximation_method() const
{
return m_curve4.approximation_method();
}
void approximation_scale(double s)
{
m_curve3.approximation_scale(s);
m_curve4.approximation_scale(s);
}
double approximation_scale() const
{
return m_curve4.approximation_scale();
}
void angle_tolerance(double v)
{
m_curve3.angle_tolerance(v);
m_curve4.angle_tolerance(v);
}
double angle_tolerance() const
{
return m_curve4.angle_tolerance();
}
void cusp_limit(double v)
{
m_curve3.cusp_limit(v);
m_curve4.cusp_limit(v);
}
double cusp_limit() const
{
return m_curve4.cusp_limit();
}
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_curve(const self_type&);
const self_type& operator = (const self_type&);
VertexSource* m_source;
double m_last_x;
double m_last_y;
curve3_type m_curve3;
curve4_type m_curve4;
};
//------------------------------------------------------------------------
template<class VertexSource, class Curve3, class Curve4>
void conv_curve<VertexSource, Curve3, Curve4>::rewind(unsigned path_id)
{
m_source->rewind(path_id);
m_last_x = 0.0;
m_last_y = 0.0;
m_curve3.reset();
m_curve4.reset();
}
//------------------------------------------------------------------------
template<class VertexSource, class Curve3, class Curve4>
unsigned conv_curve<VertexSource, Curve3, Curve4>::vertex(double* x, double* y)
{
if(!is_stop(m_curve3.vertex(x, y)))
{
m_last_x = *x;
m_last_y = *y;
return path_cmd_line_to;
}
if(!is_stop(m_curve4.vertex(x, y)))
{
m_last_x = *x;
m_last_y = *y;
return path_cmd_line_to;
}
double ct2_x=0;
double ct2_y=0;
double end_x=0;
double end_y=0;
unsigned cmd = m_source->vertex(x, y);
switch(cmd)
{
case path_cmd_curve3:
m_source->vertex(&end_x, &end_y);
m_curve3.init(m_last_x, m_last_y,
*x, *y,
end_x, end_y);
m_curve3.vertex(x, y); // First call returns path_cmd_move_to
m_curve3.vertex(x, y); // This is the first vertex of the curve
cmd = path_cmd_line_to;
break;
case path_cmd_curve4:
m_source->vertex(&ct2_x, &ct2_y);
m_source->vertex(&end_x, &end_y);
m_curve4.init(m_last_x, m_last_y,
*x, *y,
ct2_x, ct2_y,
end_x, end_y);
m_curve4.vertex(x, y); // First call returns path_cmd_move_to
m_curve4.vertex(x, y); // This is the first vertex of the curve
cmd = path_cmd_line_to;
break;
}
m_last_x = *x;
m_last_y = *y;
return cmd;
}
}
#endif

68
deps/agg/include/agg_conv_dash.h vendored Normal file
View file

@ -0,0 +1,68 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_dash
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_DASH_INCLUDED
#define AGG_CONV_DASH_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_dash.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//---------------------------------------------------------------conv_dash
template<class VertexSource, class Markers=null_markers>
struct conv_dash : public conv_adaptor_vcgen<VertexSource, vcgen_dash, Markers>
{
typedef Markers marker_type;
typedef conv_adaptor_vcgen<VertexSource, vcgen_dash, Markers> base_type;
conv_dash(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_dash, Markers>(vs)
{
}
void remove_all_dashes()
{
base_type::generator().remove_all_dashes();
}
void add_dash(double dash_len, double gap_len)
{
base_type::generator().add_dash(dash_len, gap_len);
}
void dash_start(double ds)
{
base_type::generator().dash_start(ds);
}
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_dash(const conv_dash<VertexSource, Markers>&);
const conv_dash<VertexSource, Markers>&
operator = (const conv_dash<VertexSource, Markers>&);
};
}
#endif

432
deps/agg/include/agg_conv_gpc.h vendored Normal file
View file

@ -0,0 +1,432 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// General Polygon Clipper based on the GPC library by Alan Murta
// Union, Intersection, XOR, A-B, B-A
// Contact the author if you intend to use it in commercial applications!
// http://www.cs.man.ac.uk/aig/staff/alan/software/
// Alan Murta (email: gpc@cs.man.ac.uk)
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_GPC_INCLUDED
#define AGG_CONV_GPC_INCLUDED
#include <math.h>
#include "agg_basics.h"
#include "agg_array.h"
extern "C"
{
#include "gpc.h"
}
namespace agg
{
enum gpc_op_e
{
gpc_or,
gpc_and,
gpc_xor,
gpc_a_minus_b,
gpc_b_minus_a
};
//================================================================conv_gpc
template<class VSA, class VSB> class conv_gpc
{
enum status
{
status_move_to,
status_line_to,
status_stop
};
struct contour_header_type
{
int num_vertices;
int hole_flag;
gpc_vertex* vertices;
};
typedef pod_bvector<gpc_vertex, 8> vertex_array_type;
typedef pod_bvector<contour_header_type, 6> contour_header_array_type;
public:
typedef VSA source_a_type;
typedef VSB source_b_type;
typedef conv_gpc<source_a_type, source_b_type> self_type;
~conv_gpc()
{
free_gpc_data();
}
conv_gpc(source_a_type& a, source_b_type& b, gpc_op_e op = gpc_or) :
m_src_a(&a),
m_src_b(&b),
m_status(status_move_to),
m_vertex(-1),
m_contour(-1),
m_operation(op)
{
memset(&m_poly_a, 0, sizeof(m_poly_a));
memset(&m_poly_b, 0, sizeof(m_poly_b));
memset(&m_result, 0, sizeof(m_result));
}
void attach1(VSA& source) { m_src_a = &source; }
void attach2(VSB& source) { m_src_b = &source; }
void operation(gpc_op_e v) { m_operation = v; }
// Vertex Source Interface
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_gpc(const conv_gpc<VSA, VSB>&);
const conv_gpc<VSA, VSB>& operator = (const conv_gpc<VSA, VSB>&);
//--------------------------------------------------------------------
void free_polygon(gpc_polygon& p);
void free_result();
void free_gpc_data();
void start_contour();
void add_vertex(double x, double y);
void end_contour(unsigned orientation);
void make_polygon(gpc_polygon& p);
void start_extracting();
bool next_contour();
bool next_vertex(double* x, double* y);
//--------------------------------------------------------------------
template<class VS> void add(VS& src, gpc_polygon& p)
{
unsigned cmd;
double x, y;
double start_x = 0.0;
double start_y = 0.0;
bool line_to = false;
unsigned orientation = 0;
m_contour_accumulator.remove_all();
while(!is_stop(cmd = src.vertex(&x, &y)))
{
if(is_vertex(cmd))
{
if(is_move_to(cmd))
{
if(line_to)
{
end_contour(orientation);
orientation = 0;
}
start_contour();
start_x = x;
start_y = y;
}
add_vertex(x, y);
line_to = true;
}
else
{
if(is_end_poly(cmd))
{
orientation = get_orientation(cmd);
if(line_to && is_closed(cmd))
{
add_vertex(start_x, start_y);
}
}
}
}
if(line_to)
{
end_contour(orientation);
}
make_polygon(p);
}
private:
//--------------------------------------------------------------------
source_a_type* m_src_a;
source_b_type* m_src_b;
status m_status;
int m_vertex;
int m_contour;
gpc_op_e m_operation;
vertex_array_type m_vertex_accumulator;
contour_header_array_type m_contour_accumulator;
gpc_polygon m_poly_a;
gpc_polygon m_poly_b;
gpc_polygon m_result;
};
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::free_polygon(gpc_polygon& p)
{
int i;
for(i = 0; i < p.num_contours; i++)
{
pod_allocator<gpc_vertex>::deallocate(p.contour[i].vertex,
p.contour[i].num_vertices);
}
pod_allocator<gpc_vertex_list>::deallocate(p.contour, p.num_contours);
memset(&p, 0, sizeof(gpc_polygon));
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::free_result()
{
if(m_result.contour)
{
gpc_free_polygon(&m_result);
}
memset(&m_result, 0, sizeof(m_result));
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::free_gpc_data()
{
free_polygon(m_poly_a);
free_polygon(m_poly_b);
free_result();
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::start_contour()
{
contour_header_type h;
memset(&h, 0, sizeof(h));
m_contour_accumulator.add(h);
m_vertex_accumulator.remove_all();
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
inline void conv_gpc<VSA, VSB>::add_vertex(double x, double y)
{
gpc_vertex v;
v.x = x;
v.y = y;
m_vertex_accumulator.add(v);
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::end_contour(unsigned orientation)
{
if(m_contour_accumulator.size())
{
if(m_vertex_accumulator.size() > 2)
{
contour_header_type& h =
m_contour_accumulator[m_contour_accumulator.size() - 1];
h.num_vertices = m_vertex_accumulator.size();
h.hole_flag = 0;
// TO DO: Clarify the "holes"
//if(is_cw(orientation)) h.hole_flag = 1;
h.vertices = pod_allocator<gpc_vertex>::allocate(h.num_vertices);
gpc_vertex* d = h.vertices;
int i;
for(i = 0; i < h.num_vertices; i++)
{
const gpc_vertex& s = m_vertex_accumulator[i];
d->x = s.x;
d->y = s.y;
++d;
}
}
else
{
m_vertex_accumulator.remove_last();
}
}
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::make_polygon(gpc_polygon& p)
{
free_polygon(p);
if(m_contour_accumulator.size())
{
p.num_contours = m_contour_accumulator.size();
p.hole = 0;
p.contour = pod_allocator<gpc_vertex_list>::allocate(p.num_contours);
int i;
gpc_vertex_list* pv = p.contour;
for(i = 0; i < p.num_contours; i++)
{
const contour_header_type& h = m_contour_accumulator[i];
pv->num_vertices = h.num_vertices;
pv->vertex = h.vertices;
++pv;
}
}
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::start_extracting()
{
m_status = status_move_to;
m_contour = -1;
m_vertex = -1;
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
bool conv_gpc<VSA, VSB>::next_contour()
{
if(++m_contour < m_result.num_contours)
{
m_vertex = -1;
return true;
}
return false;
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
inline bool conv_gpc<VSA, VSB>::next_vertex(double* x, double* y)
{
const gpc_vertex_list& vlist = m_result.contour[m_contour];
if(++m_vertex < vlist.num_vertices)
{
const gpc_vertex& v = vlist.vertex[m_vertex];
*x = v.x;
*y = v.y;
return true;
}
return false;
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
void conv_gpc<VSA, VSB>::rewind(unsigned path_id)
{
free_result();
m_src_a->rewind(path_id);
m_src_b->rewind(path_id);
add(*m_src_a, m_poly_a);
add(*m_src_b, m_poly_b);
switch(m_operation)
{
case gpc_or:
gpc_polygon_clip(GPC_UNION,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_and:
gpc_polygon_clip(GPC_INT,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_xor:
gpc_polygon_clip(GPC_XOR,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_a_minus_b:
gpc_polygon_clip(GPC_DIFF,
&m_poly_a,
&m_poly_b,
&m_result);
break;
case gpc_b_minus_a:
gpc_polygon_clip(GPC_DIFF,
&m_poly_b,
&m_poly_a,
&m_result);
break;
}
start_extracting();
}
//------------------------------------------------------------------------
template<class VSA, class VSB>
unsigned conv_gpc<VSA, VSB>::vertex(double* x, double* y)
{
if(m_status == status_move_to)
{
if(next_contour())
{
if(next_vertex(x, y))
{
m_status = status_line_to;
return path_cmd_move_to;
}
m_status = status_stop;
return path_cmd_end_poly | path_flags_close;
}
}
else
{
if(next_vertex(x, y))
{
return path_cmd_line_to;
}
else
{
m_status = status_move_to;
}
return path_cmd_end_poly | path_flags_close;
}
return path_cmd_stop;
}
}
#endif

148
deps/agg/include/agg_conv_marker.h vendored Normal file
View file

@ -0,0 +1,148 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_marker
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_MARKER_INCLUDED
#define AGG_CONV_MARKER_INCLUDED
#include "agg_basics.h"
#include "agg_trans_affine.h"
namespace agg
{
//-------------------------------------------------------------conv_marker
template<class MarkerLocator, class MarkerShapes>
class conv_marker
{
public:
conv_marker(MarkerLocator& ml, MarkerShapes& ms);
trans_affine& transform() { return m_transform; }
const trans_affine& transform() const { return m_transform; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
conv_marker(const conv_marker<MarkerLocator, MarkerShapes>&);
const conv_marker<MarkerLocator, MarkerShapes>&
operator = (const conv_marker<MarkerLocator, MarkerShapes>&);
enum status_e
{
initial,
markers,
polygon,
stop
};
MarkerLocator* m_marker_locator;
MarkerShapes* m_marker_shapes;
trans_affine m_transform;
trans_affine m_mtx;
status_e m_status;
unsigned m_marker;
unsigned m_num_markers;
};
//------------------------------------------------------------------------
template<class MarkerLocator, class MarkerShapes>
conv_marker<MarkerLocator, MarkerShapes>::conv_marker(MarkerLocator& ml, MarkerShapes& ms) :
m_marker_locator(&ml),
m_marker_shapes(&ms),
m_status(initial),
m_marker(0),
m_num_markers(1)
{
}
//------------------------------------------------------------------------
template<class MarkerLocator, class MarkerShapes>
void conv_marker<MarkerLocator, MarkerShapes>::rewind(unsigned)
{
m_status = initial;
m_marker = 0;
m_num_markers = 1;
}
//------------------------------------------------------------------------
template<class MarkerLocator, class MarkerShapes>
unsigned conv_marker<MarkerLocator, MarkerShapes>::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_move_to;
double x1, y1, x2, y2;
while(!is_stop(cmd))
{
switch(m_status)
{
case initial:
if(m_num_markers == 0)
{
cmd = path_cmd_stop;
break;
}
m_marker_locator->rewind(m_marker);
++m_marker;
m_num_markers = 0;
m_status = markers;
case markers:
if(is_stop(m_marker_locator->vertex(&x1, &y1)))
{
m_status = initial;
break;
}
if(is_stop(m_marker_locator->vertex(&x2, &y2)))
{
m_status = initial;
break;
}
++m_num_markers;
m_mtx = m_transform;
m_mtx *= trans_affine_rotation(atan2(y2 - y1, x2 - x1));
m_mtx *= trans_affine_translation(x1, y1);
m_marker_shapes->rewind(m_marker - 1);
m_status = polygon;
case polygon:
cmd = m_marker_shapes->vertex(x, y);
if(is_stop(cmd))
{
cmd = path_cmd_move_to;
m_status = markers;
break;
}
m_mtx.transform(x, y);
return cmd;
case stop:
cmd = path_cmd_stop;
break;
}
}
return cmd;
}
}
#endif

View file

@ -0,0 +1,51 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_MARKER_ADAPTOR_INCLUDED
#define AGG_CONV_MARKER_ADAPTOR_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vcgen.h"
#include "agg_vcgen_vertex_sequence.h"
namespace agg
{
//=====================================================conv_marker_adaptor
template<class VertexSource, class Markers=null_markers>
struct conv_marker_adaptor :
public conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence, Markers>
{
typedef Markers marker_type;
typedef conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence, Markers> base_type;
conv_marker_adaptor(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence, Markers>(vs)
{
}
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_marker_adaptor(const conv_marker_adaptor<VertexSource, Markers>&);
const conv_marker_adaptor<VertexSource, Markers>&
operator = (const conv_marker_adaptor<VertexSource, Markers>&);
};
}
#endif

48
deps/agg/include/agg_conv_segmentator.h vendored Normal file
View file

@ -0,0 +1,48 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_SEGMENTATOR_INCLUDED
#define AGG_CONV_SEGMENTATOR_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vpgen.h"
#include "agg_vpgen_segmentator.h"
namespace agg
{
//========================================================conv_segmentator
template<class VertexSource>
struct conv_segmentator : public conv_adaptor_vpgen<VertexSource, vpgen_segmentator>
{
typedef conv_adaptor_vpgen<VertexSource, vpgen_segmentator> base_type;
conv_segmentator(VertexSource& vs) :
conv_adaptor_vpgen<VertexSource, vpgen_segmentator>(vs) {}
void approximation_scale(double s) { base_type::vpgen().approximation_scale(s); }
double approximation_scale() const { return base_type::vpgen().approximation_scale(); }
private:
conv_segmentator(const conv_segmentator<VertexSource>&);
const conv_segmentator<VertexSource>&
operator = (const conv_segmentator<VertexSource>&);
};
}
#endif

View file

@ -0,0 +1,50 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_SHORTEN_PATH_INCLUDED
#define AGG_CONV_SHORTEN_PATH_INCLUDED
#include "agg_basics.h"
#include "agg_conv_adaptor_vcgen.h"
#include "agg_vcgen_vertex_sequence.h"
namespace agg
{
//=======================================================conv_shorten_path
template<class VertexSource> class conv_shorten_path :
public conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence>
{
public:
typedef conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence> base_type;
conv_shorten_path(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_vertex_sequence>(vs)
{
}
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_shorten_path(const conv_shorten_path<VertexSource>&);
const conv_shorten_path<VertexSource>&
operator = (const conv_shorten_path<VertexSource>&);
};
}
#endif

View file

@ -0,0 +1,80 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Smooth polygon generator
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_SMOOTH_POLY1_INCLUDED
#define AGG_CONV_SMOOTH_POLY1_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_smooth_poly1.h"
#include "agg_conv_adaptor_vcgen.h"
#include "agg_conv_curve.h"
namespace agg
{
//-------------------------------------------------------conv_smooth_poly1
template<class VertexSource>
struct conv_smooth_poly1 :
public conv_adaptor_vcgen<VertexSource, vcgen_smooth_poly1>
{
typedef conv_adaptor_vcgen<VertexSource, vcgen_smooth_poly1> base_type;
conv_smooth_poly1(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_smooth_poly1>(vs)
{
}
void smooth_value(double v) { base_type::generator().smooth_value(v); }
double smooth_value() const { return base_type::generator().smooth_value(); }
private:
conv_smooth_poly1(const conv_smooth_poly1<VertexSource>&);
const conv_smooth_poly1<VertexSource>&
operator = (const conv_smooth_poly1<VertexSource>&);
};
//-------------------------------------------------conv_smooth_poly1_curve
template<class VertexSource>
struct conv_smooth_poly1_curve :
public conv_curve<conv_smooth_poly1<VertexSource> >
{
conv_smooth_poly1_curve(VertexSource& vs) :
conv_curve<conv_smooth_poly1<VertexSource> >(m_smooth),
m_smooth(vs)
{
}
void smooth_value(double v) { m_smooth.generator().smooth_value(v); }
double smooth_value() const { return m_smooth.generator().smooth_value(); }
private:
conv_smooth_poly1_curve(const conv_smooth_poly1_curve<VertexSource>&);
const conv_smooth_poly1_curve<VertexSource>&
operator = (const conv_smooth_poly1_curve<VertexSource>&);
conv_smooth_poly1<VertexSource> m_smooth;
};
}
#endif

73
deps/agg/include/agg_conv_stroke.h vendored Normal file
View file

@ -0,0 +1,73 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// conv_stroke
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_STROKE_INCLUDED
#define AGG_CONV_STROKE_INCLUDED
#include "agg_basics.h"
#include "agg_vcgen_stroke.h"
#include "agg_conv_adaptor_vcgen.h"
namespace agg
{
//-------------------------------------------------------------conv_stroke
template<class VertexSource, class Markers=null_markers>
struct conv_stroke :
public conv_adaptor_vcgen<VertexSource, vcgen_stroke, Markers>
{
typedef Markers marker_type;
typedef conv_adaptor_vcgen<VertexSource, vcgen_stroke, Markers> base_type;
conv_stroke(VertexSource& vs) :
conv_adaptor_vcgen<VertexSource, vcgen_stroke, Markers>(vs)
{
}
void line_cap(line_cap_e lc) { base_type::generator().line_cap(lc); }
void line_join(line_join_e lj) { base_type::generator().line_join(lj); }
void inner_join(inner_join_e ij) { base_type::generator().inner_join(ij); }
line_cap_e line_cap() const { return base_type::generator().line_cap(); }
line_join_e line_join() const { return base_type::generator().line_join(); }
inner_join_e inner_join() const { return base_type::generator().inner_join(); }
void width(double w) { base_type::generator().width(w); }
void miter_limit(double ml) { base_type::generator().miter_limit(ml); }
void miter_limit_theta(double t) { base_type::generator().miter_limit_theta(t); }
void inner_miter_limit(double ml) { base_type::generator().inner_miter_limit(ml); }
void approximation_scale(double as) { base_type::generator().approximation_scale(as); }
double width() const { return base_type::generator().width(); }
double miter_limit() const { return base_type::generator().miter_limit(); }
double inner_miter_limit() const { return base_type::generator().inner_miter_limit(); }
double approximation_scale() const { return base_type::generator().approximation_scale(); }
void shorten(double s) { base_type::generator().shorten(s); }
double shorten() const { return base_type::generator().shorten(); }
private:
conv_stroke(const conv_stroke<VertexSource, Markers>&);
const conv_stroke<VertexSource, Markers>&
operator = (const conv_stroke<VertexSource, Markers>&);
};
}
#endif

68
deps/agg/include/agg_conv_transform.h vendored Normal file
View file

@ -0,0 +1,68 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class conv_transform
//
//----------------------------------------------------------------------------
#ifndef AGG_CONV_TRANSFORM_INCLUDED
#define AGG_CONV_TRANSFORM_INCLUDED
#include "agg_basics.h"
#include "agg_trans_affine.h"
namespace agg
{
//----------------------------------------------------------conv_transform
template<class VertexSource, class Transformer=trans_affine> class conv_transform
{
public:
conv_transform(VertexSource& source, const Transformer& tr) :
m_source(&source), m_trans(&tr) {}
void attach(VertexSource& source) { m_source = &source; }
void rewind(unsigned path_id)
{
m_source->rewind(path_id);
}
unsigned vertex(double* x, double* y)
{
unsigned cmd = m_source->vertex(x, y);
if(is_vertex(cmd))
{
m_trans->transform(x, y);
}
return cmd;
}
void transformer(const Transformer& tr)
{
m_trans = &tr;
}
private:
conv_transform(const conv_transform<VertexSource>&);
const conv_transform<VertexSource>&
operator = (const conv_transform<VertexSource>&);
VertexSource* m_source;
const Transformer* m_trans;
};
}
#endif

View file

@ -0,0 +1,52 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CONV_UNCLOSE_POLYGON_INCLUDED
#define AGG_CONV_UNCLOSE_POLYGON_INCLUDED
#include "agg_basics.h"
namespace agg
{
//====================================================conv_unclose_polygon
template<class VertexSource> class conv_unclose_polygon
{
public:
explicit conv_unclose_polygon(VertexSource& vs) : m_source(&vs) {}
void attach(VertexSource& source) { m_source = &source; }
void rewind(unsigned path_id)
{
m_source->rewind(path_id);
}
unsigned vertex(double* x, double* y)
{
unsigned cmd = m_source->vertex(x, y);
if(is_end_poly(cmd)) cmd &= ~path_flags_close;
return cmd;
}
private:
conv_unclose_polygon(const conv_unclose_polygon<VertexSource>&);
const conv_unclose_polygon<VertexSource>&
operator = (const conv_unclose_polygon<VertexSource>&);
VertexSource* m_source;
};
}
#endif

693
deps/agg/include/agg_curves.h vendored Normal file
View file

@ -0,0 +1,693 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
// Copyright (C) 2005 Tony Juricic (tonygeek@yahoo.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_CURVES_INCLUDED
#define AGG_CURVES_INCLUDED
#include "agg_array.h"
namespace agg
{
// See Implementation agg_curves.cpp
//--------------------------------------------curve_approximation_method_e
enum curve_approximation_method_e
{
curve_inc,
curve_div
};
//--------------------------------------------------------------curve3_inc
class curve3_inc
{
public:
curve3_inc() :
m_num_steps(0), m_step(0), m_scale(1.0) { }
curve3_inc(double x1, double y1,
double x2, double y2,
double x3, double y3) :
m_num_steps(0), m_step(0), m_scale(1.0)
{
init(x1, y1, x2, y2, x3, y3);
}
void reset() { m_num_steps = 0; m_step = -1; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3);
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const { return curve_inc; }
void approximation_scale(double s);
double approximation_scale() const;
void angle_tolerance(double) {}
double angle_tolerance() const { return 0.0; }
void cusp_limit(double) {}
double cusp_limit() const { return 0.0; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
int m_num_steps;
int m_step;
double m_scale;
double m_start_x;
double m_start_y;
double m_end_x;
double m_end_y;
double m_fx;
double m_fy;
double m_dfx;
double m_dfy;
double m_ddfx;
double m_ddfy;
double m_saved_fx;
double m_saved_fy;
double m_saved_dfx;
double m_saved_dfy;
};
//-------------------------------------------------------------curve3_div
class curve3_div
{
public:
curve3_div() :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_count(0)
{}
curve3_div(double x1, double y1,
double x2, double y2,
double x3, double y3) :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_count(0)
{
init(x1, y1, x2, y2, x3, y3);
}
void reset() { m_points.remove_all(); m_count = 0; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3);
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const { return curve_div; }
void approximation_scale(double s) { m_approximation_scale = s; }
double approximation_scale() const { return m_approximation_scale; }
void angle_tolerance(double a) { m_angle_tolerance = a; }
double angle_tolerance() const { return m_angle_tolerance; }
void cusp_limit(double) {}
double cusp_limit() const { return 0.0; }
void rewind(unsigned)
{
m_count = 0;
}
unsigned vertex(double* x, double* y)
{
if(m_count >= m_points.size()) return path_cmd_stop;
const point_d& p = m_points[m_count++];
*x = p.x;
*y = p.y;
return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to;
}
private:
void bezier(double x1, double y1,
double x2, double y2,
double x3, double y3);
void recursive_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
unsigned level);
double m_approximation_scale;
double m_distance_tolerance_square;
double m_angle_tolerance;
unsigned m_count;
pod_bvector<point_d> m_points;
};
//-------------------------------------------------------------curve4_points
struct curve4_points
{
double cp[8];
curve4_points() {}
curve4_points(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2;
cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4;
}
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2;
cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4;
}
double operator [] (unsigned i) const { return cp[i]; }
double& operator [] (unsigned i) { return cp[i]; }
};
//-------------------------------------------------------------curve4_inc
class curve4_inc
{
public:
curve4_inc() :
m_num_steps(0), m_step(0), m_scale(1.0) { }
curve4_inc(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4) :
m_num_steps(0), m_step(0), m_scale(1.0)
{
init(x1, y1, x2, y2, x3, y3, x4, y4);
}
curve4_inc(const curve4_points& cp) :
m_num_steps(0), m_step(0), m_scale(1.0)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void reset() { m_num_steps = 0; m_step = -1; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4);
void init(const curve4_points& cp)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const { return curve_inc; }
void approximation_scale(double s);
double approximation_scale() const;
void angle_tolerance(double) {}
double angle_tolerance() const { return 0.0; }
void cusp_limit(double) {}
double cusp_limit() const { return 0.0; }
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
int m_num_steps;
int m_step;
double m_scale;
double m_start_x;
double m_start_y;
double m_end_x;
double m_end_y;
double m_fx;
double m_fy;
double m_dfx;
double m_dfy;
double m_ddfx;
double m_ddfy;
double m_dddfx;
double m_dddfy;
double m_saved_fx;
double m_saved_fy;
double m_saved_dfx;
double m_saved_dfy;
double m_saved_ddfx;
double m_saved_ddfy;
};
//-------------------------------------------------------catrom_to_bezier
inline curve4_points catrom_to_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
// Trans. matrix Catmull-Rom to Bezier
//
// 0 1 0 0
// -1/6 1 1/6 0
// 0 1/6 1 -1/6
// 0 0 1 0
//
return curve4_points(
x2,
y2,
(-x1 + 6*x2 + x3) / 6,
(-y1 + 6*y2 + y3) / 6,
( x2 + 6*x3 - x4) / 6,
( y2 + 6*y3 - y4) / 6,
x3,
y3);
}
//-----------------------------------------------------------------------
inline curve4_points
catrom_to_bezier(const curve4_points& cp)
{
return catrom_to_bezier(cp[0], cp[1], cp[2], cp[3],
cp[4], cp[5], cp[6], cp[7]);
}
//-----------------------------------------------------ubspline_to_bezier
inline curve4_points ubspline_to_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
// Trans. matrix Uniform BSpline to Bezier
//
// 1/6 4/6 1/6 0
// 0 4/6 2/6 0
// 0 2/6 4/6 0
// 0 1/6 4/6 1/6
//
return curve4_points(
(x1 + 4*x2 + x3) / 6,
(y1 + 4*y2 + y3) / 6,
(4*x2 + 2*x3) / 6,
(4*y2 + 2*y3) / 6,
(2*x2 + 4*x3) / 6,
(2*y2 + 4*y3) / 6,
(x2 + 4*x3 + x4) / 6,
(y2 + 4*y3 + y4) / 6);
}
//-----------------------------------------------------------------------
inline curve4_points
ubspline_to_bezier(const curve4_points& cp)
{
return ubspline_to_bezier(cp[0], cp[1], cp[2], cp[3],
cp[4], cp[5], cp[6], cp[7]);
}
//------------------------------------------------------hermite_to_bezier
inline curve4_points hermite_to_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
// Trans. matrix Hermite to Bezier
//
// 1 0 0 0
// 1 0 1/3 0
// 0 1 0 -1/3
// 0 1 0 0
//
return curve4_points(
x1,
y1,
(3*x1 + x3) / 3,
(3*y1 + y3) / 3,
(3*x2 - x4) / 3,
(3*y2 - y4) / 3,
x2,
y2);
}
//-----------------------------------------------------------------------
inline curve4_points
hermite_to_bezier(const curve4_points& cp)
{
return hermite_to_bezier(cp[0], cp[1], cp[2], cp[3],
cp[4], cp[5], cp[6], cp[7]);
}
//-------------------------------------------------------------curve4_div
class curve4_div
{
public:
curve4_div() :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_cusp_limit(0.0),
m_count(0)
{}
curve4_div(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4) :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_cusp_limit(0.0),
m_count(0)
{
init(x1, y1, x2, y2, x3, y3, x4, y4);
}
curve4_div(const curve4_points& cp) :
m_approximation_scale(1.0),
m_angle_tolerance(0.0),
m_count(0)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void reset() { m_points.remove_all(); m_count = 0; }
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4);
void init(const curve4_points& cp)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void approximation_method(curve_approximation_method_e) {}
curve_approximation_method_e approximation_method() const
{
return curve_div;
}
void approximation_scale(double s) { m_approximation_scale = s; }
double approximation_scale() const { return m_approximation_scale; }
void angle_tolerance(double a) { m_angle_tolerance = a; }
double angle_tolerance() const { return m_angle_tolerance; }
void cusp_limit(double v)
{
m_cusp_limit = (v == 0.0) ? 0.0 : pi - v;
}
double cusp_limit() const
{
return (m_cusp_limit == 0.0) ? 0.0 : pi - m_cusp_limit;
}
void rewind(unsigned)
{
m_count = 0;
}
unsigned vertex(double* x, double* y)
{
if(m_count >= m_points.size()) return path_cmd_stop;
const point_d& p = m_points[m_count++];
*x = p.x;
*y = p.y;
return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to;
}
private:
void bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4);
void recursive_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4,
unsigned level);
double m_approximation_scale;
double m_distance_tolerance_square;
double m_angle_tolerance;
double m_cusp_limit;
unsigned m_count;
pod_bvector<point_d> m_points;
};
//-----------------------------------------------------------------curve3
class curve3
{
public:
curve3() : m_approximation_method(curve_div) {}
curve3(double x1, double y1,
double x2, double y2,
double x3, double y3) :
m_approximation_method(curve_div)
{
init(x1, y1, x2, y2, x3, y3);
}
void reset()
{
m_curve_inc.reset();
m_curve_div.reset();
}
void init(double x1, double y1,
double x2, double y2,
double x3, double y3)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.init(x1, y1, x2, y2, x3, y3);
}
else
{
m_curve_div.init(x1, y1, x2, y2, x3, y3);
}
}
void approximation_method(curve_approximation_method_e v)
{
m_approximation_method = v;
}
curve_approximation_method_e approximation_method() const
{
return m_approximation_method;
}
void approximation_scale(double s)
{
m_curve_inc.approximation_scale(s);
m_curve_div.approximation_scale(s);
}
double approximation_scale() const
{
return m_curve_inc.approximation_scale();
}
void angle_tolerance(double a)
{
m_curve_div.angle_tolerance(a);
}
double angle_tolerance() const
{
return m_curve_div.angle_tolerance();
}
void cusp_limit(double v)
{
m_curve_div.cusp_limit(v);
}
double cusp_limit() const
{
return m_curve_div.cusp_limit();
}
void rewind(unsigned path_id)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.rewind(path_id);
}
else
{
m_curve_div.rewind(path_id);
}
}
unsigned vertex(double* x, double* y)
{
if(m_approximation_method == curve_inc)
{
return m_curve_inc.vertex(x, y);
}
return m_curve_div.vertex(x, y);
}
private:
curve3_inc m_curve_inc;
curve3_div m_curve_div;
curve_approximation_method_e m_approximation_method;
};
//-----------------------------------------------------------------curve4
class curve4
{
public:
curve4() : m_approximation_method(curve_div) {}
curve4(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4) :
m_approximation_method(curve_div)
{
init(x1, y1, x2, y2, x3, y3, x4, y4);
}
curve4(const curve4_points& cp) :
m_approximation_method(curve_div)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void reset()
{
m_curve_inc.reset();
m_curve_div.reset();
}
void init(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.init(x1, y1, x2, y2, x3, y3, x4, y4);
}
else
{
m_curve_div.init(x1, y1, x2, y2, x3, y3, x4, y4);
}
}
void init(const curve4_points& cp)
{
init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
}
void approximation_method(curve_approximation_method_e v)
{
m_approximation_method = v;
}
curve_approximation_method_e approximation_method() const
{
return m_approximation_method;
}
void approximation_scale(double s)
{
m_curve_inc.approximation_scale(s);
m_curve_div.approximation_scale(s);
}
double approximation_scale() const { return m_curve_inc.approximation_scale(); }
void angle_tolerance(double v)
{
m_curve_div.angle_tolerance(v);
}
double angle_tolerance() const
{
return m_curve_div.angle_tolerance();
}
void cusp_limit(double v)
{
m_curve_div.cusp_limit(v);
}
double cusp_limit() const
{
return m_curve_div.cusp_limit();
}
void rewind(unsigned path_id)
{
if(m_approximation_method == curve_inc)
{
m_curve_inc.rewind(path_id);
}
else
{
m_curve_div.rewind(path_id);
}
}
unsigned vertex(double* x, double* y)
{
if(m_approximation_method == curve_inc)
{
return m_curve_inc.vertex(x, y);
}
return m_curve_div.vertex(x, y);
}
private:
curve4_inc m_curve_inc;
curve4_div m_curve_div;
curve_approximation_method_e m_approximation_method;
};
}
#endif

290
deps/agg/include/agg_dda_line.h vendored Normal file
View file

@ -0,0 +1,290 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// classes dda_line_interpolator, dda2_line_interpolator
//
//----------------------------------------------------------------------------
#ifndef AGG_DDA_LINE_INCLUDED
#define AGG_DDA_LINE_INCLUDED
#include <stdlib.h>
#include "agg_basics.h"
namespace agg
{
//===================================================dda_line_interpolator
template<int FractionShift, int YShift=0> class dda_line_interpolator
{
public:
//--------------------------------------------------------------------
dda_line_interpolator() {}
//--------------------------------------------------------------------
dda_line_interpolator(int y1, int y2, unsigned count) :
m_y(y1),
m_inc(((y2 - y1) << FractionShift) / int(count)),
m_dy(0)
{
}
//--------------------------------------------------------------------
void operator ++ ()
{
m_dy += m_inc;
}
//--------------------------------------------------------------------
void operator -- ()
{
m_dy -= m_inc;
}
//--------------------------------------------------------------------
void operator += (unsigned n)
{
m_dy += m_inc * n;
}
//--------------------------------------------------------------------
void operator -= (unsigned n)
{
m_dy -= m_inc * n;
}
//--------------------------------------------------------------------
int y() const { return m_y + (m_dy >> (FractionShift-YShift)); }
int dy() const { return m_dy; }
private:
int m_y;
int m_inc;
int m_dy;
};
//=================================================dda2_line_interpolator
class dda2_line_interpolator
{
public:
typedef int save_data_type;
enum save_size_e { save_size = 2 };
//--------------------------------------------------------------------
dda2_line_interpolator() {}
//-------------------------------------------- Forward-adjusted line
dda2_line_interpolator(int y1, int y2, int count) :
m_cnt(count <= 0 ? 1 : count),
m_lft((y2 - y1) / m_cnt),
m_rem((y2 - y1) % m_cnt),
m_mod(m_rem),
m_y(y1)
{
if(m_mod <= 0)
{
m_mod += count;
m_rem += count;
m_lft--;
}
m_mod -= count;
}
//-------------------------------------------- Backward-adjusted line
dda2_line_interpolator(int y1, int y2, int count, int) :
m_cnt(count <= 0 ? 1 : count),
m_lft((y2 - y1) / m_cnt),
m_rem((y2 - y1) % m_cnt),
m_mod(m_rem),
m_y(y1)
{
if(m_mod <= 0)
{
m_mod += count;
m_rem += count;
m_lft--;
}
}
//-------------------------------------------- Backward-adjusted line
dda2_line_interpolator(int y, int count) :
m_cnt(count <= 0 ? 1 : count),
m_lft(y / m_cnt),
m_rem(y % m_cnt),
m_mod(m_rem),
m_y(0)
{
if(m_mod <= 0)
{
m_mod += count;
m_rem += count;
m_lft--;
}
}
//--------------------------------------------------------------------
void save(save_data_type* data) const
{
data[0] = m_mod;
data[1] = m_y;
}
//--------------------------------------------------------------------
void load(const save_data_type* data)
{
m_mod = data[0];
m_y = data[1];
}
//--------------------------------------------------------------------
void operator++()
{
m_mod += m_rem;
m_y += m_lft;
if(m_mod > 0)
{
m_mod -= m_cnt;
m_y++;
}
}
//--------------------------------------------------------------------
void operator--()
{
if(m_mod <= m_rem)
{
m_mod += m_cnt;
m_y--;
}
m_mod -= m_rem;
m_y -= m_lft;
}
//--------------------------------------------------------------------
void adjust_forward()
{
m_mod -= m_cnt;
}
//--------------------------------------------------------------------
void adjust_backward()
{
m_mod += m_cnt;
}
//--------------------------------------------------------------------
int mod() const { return m_mod; }
int rem() const { return m_rem; }
int lft() const { return m_lft; }
//--------------------------------------------------------------------
int y() const { return m_y; }
private:
int m_cnt;
int m_lft;
int m_rem;
int m_mod;
int m_y;
};
//---------------------------------------------line_bresenham_interpolator
class line_bresenham_interpolator
{
public:
enum subpixel_scale_e
{
subpixel_shift = 8,
subpixel_scale = 1 << subpixel_shift,
subpixel_mask = subpixel_scale - 1
};
//--------------------------------------------------------------------
static int line_lr(int v) { return v >> subpixel_shift; }
//--------------------------------------------------------------------
line_bresenham_interpolator(int x1, int y1, int x2, int y2) :
m_x1_lr(line_lr(x1)),
m_y1_lr(line_lr(y1)),
m_x2_lr(line_lr(x2)),
m_y2_lr(line_lr(y2)),
m_ver(abs(m_x2_lr - m_x1_lr) < abs(m_y2_lr - m_y1_lr)),
m_len(m_ver ? abs(m_y2_lr - m_y1_lr) :
abs(m_x2_lr - m_x1_lr)),
m_inc(m_ver ? ((y2 > y1) ? 1 : -1) : ((x2 > x1) ? 1 : -1)),
m_interpolator(m_ver ? x1 : y1,
m_ver ? x2 : y2,
m_len)
{
}
//--------------------------------------------------------------------
bool is_ver() const { return m_ver; }
unsigned len() const { return m_len; }
int inc() const { return m_inc; }
//--------------------------------------------------------------------
void hstep()
{
++m_interpolator;
m_x1_lr += m_inc;
}
//--------------------------------------------------------------------
void vstep()
{
++m_interpolator;
m_y1_lr += m_inc;
}
//--------------------------------------------------------------------
int x1() const { return m_x1_lr; }
int y1() const { return m_y1_lr; }
int x2() const { return line_lr(m_interpolator.y()); }
int y2() const { return line_lr(m_interpolator.y()); }
int x2_hr() const { return m_interpolator.y(); }
int y2_hr() const { return m_interpolator.y(); }
private:
int m_x1_lr;
int m_y1_lr;
int m_x2_lr;
int m_y2_lr;
bool m_ver;
unsigned m_len;
int m_inc;
dda2_line_interpolator m_interpolator;
};
}
#endif

123
deps/agg/include/agg_ellipse.h vendored Normal file
View file

@ -0,0 +1,123 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class ellipse
//
//----------------------------------------------------------------------------
#ifndef AGG_ELLIPSE_INCLUDED
#define AGG_ELLIPSE_INCLUDED
#include "agg_basics.h"
#include <math.h>
namespace agg
{
//----------------------------------------------------------------ellipse
class ellipse
{
public:
ellipse() :
m_x(0.0), m_y(0.0), m_rx(1.0), m_ry(1.0), m_scale(1.0),
m_num(4), m_step(0), m_cw(false) {}
ellipse(double x, double y, double rx, double ry,
unsigned num_steps=0, bool cw=false) :
m_x(x), m_y(y), m_rx(rx), m_ry(ry), m_scale(1.0),
m_num(num_steps), m_step(0), m_cw(cw)
{
if(m_num == 0) calc_num_steps();
}
void init(double x, double y, double rx, double ry,
unsigned num_steps=0, bool cw=false);
void approximation_scale(double scale);
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
void calc_num_steps();
double m_x;
double m_y;
double m_rx;
double m_ry;
double m_scale;
unsigned m_num;
unsigned m_step;
bool m_cw;
};
//------------------------------------------------------------------------
inline void ellipse::init(double x, double y, double rx, double ry,
unsigned num_steps, bool cw)
{
m_x = x;
m_y = y;
m_rx = rx;
m_ry = ry;
m_num = num_steps;
m_step = 0;
m_cw = cw;
if(m_num == 0) calc_num_steps();
}
//------------------------------------------------------------------------
inline void ellipse::approximation_scale(double scale)
{
m_scale = scale;
calc_num_steps();
}
//------------------------------------------------------------------------
inline void ellipse::calc_num_steps()
{
double ra = (fabs(m_rx) + fabs(m_ry)) / 2;
double da = acos(ra / (ra + 0.125 / m_scale)) * 2;
m_num = uround(2*pi / da);
}
//------------------------------------------------------------------------
inline void ellipse::rewind(unsigned)
{
m_step = 0;
}
//------------------------------------------------------------------------
inline unsigned ellipse::vertex(double* x, double* y)
{
if(m_step == m_num)
{
++m_step;
return path_cmd_end_poly | path_flags_close | path_flags_ccw;
}
if(m_step > m_num) return path_cmd_stop;
double angle = double(m_step) / double(m_num) * 2.0 * pi;
if(m_cw) angle = 2.0 * pi - angle;
*x = m_x + cos(angle) * m_rx;
*y = m_y + sin(angle) * m_ry;
m_step++;
return ((m_step == 1) ? path_cmd_move_to : path_cmd_line_to);
}
}
#endif

113
deps/agg/include/agg_ellipse_bresenham.h vendored Normal file
View file

@ -0,0 +1,113 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Simple Bresenham interpolator for ellipsees
//
//----------------------------------------------------------------------------
#ifndef AGG_ELLIPSE_BRESENHAM_INCLUDED
#define AGG_ELLIPSE_BRESENHAM_INCLUDED
#include "agg_basics.h"
namespace agg
{
//------------------------------------------ellipse_bresenham_interpolator
class ellipse_bresenham_interpolator
{
public:
ellipse_bresenham_interpolator(int rx, int ry) :
m_rx2(rx * rx),
m_ry2(ry * ry),
m_two_rx2(m_rx2 << 1),
m_two_ry2(m_ry2 << 1),
m_dx(0),
m_dy(0),
m_inc_x(0),
m_inc_y(-ry * m_two_rx2),
m_cur_f(0)
{}
int dx() const { return m_dx; }
int dy() const { return m_dy; }
void operator++ ()
{
int mx, my, mxy, min_m;
int fx, fy, fxy;
mx = fx = m_cur_f + m_inc_x + m_ry2;
if(mx < 0) mx = -mx;
my = fy = m_cur_f + m_inc_y + m_rx2;
if(my < 0) my = -my;
mxy = fxy = m_cur_f + m_inc_x + m_ry2 + m_inc_y + m_rx2;
if(mxy < 0) mxy = -mxy;
min_m = mx;
bool flag = true;
if(min_m > my)
{
min_m = my;
flag = false;
}
m_dx = m_dy = 0;
if(min_m > mxy)
{
m_inc_x += m_two_ry2;
m_inc_y += m_two_rx2;
m_cur_f = fxy;
m_dx = 1;
m_dy = 1;
return;
}
if(flag)
{
m_inc_x += m_two_ry2;
m_cur_f = fx;
m_dx = 1;
return;
}
m_inc_y += m_two_rx2;
m_cur_f = fy;
m_dy = 1;
}
private:
int m_rx2;
int m_ry2;
int m_two_rx2;
int m_two_ry2;
int m_dx;
int m_dy;
int m_inc_x;
int m_inc_y;
int m_cur_f;
};
}
#endif

View file

@ -0,0 +1,59 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_EMBEDDED_RASTER_FONTS_INCLUDED
#define AGG_EMBEDDED_RASTER_FONTS_INCLUDED
#include "agg_basics.h"
namespace agg
{
extern const int8u gse4x6[];
extern const int8u gse4x8[];
extern const int8u gse5x7[];
extern const int8u gse5x9[];
extern const int8u gse6x12[];
extern const int8u gse6x9[];
extern const int8u gse7x11[];
extern const int8u gse7x11_bold[];
extern const int8u gse7x15[];
extern const int8u gse7x15_bold[];
extern const int8u gse8x16[];
extern const int8u gse8x16_bold[];
extern const int8u mcs11_prop[];
extern const int8u mcs11_prop_condensed[];
extern const int8u mcs12_prop[];
extern const int8u mcs13_prop[];
extern const int8u mcs5x10_mono[];
extern const int8u mcs5x11_mono[];
extern const int8u mcs6x10_mono[];
extern const int8u mcs6x11_mono[];
extern const int8u mcs7x12_mono_high[];
extern const int8u mcs7x12_mono_low[];
extern const int8u verdana12[];
extern const int8u verdana12_bold[];
extern const int8u verdana13[];
extern const int8u verdana13_bold[];
extern const int8u verdana14[];
extern const int8u verdana14_bold[];
extern const int8u verdana16[];
extern const int8u verdana16_bold[];
extern const int8u verdana17[];
extern const int8u verdana17_bold[];
extern const int8u verdana18[];
extern const int8u verdana18_bold[];
}
#endif

View file

@ -0,0 +1,409 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_FONT_CACHE_MANAGER_INCLUDED
#define AGG_FONT_CACHE_MANAGER_INCLUDED
#include <string.h>
#include "agg_array.h"
namespace agg
{
//---------------------------------------------------------glyph_data_type
enum glyph_data_type
{
glyph_data_invalid = 0,
glyph_data_mono = 1,
glyph_data_gray8 = 2,
glyph_data_outline = 3
};
//-------------------------------------------------------------glyph_cache
struct glyph_cache
{
unsigned glyph_index;
int8u* data;
unsigned data_size;
glyph_data_type data_type;
rect_i bounds;
double advance_x;
double advance_y;
};
//--------------------------------------------------------------font_cache
class font_cache
{
public:
enum block_size_e { block_size = 16384-16 };
//--------------------------------------------------------------------
font_cache() :
m_allocator(block_size),
m_font_signature(0)
{}
//--------------------------------------------------------------------
void signature(const char* font_signature)
{
m_font_signature = (char*)m_allocator.allocate(strlen(font_signature) + 1);
strcpy(m_font_signature, font_signature);
memset(m_glyphs, 0, sizeof(m_glyphs));
}
//--------------------------------------------------------------------
bool font_is(const char* font_signature) const
{
return strcmp(font_signature, m_font_signature) == 0;
}
//--------------------------------------------------------------------
const glyph_cache* find_glyph(unsigned glyph_code) const
{
unsigned msb = (glyph_code >> 8) & 0xFF;
if(m_glyphs[msb])
{
return m_glyphs[msb][glyph_code & 0xFF];
}
return 0;
}
//--------------------------------------------------------------------
glyph_cache* cache_glyph(unsigned glyph_code,
unsigned glyph_index,
unsigned data_size,
glyph_data_type data_type,
const rect_i& bounds,
double advance_x,
double advance_y)
{
unsigned msb = (glyph_code >> 8) & 0xFF;
if(m_glyphs[msb] == 0)
{
m_glyphs[msb] =
(glyph_cache**)m_allocator.allocate(sizeof(glyph_cache*) * 256,
sizeof(glyph_cache*));
memset(m_glyphs[msb], 0, sizeof(glyph_cache*) * 256);
}
unsigned lsb = glyph_code & 0xFF;
if(m_glyphs[msb][lsb]) return 0; // Already exists, do not overwrite
glyph_cache* glyph =
(glyph_cache*)m_allocator.allocate(sizeof(glyph_cache),
sizeof(double));
glyph->glyph_index = glyph_index;
glyph->data = m_allocator.allocate(data_size);
glyph->data_size = data_size;
glyph->data_type = data_type;
glyph->bounds = bounds;
glyph->advance_x = advance_x;
glyph->advance_y = advance_y;
return m_glyphs[msb][lsb] = glyph;
}
private:
block_allocator m_allocator;
glyph_cache** m_glyphs[256];
char* m_font_signature;
};
//---------------------------------------------------------font_cache_pool
class font_cache_pool
{
public:
//--------------------------------------------------------------------
~font_cache_pool()
{
unsigned i;
for(i = 0; i < m_num_fonts; ++i)
{
obj_allocator<font_cache>::deallocate(m_fonts[i]);
}
pod_allocator<font_cache*>::deallocate(m_fonts, m_max_fonts);
}
//--------------------------------------------------------------------
font_cache_pool(unsigned max_fonts=32) :
m_fonts(pod_allocator<font_cache*>::allocate(max_fonts)),
m_max_fonts(max_fonts),
m_num_fonts(0),
m_cur_font(0)
{}
//--------------------------------------------------------------------
void font(const char* font_signature, bool reset_cache = false)
{
int idx = find_font(font_signature);
if(idx >= 0)
{
if(reset_cache)
{
obj_allocator<font_cache>::deallocate(m_fonts[idx]);
m_fonts[idx] = obj_allocator<font_cache>::allocate();
m_fonts[idx]->signature(font_signature);
}
m_cur_font = m_fonts[idx];
}
else
{
if(m_num_fonts >= m_max_fonts)
{
obj_allocator<font_cache>::deallocate(m_fonts[0]);
memcpy(m_fonts,
m_fonts + 1,
(m_max_fonts - 1) * sizeof(font_cache*));
m_num_fonts = m_max_fonts - 1;
}
m_fonts[m_num_fonts] = obj_allocator<font_cache>::allocate();
m_fonts[m_num_fonts]->signature(font_signature);
m_cur_font = m_fonts[m_num_fonts];
++m_num_fonts;
}
}
//--------------------------------------------------------------------
const font_cache* font() const
{
return m_cur_font;
}
//--------------------------------------------------------------------
const glyph_cache* find_glyph(unsigned glyph_code) const
{
if(m_cur_font) return m_cur_font->find_glyph(glyph_code);
return 0;
}
//--------------------------------------------------------------------
glyph_cache* cache_glyph(unsigned glyph_code,
unsigned glyph_index,
unsigned data_size,
glyph_data_type data_type,
const rect_i& bounds,
double advance_x,
double advance_y)
{
if(m_cur_font)
{
return m_cur_font->cache_glyph(glyph_code,
glyph_index,
data_size,
data_type,
bounds,
advance_x,
advance_y);
}
return 0;
}
//--------------------------------------------------------------------
int find_font(const char* font_signature)
{
unsigned i;
for(i = 0; i < m_num_fonts; i++)
{
if(m_fonts[i]->font_is(font_signature)) return int(i);
}
return -1;
}
private:
font_cache** m_fonts;
unsigned m_max_fonts;
unsigned m_num_fonts;
font_cache* m_cur_font;
};
//------------------------------------------------------------------------
enum glyph_rendering
{
glyph_ren_native_mono,
glyph_ren_native_gray8,
glyph_ren_outline,
glyph_ren_agg_mono,
glyph_ren_agg_gray8
};
//------------------------------------------------------font_cache_manager
template<class FontEngine> class font_cache_manager
{
public:
typedef FontEngine font_engine_type;
typedef font_cache_manager<FontEngine> self_type;
typedef typename font_engine_type::path_adaptor_type path_adaptor_type;
typedef typename font_engine_type::gray8_adaptor_type gray8_adaptor_type;
typedef typename gray8_adaptor_type::embedded_scanline gray8_scanline_type;
typedef typename font_engine_type::mono_adaptor_type mono_adaptor_type;
typedef typename mono_adaptor_type::embedded_scanline mono_scanline_type;
//--------------------------------------------------------------------
font_cache_manager(font_engine_type& engine, unsigned max_fonts=32) :
m_fonts(max_fonts),
m_engine(engine),
m_change_stamp(-1),
m_prev_glyph(0),
m_last_glyph(0)
{}
//--------------------------------------------------------------------
void reset_last_glyph()
{
m_prev_glyph = m_last_glyph = 0;
}
//--------------------------------------------------------------------
const glyph_cache* glyph(unsigned glyph_code)
{
synchronize();
const glyph_cache* gl = m_fonts.find_glyph(glyph_code);
if(gl)
{
m_prev_glyph = m_last_glyph;
return m_last_glyph = gl;
}
else
{
if(m_engine.prepare_glyph(glyph_code))
{
m_prev_glyph = m_last_glyph;
m_last_glyph = m_fonts.cache_glyph(glyph_code,
m_engine.glyph_index(),
m_engine.data_size(),
m_engine.data_type(),
m_engine.bounds(),
m_engine.advance_x(),
m_engine.advance_y());
m_engine.write_glyph_to(m_last_glyph->data);
return m_last_glyph;
}
}
return 0;
}
//--------------------------------------------------------------------
void init_embedded_adaptors(const glyph_cache* gl,
double x, double y,
double scale=1.0)
{
if(gl)
{
switch(gl->data_type)
{
default: return;
case glyph_data_mono:
m_mono_adaptor.init(gl->data, gl->data_size, x, y);
break;
case glyph_data_gray8:
m_gray8_adaptor.init(gl->data, gl->data_size, x, y);
break;
case glyph_data_outline:
m_path_adaptor.init(gl->data, gl->data_size, x, y, scale);
break;
}
}
}
//--------------------------------------------------------------------
path_adaptor_type& path_adaptor() { return m_path_adaptor; }
gray8_adaptor_type& gray8_adaptor() { return m_gray8_adaptor; }
gray8_scanline_type& gray8_scanline() { return m_gray8_scanline; }
mono_adaptor_type& mono_adaptor() { return m_mono_adaptor; }
mono_scanline_type& mono_scanline() { return m_mono_scanline; }
//--------------------------------------------------------------------
const glyph_cache* perv_glyph() const { return m_prev_glyph; }
const glyph_cache* last_glyph() const { return m_last_glyph; }
//--------------------------------------------------------------------
bool add_kerning(double* x, double* y)
{
if(m_prev_glyph && m_last_glyph)
{
return m_engine.add_kerning(m_prev_glyph->glyph_index,
m_last_glyph->glyph_index,
x, y);
}
return false;
}
//--------------------------------------------------------------------
void precache(unsigned from, unsigned to)
{
for(; from <= to; ++from) glyph(from);
}
//--------------------------------------------------------------------
void reset_cache()
{
m_fonts.font(m_engine.font_signature(), true);
m_change_stamp = m_engine.change_stamp();
m_prev_glyph = m_last_glyph = 0;
}
private:
//--------------------------------------------------------------------
font_cache_manager(const self_type&);
const self_type& operator = (const self_type&);
//--------------------------------------------------------------------
void synchronize()
{
if(m_change_stamp != m_engine.change_stamp())
{
m_fonts.font(m_engine.font_signature());
m_change_stamp = m_engine.change_stamp();
m_prev_glyph = m_last_glyph = 0;
}
}
font_cache_pool m_fonts;
font_engine_type& m_engine;
int m_change_stamp;
double m_dx;
double m_dy;
const glyph_cache* m_prev_glyph;
const glyph_cache* m_last_glyph;
path_adaptor_type m_path_adaptor;
gray8_adaptor_type m_gray8_adaptor;
gray8_scanline_type m_gray8_scanline;
mono_adaptor_type m_mono_adaptor;
mono_scanline_type m_mono_scanline;
};
}
#endif

123
deps/agg/include/agg_gamma_functions.h vendored Normal file
View file

@ -0,0 +1,123 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GAMMA_FUNCTIONS_INCLUDED
#define AGG_GAMMA_FUNCTIONS_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//===============================================================gamma_none
struct gamma_none
{
double operator()(double x) const { return x; }
};
//==============================================================gamma_power
class gamma_power
{
public:
gamma_power() : m_gamma(1.0) {}
gamma_power(double g) : m_gamma(g) {}
void gamma(double g) { m_gamma = g; }
double gamma() const { return m_gamma; }
double operator() (double x) const
{
return pow(x, m_gamma);
}
private:
double m_gamma;
};
//==========================================================gamma_threshold
class gamma_threshold
{
public:
gamma_threshold() : m_threshold(0.5) {}
gamma_threshold(double t) : m_threshold(t) {}
void threshold(double t) { m_threshold = t; }
double threshold() const { return m_threshold; }
double operator() (double x) const
{
return (x < m_threshold) ? 0.0 : 1.0;
}
private:
double m_threshold;
};
//============================================================gamma_linear
class gamma_linear
{
public:
gamma_linear() : m_start(0.0), m_end(1.0) {}
gamma_linear(double s, double e) : m_start(s), m_end(e) {}
void set(double s, double e) { m_start = s; m_end = e; }
void start(double s) { m_start = s; }
void end(double e) { m_end = e; }
double start() const { return m_start; }
double end() const { return m_end; }
double operator() (double x) const
{
if(x < m_start) return 0.0;
if(x > m_end) return 1.0;
return (x - m_start) / (m_end - m_start);
}
private:
double m_start;
double m_end;
};
//==========================================================gamma_multiply
class gamma_multiply
{
public:
gamma_multiply() : m_mul(1.0) {}
gamma_multiply(double v) : m_mul(v) {}
void value(double v) { m_mul = v; }
double value() const { return m_mul; }
double operator() (double x) const
{
double y = x * m_mul;
if(y > 1.0) y = 1.0;
return y;
}
private:
double m_mul;
};
}
#endif

121
deps/agg/include/agg_gamma_lut.h vendored Normal file
View file

@ -0,0 +1,121 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GAMMA_LUT_INCLUDED
#define AGG_GAMMA_LUT_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
template<class LoResT=int8u,
class HiResT=int8u,
unsigned GammaShift=8,
unsigned HiResShift=8> class gamma_lut
{
public:
typedef gamma_lut<LoResT, HiResT, GammaShift, HiResShift> self_type;
enum gamma_scale_e
{
gamma_shift = GammaShift,
gamma_size = 1 << gamma_shift,
gamma_mask = gamma_size - 1
};
enum hi_res_scale_e
{
hi_res_shift = HiResShift,
hi_res_size = 1 << hi_res_shift,
hi_res_mask = hi_res_size - 1
};
~gamma_lut()
{
pod_allocator<LoResT>::deallocate(m_inv_gamma, hi_res_size);
pod_allocator<HiResT>::deallocate(m_dir_gamma, gamma_size);
}
gamma_lut() :
m_gamma(1.0),
m_dir_gamma(pod_allocator<HiResT>::allocate(gamma_size)),
m_inv_gamma(pod_allocator<LoResT>::allocate(hi_res_size))
{
unsigned i;
for(i = 0; i < gamma_size; i++)
{
m_dir_gamma[i] = HiResT(i << (hi_res_shift - gamma_shift));
}
for(i = 0; i < hi_res_size; i++)
{
m_inv_gamma[i] = LoResT(i >> (hi_res_shift - gamma_shift));
}
}
gamma_lut(double g) :
m_gamma(1.0),
m_dir_gamma(pod_allocator<HiResT>::allocate(gamma_size)),
m_inv_gamma(pod_allocator<LoResT>::allocate(hi_res_size))
{
gamma(g);
}
void gamma(double g)
{
m_gamma = g;
unsigned i;
for(i = 0; i < gamma_size; i++)
{
m_dir_gamma[i] = (HiResT)
uround(pow(i / double(gamma_mask), m_gamma) * double(hi_res_mask));
}
double inv_g = 1.0 / g;
for(i = 0; i < hi_res_size; i++)
{
m_inv_gamma[i] = (LoResT)
uround(pow(i / double(hi_res_mask), inv_g) * double(gamma_mask));
}
}
double gamma() const
{
return m_gamma;
}
HiResT dir(LoResT v) const
{
return m_dir_gamma[unsigned(v)];
}
LoResT inv(HiResT v) const
{
return m_inv_gamma[unsigned(v)];
}
private:
gamma_lut(const self_type&);
const self_type& operator = (const self_type&);
double m_gamma;
HiResT* m_dir_gamma;
LoResT* m_inv_gamma;
};
}
#endif

155
deps/agg/include/agg_glyph_raster_bin.h vendored Normal file
View file

@ -0,0 +1,155 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GLYPH_RASTER_BIN_INCLUDED
#define AGG_GLYPH_RASTER_BIN_INCLUDED
#include <string.h>
#include "agg_basics.h"
namespace agg
{
//========================================================glyph_raster_bin
template<class ColorT> class glyph_raster_bin
{
public:
typedef ColorT color_type;
//--------------------------------------------------------------------
struct glyph_rect
{
int x1,y1,x2,y2;
double dx, dy;
};
//--------------------------------------------------------------------
glyph_raster_bin(const int8u* font) :
m_font(font),
m_big_endian(false)
{
int t = 1;
if(*(char*)&t == 0) m_big_endian = true;
memset(m_span, 0, sizeof(m_span));
}
//--------------------------------------------------------------------
const int8u* font() const { return m_font; }
void font(const int8u* f) { m_font = f; }
//--------------------------------------------------------------------
double height() const { return m_font[0]; }
double base_line() const { return m_font[1]; }
//--------------------------------------------------------------------
template<class CharT>
double width(const CharT* str) const
{
unsigned start_char = m_font[2];
unsigned num_chars = m_font[3];
unsigned w = 0;
while(*str)
{
unsigned glyph = *str;
const int8u* bits = m_font + 4 + num_chars * 2 +
value(m_font + 4 + (glyph - start_char) * 2);
w += *bits;
++str;
}
return w;
}
//--------------------------------------------------------------------
void prepare(glyph_rect* r, double x, double y, unsigned glyph, bool flip)
{
unsigned start_char = m_font[2];
unsigned num_chars = m_font[3];
m_bits = m_font + 4 + num_chars * 2 +
value(m_font + 4 + (glyph - start_char) * 2);
m_glyph_width = *m_bits++;
m_glyph_byte_width = (m_glyph_width + 7) >> 3;
r->x1 = int(x);
r->x2 = r->x1 + m_glyph_width - 1;
if(flip)
{
r->y1 = int(y) - m_font[0] + m_font[1];
r->y2 = r->y1 + m_font[0] - 1;
}
else
{
r->y1 = int(y) - m_font[1] + 1;
r->y2 = r->y1 + m_font[0] - 1;
}
r->dx = m_glyph_width;
r->dy = 0;
}
//--------------------------------------------------------------------
const cover_type* span(unsigned i)
{
i = m_font[0] - i - 1;
const int8u* bits = m_bits + i * m_glyph_byte_width;
unsigned j;
unsigned val = *bits;
unsigned nb = 0;
for(j = 0; j < m_glyph_width; ++j)
{
m_span[j] = (cover_type)((val & 0x80) ? cover_full : cover_none);
val <<= 1;
if(++nb >= 8)
{
val = *++bits;
nb = 0;
}
}
return m_span;
}
private:
//--------------------------------------------------------------------
int16u value(const int8u* p) const
{
int16u v;
if(m_big_endian)
{
*(int8u*)&v = p[1];
*((int8u*)&v + 1) = p[0];
}
else
{
*(int8u*)&v = p[0];
*((int8u*)&v + 1) = p[1];
}
return v;
}
//--------------------------------------------------------------------
const int8u* m_font;
bool m_big_endian;
cover_type m_span[32];
const int8u* m_bits;
unsigned m_glyph_width;
unsigned m_glyph_byte_width;
};
}
#endif

244
deps/agg/include/agg_gradient_lut.h vendored Normal file
View file

@ -0,0 +1,244 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_GRADIENT_LUT_INCLUDED
#define AGG_GRADIENT_LUT_INCLUDED
#include "agg_array.h"
#include "agg_dda_line.h"
#include "agg_color_rgba.h"
#include "agg_color_gray.h"
namespace agg
{
//======================================================color_interpolator
template<class ColorT> struct color_interpolator
{
public:
typedef ColorT color_type;
color_interpolator(const color_type& c1,
const color_type& c2,
unsigned len) :
m_c1(c1),
m_c2(c2),
m_len(len),
m_count(0)
{}
void operator ++ ()
{
++m_count;
}
color_type color() const
{
return m_c1.gradient(m_c2, double(m_count) / m_len);
}
private:
color_type m_c1;
color_type m_c2;
unsigned m_len;
unsigned m_count;
};
//========================================================================
// Fast specialization for rgba8
template<> struct color_interpolator<rgba8>
{
public:
typedef rgba8 color_type;
color_interpolator(const color_type& c1,
const color_type& c2,
unsigned len) :
r(c1.r, c2.r, len),
g(c1.g, c2.g, len),
b(c1.b, c2.b, len),
a(c1.a, c2.a, len)
{}
void operator ++ ()
{
++r; ++g; ++b; ++a;
}
color_type color() const
{
return color_type(r.y(), g.y(), b.y(), a.y());
}
private:
agg::dda_line_interpolator<14> r, g, b, a;
};
//========================================================================
// Fast specialization for gray8
template<> struct color_interpolator<gray8>
{
public:
typedef gray8 color_type;
color_interpolator(const color_type& c1,
const color_type& c2,
unsigned len) :
v(c1.v, c2.v, len),
a(c1.a, c2.a, len)
{}
void operator ++ ()
{
++v; ++a;
}
color_type color() const
{
return color_type(v.y(), a.y());
}
private:
agg::dda_line_interpolator<14> v,a;
};
//============================================================gradient_lut
template<class ColorInterpolator,
unsigned ColorLutSize=256> class gradient_lut
{
public:
typedef ColorInterpolator interpolator_type;
typedef typename interpolator_type::color_type color_type;
enum { color_lut_size = ColorLutSize };
//--------------------------------------------------------------------
gradient_lut() : m_color_lut(color_lut_size) {}
// Build Gradient Lut
// First, call remove_all(), then add_color() at least twice,
// then build_lut(). Argument "offset" in add_color must be
// in range [0...1] and defines a color stop as it is described
// in SVG specification, section Gradients and Patterns.
// The simplest linear gradient is:
// gradient_lut.add_color(0.0, start_color);
// gradient_lut.add_color(1.0, end_color);
//--------------------------------------------------------------------
void remove_all();
void add_color(double offset, const color_type& color);
void build_lut();
// Size-index Interface. This class can be used directly as the
// ColorF in span_gradient. All it needs is two access methods
// size() and operator [].
//--------------------------------------------------------------------
static unsigned size()
{
return color_lut_size;
}
const color_type& operator [] (unsigned i) const
{
return m_color_lut[i];
}
private:
//--------------------------------------------------------------------
struct color_point
{
double offset;
color_type color;
color_point() {}
color_point(double off, const color_type& c) :
offset(off), color(c)
{
if(offset < 0.0) offset = 0.0;
if(offset > 1.0) offset = 1.0;
}
};
typedef agg::pod_bvector<color_point, 4> color_profile_type;
typedef agg::pod_array<color_type> color_lut_type;
static bool offset_less(const color_point& a, const color_point& b)
{
return a.offset < b.offset;
}
static bool offset_equal(const color_point& a, const color_point& b)
{
return a.offset == b.offset;
}
//--------------------------------------------------------------------
color_profile_type m_color_profile;
color_lut_type m_color_lut;
};
//------------------------------------------------------------------------
template<class T, unsigned S>
void gradient_lut<T,S>::remove_all()
{
m_color_profile.remove_all();
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void gradient_lut<T,S>::add_color(double offset, const color_type& color)
{
m_color_profile.add(color_point(offset, color));
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void gradient_lut<T,S>::build_lut()
{
quick_sort(m_color_profile, offset_less);
m_color_profile.cut_at(remove_duplicates(m_color_profile, offset_equal));
if(m_color_profile.size() >= 2)
{
unsigned i;
unsigned start = uround(m_color_profile[0].offset * color_lut_size);
unsigned end = 0;
color_type c = m_color_profile[0].color;
for(i = 0; i < start; i++)
{
m_color_lut[i] = c;
}
for(i = 1; i < m_color_profile.size(); i++)
{
end = uround(m_color_profile[i].offset * color_lut_size);
interpolator_type ci(m_color_profile[i-1].color,
m_color_profile[i ].color,
end - start + 1);
while(start < end)
{
m_color_lut[start] = ci.color();
++ci;
++start;
}
}
c = m_color_profile.last().color;
for(; end < m_color_lut.size(); end++)
{
m_color_lut[end] = c;
}
}
}
}
#endif

153
deps/agg/include/agg_gsv_text.h vendored Normal file
View file

@ -0,0 +1,153 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class gsv_text
//
//----------------------------------------------------------------------------
#ifndef AGG_GSV_TEXT_INCLUDED
#define AGG_GSV_TEXT_INCLUDED
#include "agg_array.h"
#include "agg_conv_stroke.h"
#include "agg_conv_transform.h"
namespace agg
{
//---------------------------------------------------------------gsv_text
//
// See Implementation agg_gsv_text.cpp
//
class gsv_text
{
enum status
{
initial,
next_char,
start_glyph,
glyph
};
public:
gsv_text();
void font(const void* font);
void flip(bool flip_y) { m_flip = flip_y; }
void load_font(const char* file);
void size(double height, double width=0.0);
void space(double space);
void line_space(double line_space);
void start_point(double x, double y);
void text(const char* text);
double text_width();
void rewind(unsigned path_id);
unsigned vertex(double* x, double* y);
private:
// not supposed to be copied
gsv_text(const gsv_text&);
const gsv_text& operator = (const gsv_text&);
int16u value(const int8u* p) const
{
int16u v;
if(m_big_endian)
{
*(int8u*)&v = p[1];
*((int8u*)&v + 1) = p[0];
}
else
{
*(int8u*)&v = p[0];
*((int8u*)&v + 1) = p[1];
}
return v;
}
private:
double m_x;
double m_y;
double m_start_x;
double m_width;
double m_height;
double m_space;
double m_line_space;
char m_chr[2];
char* m_text;
pod_array<char> m_text_buf;
char* m_cur_chr;
const void* m_font;
pod_array<char> m_loaded_font;
status m_status;
bool m_big_endian;
bool m_flip;
int8u* m_indices;
int8* m_glyphs;
int8* m_bglyph;
int8* m_eglyph;
double m_w;
double m_h;
};
//--------------------------------------------------------gsv_text_outline
template<class Transformer = trans_affine> class gsv_text_outline
{
public:
gsv_text_outline(gsv_text& text, const Transformer& trans) :
m_polyline(text),
m_trans(m_polyline, trans)
{
}
void width(double w)
{
m_polyline.width(w);
}
void transformer(const Transformer* trans)
{
m_trans->transformer(trans);
}
void rewind(unsigned path_id)
{
m_trans.rewind(path_id);
m_polyline.line_join(round_join);
m_polyline.line_cap(round_cap);
}
unsigned vertex(double* x, double* y)
{
return m_trans.vertex(x, y);
}
private:
conv_stroke<gsv_text> m_polyline;
conv_transform<conv_stroke<gsv_text>, Transformer> m_trans;
};
}
#endif

481
deps/agg/include/agg_image_accessors.h vendored Normal file
View file

@ -0,0 +1,481 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_IMAGE_ACCESSORS_INCLUDED
#define AGG_IMAGE_ACCESSORS_INCLUDED
#include "agg_basics.h"
namespace agg
{
//-----------------------------------------------------image_accessor_clip
template<class PixFmt> class image_accessor_clip
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_clip() {}
explicit image_accessor_clip(const pixfmt_type& pixf,
const color_type& bk) :
m_pixf(&pixf)
{
pixfmt_type::make_pix(m_bk_buf, bk);
}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
void background_color(const color_type& bk)
{
pixfmt_type::make_pix(m_bk_buf, bk);
}
private:
AGG_INLINE const int8u* pixel() const
{
if(m_y >= 0 && m_y < (int)m_pixf->height() &&
m_x >= 0 && m_x < (int)m_pixf->width())
{
return m_pixf->pix_ptr(m_x, m_y);
}
return m_bk_buf;
}
public:
AGG_INLINE const int8u* span(int x, int y, unsigned len)
{
m_x = m_x0 = x;
m_y = y;
if(y >= 0 && y < (int)m_pixf->height() &&
x >= 0 && x+(int)len <= (int)m_pixf->width())
{
return m_pix_ptr = m_pixf->pix_ptr(x, y);
}
m_pix_ptr = 0;
return pixel();
}
AGG_INLINE const int8u* next_x()
{
if(m_pix_ptr) return m_pix_ptr += pix_width;
++m_x;
return pixel();
}
AGG_INLINE const int8u* next_y()
{
++m_y;
m_x = m_x0;
if(m_pix_ptr &&
m_y >= 0 && m_y < (int)m_pixf->height())
{
return m_pix_ptr = m_pixf->pix_ptr(m_x, m_y);
}
m_pix_ptr = 0;
return pixel();
}
private:
const pixfmt_type* m_pixf;
int8u m_bk_buf[4];
int m_x, m_x0, m_y;
const int8u* m_pix_ptr;
};
//--------------------------------------------------image_accessor_no_clip
template<class PixFmt> class image_accessor_no_clip
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_no_clip() {}
explicit image_accessor_no_clip(const pixfmt_type& pixf) :
m_pixf(&pixf)
{}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
AGG_INLINE const int8u* span(int x, int y, unsigned)
{
m_x = x;
m_y = y;
return m_pix_ptr = m_pixf->pix_ptr(x, y);
}
AGG_INLINE const int8u* next_x()
{
return m_pix_ptr += pix_width;
}
AGG_INLINE const int8u* next_y()
{
++m_y;
return m_pix_ptr = m_pixf->pix_ptr(m_x, m_y);
}
private:
const pixfmt_type* m_pixf;
int m_x, m_y;
const int8u* m_pix_ptr;
};
//----------------------------------------------------image_accessor_clone
template<class PixFmt> class image_accessor_clone
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_clone() {}
explicit image_accessor_clone(const pixfmt_type& pixf) :
m_pixf(&pixf)
{}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
private:
AGG_INLINE const int8u* pixel() const
{
register int x = m_x;
register int y = m_y;
if(x < 0) x = 0;
if(y < 0) y = 0;
if(x >= (int)m_pixf->width()) x = m_pixf->width() - 1;
if(y >= (int)m_pixf->height()) y = m_pixf->height() - 1;
return m_pixf->pix_ptr(x, y);
}
public:
AGG_INLINE const int8u* span(int x, int y, unsigned len)
{
m_x = m_x0 = x;
m_y = y;
if(y >= 0 && y < (int)m_pixf->height() &&
x >= 0 && x+(int)len <= (int)m_pixf->width())
{
return m_pix_ptr = m_pixf->pix_ptr(x, y);
}
m_pix_ptr = 0;
return pixel();
}
AGG_INLINE const int8u* next_x()
{
if(m_pix_ptr) return m_pix_ptr += pix_width;
++m_x;
return pixel();
}
AGG_INLINE const int8u* next_y()
{
++m_y;
m_x = m_x0;
if(m_pix_ptr &&
m_y >= 0 && m_y < (int)m_pixf->height())
{
return m_pix_ptr = m_pixf->pix_ptr(m_x, m_y);
}
m_pix_ptr = 0;
return pixel();
}
private:
const pixfmt_type* m_pixf;
int m_x, m_x0, m_y;
const int8u* m_pix_ptr;
};
//-----------------------------------------------------image_accessor_wrap
template<class PixFmt, class WrapX, class WrapY> class image_accessor_wrap
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::order_type order_type;
typedef typename pixfmt_type::value_type value_type;
enum pix_width_e { pix_width = pixfmt_type::pix_width };
image_accessor_wrap() {}
explicit image_accessor_wrap(const pixfmt_type& pixf) :
m_pixf(&pixf),
m_wrap_x(pixf.width()),
m_wrap_y(pixf.height())
{}
void attach(const pixfmt_type& pixf)
{
m_pixf = &pixf;
}
AGG_INLINE const int8u* span(int x, int y, unsigned)
{
m_x = x;
m_row_ptr = m_pixf->row_ptr(m_wrap_y(y));
return m_row_ptr + m_wrap_x(x) * pix_width;
}
AGG_INLINE const int8u* next_x()
{
int x = ++m_wrap_x;
return m_row_ptr + x * pix_width;
}
AGG_INLINE const int8u* next_y()
{
m_row_ptr = m_pixf->row_ptr(++m_wrap_y);
return m_row_ptr + m_wrap_x(m_x) * pix_width;
}
private:
const pixfmt_type* m_pixf;
const int8u* m_row_ptr;
int m_x;
WrapX m_wrap_x;
WrapY m_wrap_y;
};
//--------------------------------------------------------wrap_mode_repeat
class wrap_mode_repeat
{
public:
wrap_mode_repeat() {}
wrap_mode_repeat(unsigned size) :
m_size(size),
m_add(size * (0x3FFFFFFF / size)),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
return m_value = (unsigned(v) + m_add) % m_size;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size) m_value = 0;
return m_value;
}
private:
unsigned m_size;
unsigned m_add;
unsigned m_value;
};
//---------------------------------------------------wrap_mode_repeat_pow2
class wrap_mode_repeat_pow2
{
public:
wrap_mode_repeat_pow2() {}
wrap_mode_repeat_pow2(unsigned size) : m_value(0)
{
m_mask = 1;
while(m_mask < size) m_mask = (m_mask << 1) | 1;
m_mask >>= 1;
}
AGG_INLINE unsigned operator() (int v)
{
return m_value = unsigned(v) & m_mask;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value > m_mask) m_value = 0;
return m_value;
}
private:
unsigned m_mask;
unsigned m_value;
};
//----------------------------------------------wrap_mode_repeat_auto_pow2
class wrap_mode_repeat_auto_pow2
{
public:
wrap_mode_repeat_auto_pow2() {}
wrap_mode_repeat_auto_pow2(unsigned size) :
m_size(size),
m_add(size * (0x3FFFFFFF / size)),
m_mask((m_size & (m_size-1)) ? 0 : m_size-1),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
if(m_mask) return m_value = unsigned(v) & m_mask;
return m_value = (unsigned(v) + m_add) % m_size;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size) m_value = 0;
return m_value;
}
private:
unsigned m_size;
unsigned m_add;
unsigned m_mask;
unsigned m_value;
};
//-------------------------------------------------------wrap_mode_reflect
class wrap_mode_reflect
{
public:
wrap_mode_reflect() {}
wrap_mode_reflect(unsigned size) :
m_size(size),
m_size2(size * 2),
m_add(m_size2 * (0x3FFFFFFF / m_size2)),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
m_value = (unsigned(v) + m_add) % m_size2;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size2) m_value = 0;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
private:
unsigned m_size;
unsigned m_size2;
unsigned m_add;
unsigned m_value;
};
//--------------------------------------------------wrap_mode_reflect_pow2
class wrap_mode_reflect_pow2
{
public:
wrap_mode_reflect_pow2() {}
wrap_mode_reflect_pow2(unsigned size) : m_value(0)
{
m_mask = 1;
m_size = 1;
while(m_mask < size)
{
m_mask = (m_mask << 1) | 1;
m_size <<= 1;
}
}
AGG_INLINE unsigned operator() (int v)
{
m_value = unsigned(v) & m_mask;
if(m_value >= m_size) return m_mask - m_value;
return m_value;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
m_value &= m_mask;
if(m_value >= m_size) return m_mask - m_value;
return m_value;
}
private:
unsigned m_size;
unsigned m_mask;
unsigned m_value;
};
//---------------------------------------------wrap_mode_reflect_auto_pow2
class wrap_mode_reflect_auto_pow2
{
public:
wrap_mode_reflect_auto_pow2() {}
wrap_mode_reflect_auto_pow2(unsigned size) :
m_size(size),
m_size2(size * 2),
m_add(m_size2 * (0x3FFFFFFF / m_size2)),
m_mask((m_size2 & (m_size2-1)) ? 0 : m_size2-1),
m_value(0)
{}
AGG_INLINE unsigned operator() (int v)
{
m_value = m_mask ? unsigned(v) & m_mask :
(unsigned(v) + m_add) % m_size2;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
AGG_INLINE unsigned operator++ ()
{
++m_value;
if(m_value >= m_size2) m_value = 0;
if(m_value >= m_size) return m_size2 - m_value - 1;
return m_value;
}
private:
unsigned m_size;
unsigned m_size2;
unsigned m_add;
unsigned m_mask;
unsigned m_value;
};
}
#endif

448
deps/agg/include/agg_image_filters.h vendored Normal file
View file

@ -0,0 +1,448 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Image transformation filters,
// Filtering classes (image_filter_lut, image_filter),
// Basic filter shape classes
//----------------------------------------------------------------------------
#ifndef AGG_IMAGE_FILTERS_INCLUDED
#define AGG_IMAGE_FILTERS_INCLUDED
#include "agg_array.h"
#include "agg_math.h"
namespace agg
{
// See Implementation agg_image_filters.cpp
enum image_filter_scale_e
{
image_filter_shift = 14, //----image_filter_shift
image_filter_scale = 1 << image_filter_shift, //----image_filter_scale
image_filter_mask = image_filter_scale - 1 //----image_filter_mask
};
enum image_subpixel_scale_e
{
image_subpixel_shift = 8, //----image_subpixel_shift
image_subpixel_scale = 1 << image_subpixel_shift, //----image_subpixel_scale
image_subpixel_mask = image_subpixel_scale - 1 //----image_subpixel_mask
};
//-----------------------------------------------------image_filter_lut
class image_filter_lut
{
public:
template<class FilterF> void calculate(const FilterF& filter,
bool normalization=true)
{
double r = filter.radius();
realloc_lut(r);
unsigned i;
unsigned pivot = diameter() << (image_subpixel_shift - 1);
for(i = 0; i < pivot; i++)
{
double x = double(i) / double(image_subpixel_scale);
double y = filter.calc_weight(x);
m_weight_array[pivot + i] =
m_weight_array[pivot - i] = (int16)iround(y * image_filter_scale);
}
unsigned end = (diameter() << image_subpixel_shift) - 1;
m_weight_array[0] = m_weight_array[end];
if(normalization)
{
normalize();
}
}
image_filter_lut() : m_radius(0), m_diameter(0), m_start(0) {}
template<class FilterF> image_filter_lut(const FilterF& filter,
bool normalization=true)
{
calculate(filter, normalization);
}
double radius() const { return m_radius; }
unsigned diameter() const { return m_diameter; }
int start() const { return m_start; }
const int16* weight_array() const { return &m_weight_array[0]; }
void normalize();
private:
void realloc_lut(double radius);
image_filter_lut(const image_filter_lut&);
const image_filter_lut& operator = (const image_filter_lut&);
double m_radius;
unsigned m_diameter;
int m_start;
pod_array<int16> m_weight_array;
};
//--------------------------------------------------------image_filter
template<class FilterF> class image_filter : public image_filter_lut
{
public:
image_filter()
{
calculate(m_filter_function);
}
private:
FilterF m_filter_function;
};
//-----------------------------------------------image_filter_bilinear
struct image_filter_bilinear
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return 1.0 - x;
}
};
//-----------------------------------------------image_filter_hanning
struct image_filter_hanning
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return 0.5 + 0.5 * cos(pi * x);
}
};
//-----------------------------------------------image_filter_hamming
struct image_filter_hamming
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return 0.54 + 0.46 * cos(pi * x);
}
};
//-----------------------------------------------image_filter_hermite
struct image_filter_hermite
{
static double radius() { return 1.0; }
static double calc_weight(double x)
{
return (2.0 * x - 3.0) * x * x + 1.0;
}
};
//------------------------------------------------image_filter_quadric
struct image_filter_quadric
{
static double radius() { return 1.5; }
static double calc_weight(double x)
{
double t;
if(x < 0.5) return 0.75 - x * x;
if(x < 1.5) {t = x - 1.5; return 0.5 * t * t;}
return 0.0;
}
};
//------------------------------------------------image_filter_bicubic
class image_filter_bicubic
{
static double pow3(double x)
{
return (x <= 0.0) ? 0.0 : x * x * x;
}
public:
static double radius() { return 2.0; }
static double calc_weight(double x)
{
return
(1.0/6.0) *
(pow3(x + 2) - 4 * pow3(x + 1) + 6 * pow3(x) - 4 * pow3(x - 1));
}
};
//-------------------------------------------------image_filter_kaiser
class image_filter_kaiser
{
double a;
double i0a;
double epsilon;
public:
image_filter_kaiser(double b = 6.33) :
a(b), epsilon(1e-12)
{
i0a = 1.0 / bessel_i0(b);
}
static double radius() { return 1.0; }
double calc_weight(double x) const
{
return bessel_i0(a * sqrt(1. - x * x)) * i0a;
}
private:
double bessel_i0(double x) const
{
int i;
double sum, y, t;
sum = 1.;
y = x * x / 4.;
t = y;
for(i = 2; t > epsilon; i++)
{
sum += t;
t *= (double)y / (i * i);
}
return sum;
}
};
//----------------------------------------------image_filter_catrom
struct image_filter_catrom
{
static double radius() { return 2.0; }
static double calc_weight(double x)
{
if(x < 1.0) return 0.5 * (2.0 + x * x * (-5.0 + x * 3.0));
if(x < 2.0) return 0.5 * (4.0 + x * (-8.0 + x * (5.0 - x)));
return 0.;
}
};
//---------------------------------------------image_filter_mitchell
class image_filter_mitchell
{
double p0, p2, p3;
double q0, q1, q2, q3;
public:
image_filter_mitchell(double b = 1.0/3.0, double c = 1.0/3.0) :
p0((6.0 - 2.0 * b) / 6.0),
p2((-18.0 + 12.0 * b + 6.0 * c) / 6.0),
p3((12.0 - 9.0 * b - 6.0 * c) / 6.0),
q0((8.0 * b + 24.0 * c) / 6.0),
q1((-12.0 * b - 48.0 * c) / 6.0),
q2((6.0 * b + 30.0 * c) / 6.0),
q3((-b - 6.0 * c) / 6.0)
{}
static double radius() { return 2.0; }
double calc_weight(double x) const
{
if(x < 1.0) return p0 + x * x * (p2 + x * p3);
if(x < 2.0) return q0 + x * (q1 + x * (q2 + x * q3));
return 0.0;
}
};
//----------------------------------------------image_filter_spline16
struct image_filter_spline16
{
static double radius() { return 2.0; }
static double calc_weight(double x)
{
if(x < 1.0)
{
return ((x - 9.0/5.0 ) * x - 1.0/5.0 ) * x + 1.0;
}
return ((-1.0/3.0 * (x-1) + 4.0/5.0) * (x-1) - 7.0/15.0 ) * (x-1);
}
};
//---------------------------------------------image_filter_spline36
struct image_filter_spline36
{
static double radius() { return 3.0; }
static double calc_weight(double x)
{
if(x < 1.0)
{
return ((13.0/11.0 * x - 453.0/209.0) * x - 3.0/209.0) * x + 1.0;
}
if(x < 2.0)
{
return ((-6.0/11.0 * (x-1) + 270.0/209.0) * (x-1) - 156.0/ 209.0) * (x-1);
}
return ((1.0/11.0 * (x-2) - 45.0/209.0) * (x-2) + 26.0/209.0) * (x-2);
}
};
//----------------------------------------------image_filter_gaussian
struct image_filter_gaussian
{
static double radius() { return 2.0; }
static double calc_weight(double x)
{
return exp(-2.0 * x * x) * sqrt(2.0 / pi);
}
};
//------------------------------------------------image_filter_bessel
struct image_filter_bessel
{
static double radius() { return 3.2383; }
static double calc_weight(double x)
{
return (x == 0.0) ? pi / 4.0 : besj(pi * x, 1) / (2.0 * x);
}
};
//-------------------------------------------------image_filter_sinc
class image_filter_sinc
{
public:
image_filter_sinc(double r) : m_radius(r < 2.0 ? 2.0 : r) {}
double radius() const { return m_radius; }
double calc_weight(double x) const
{
if(x == 0.0) return 1.0;
x *= pi;
return sin(x) / x;
}
private:
double m_radius;
};
//-----------------------------------------------image_filter_lanczos
class image_filter_lanczos
{
public:
image_filter_lanczos(double r) : m_radius(r < 2.0 ? 2.0 : r) {}
double radius() const { return m_radius; }
double calc_weight(double x) const
{
if(x == 0.0) return 1.0;
if(x > m_radius) return 0.0;
x *= pi;
double xr = x / m_radius;
return (sin(x) / x) * (sin(xr) / xr);
}
private:
double m_radius;
};
//----------------------------------------------image_filter_blackman
class image_filter_blackman
{
public:
image_filter_blackman(double r) : m_radius(r < 2.0 ? 2.0 : r) {}
double radius() const { return m_radius; }
double calc_weight(double x) const
{
if(x == 0.0) return 1.0;
if(x > m_radius) return 0.0;
x *= pi;
double xr = x / m_radius;
return (sin(x) / x) * (0.42 + 0.5*cos(xr) + 0.08*cos(2*xr));
}
private:
double m_radius;
};
//------------------------------------------------image_filter_sinc36
class image_filter_sinc36 : public image_filter_sinc
{ public: image_filter_sinc36() : image_filter_sinc(3.0){} };
//------------------------------------------------image_filter_sinc64
class image_filter_sinc64 : public image_filter_sinc
{ public: image_filter_sinc64() : image_filter_sinc(4.0){} };
//-----------------------------------------------image_filter_sinc100
class image_filter_sinc100 : public image_filter_sinc
{ public: image_filter_sinc100() : image_filter_sinc(5.0){} };
//-----------------------------------------------image_filter_sinc144
class image_filter_sinc144 : public image_filter_sinc
{ public: image_filter_sinc144() : image_filter_sinc(6.0){} };
//-----------------------------------------------image_filter_sinc196
class image_filter_sinc196 : public image_filter_sinc
{ public: image_filter_sinc196() : image_filter_sinc(7.0){} };
//-----------------------------------------------image_filter_sinc256
class image_filter_sinc256 : public image_filter_sinc
{ public: image_filter_sinc256() : image_filter_sinc(8.0){} };
//---------------------------------------------image_filter_lanczos36
class image_filter_lanczos36 : public image_filter_lanczos
{ public: image_filter_lanczos36() : image_filter_lanczos(3.0){} };
//---------------------------------------------image_filter_lanczos64
class image_filter_lanczos64 : public image_filter_lanczos
{ public: image_filter_lanczos64() : image_filter_lanczos(4.0){} };
//--------------------------------------------image_filter_lanczos100
class image_filter_lanczos100 : public image_filter_lanczos
{ public: image_filter_lanczos100() : image_filter_lanczos(5.0){} };
//--------------------------------------------image_filter_lanczos144
class image_filter_lanczos144 : public image_filter_lanczos
{ public: image_filter_lanczos144() : image_filter_lanczos(6.0){} };
//--------------------------------------------image_filter_lanczos196
class image_filter_lanczos196 : public image_filter_lanczos
{ public: image_filter_lanczos196() : image_filter_lanczos(7.0){} };
//--------------------------------------------image_filter_lanczos256
class image_filter_lanczos256 : public image_filter_lanczos
{ public: image_filter_lanczos256() : image_filter_lanczos(8.0){} };
//--------------------------------------------image_filter_blackman36
class image_filter_blackman36 : public image_filter_blackman
{ public: image_filter_blackman36() : image_filter_blackman(3.0){} };
//--------------------------------------------image_filter_blackman64
class image_filter_blackman64 : public image_filter_blackman
{ public: image_filter_blackman64() : image_filter_blackman(4.0){} };
//-------------------------------------------image_filter_blackman100
class image_filter_blackman100 : public image_filter_blackman
{ public: image_filter_blackman100() : image_filter_blackman(5.0){} };
//-------------------------------------------image_filter_blackman144
class image_filter_blackman144 : public image_filter_blackman
{ public: image_filter_blackman144() : image_filter_blackman(6.0){} };
//-------------------------------------------image_filter_blackman196
class image_filter_blackman196 : public image_filter_blackman
{ public: image_filter_blackman196() : image_filter_blackman(7.0){} };
//-------------------------------------------image_filter_blackman256
class image_filter_blackman256 : public image_filter_blackman
{ public: image_filter_blackman256() : image_filter_blackman(8.0){} };
}
#endif

189
deps/agg/include/agg_line_aa_basics.h vendored Normal file
View file

@ -0,0 +1,189 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_LINE_AA_BASICS_INCLUDED
#define AGG_LINE_AA_BASICS_INCLUDED
#include <stdlib.h>
#include "agg_basics.h"
namespace agg
{
// See Implementation agg_line_aa_basics.cpp
//-------------------------------------------------------------------------
enum line_subpixel_scale_e
{
line_subpixel_shift = 8, //----line_subpixel_shift
line_subpixel_scale = 1 << line_subpixel_shift, //----line_subpixel_scale
line_subpixel_mask = line_subpixel_scale - 1, //----line_subpixel_mask
line_max_coord = (1 << 28) - 1, //----line_max_coord
line_max_length = 1 << (line_subpixel_shift + 10) //----line_max_length
};
//-------------------------------------------------------------------------
enum line_mr_subpixel_scale_e
{
line_mr_subpixel_shift = 4, //----line_mr_subpixel_shift
line_mr_subpixel_scale = 1 << line_mr_subpixel_shift, //----line_mr_subpixel_scale
line_mr_subpixel_mask = line_mr_subpixel_scale - 1 //----line_mr_subpixel_mask
};
//------------------------------------------------------------------line_mr
AGG_INLINE int line_mr(int x)
{
return x >> (line_subpixel_shift - line_mr_subpixel_shift);
}
//-------------------------------------------------------------------line_hr
AGG_INLINE int line_hr(int x)
{
return x << (line_subpixel_shift - line_mr_subpixel_shift);
}
//---------------------------------------------------------------line_dbl_hr
AGG_INLINE int line_dbl_hr(int x)
{
return x << line_subpixel_shift;
}
//---------------------------------------------------------------line_coord
struct line_coord
{
AGG_INLINE static int conv(double x)
{
return iround(x * line_subpixel_scale);
}
};
//-----------------------------------------------------------line_coord_sat
struct line_coord_sat
{
AGG_INLINE static int conv(double x)
{
return saturation<line_max_coord>::iround(x * line_subpixel_scale);
}
};
//==========================================================line_parameters
struct line_parameters
{
//---------------------------------------------------------------------
line_parameters() {}
line_parameters(int x1_, int y1_, int x2_, int y2_, int len_) :
x1(x1_), y1(y1_), x2(x2_), y2(y2_),
dx(abs(x2_ - x1_)),
dy(abs(y2_ - y1_)),
sx((x2_ > x1_) ? 1 : -1),
sy((y2_ > y1_) ? 1 : -1),
vertical(dy >= dx),
inc(vertical ? sy : sx),
len(len_),
octant((sy & 4) | (sx & 2) | int(vertical))
{
}
//---------------------------------------------------------------------
unsigned orthogonal_quadrant() const { return s_orthogonal_quadrant[octant]; }
unsigned diagonal_quadrant() const { return s_diagonal_quadrant[octant]; }
//---------------------------------------------------------------------
bool same_orthogonal_quadrant(const line_parameters& lp) const
{
return s_orthogonal_quadrant[octant] == s_orthogonal_quadrant[lp.octant];
}
//---------------------------------------------------------------------
bool same_diagonal_quadrant(const line_parameters& lp) const
{
return s_diagonal_quadrant[octant] == s_diagonal_quadrant[lp.octant];
}
//---------------------------------------------------------------------
void divide(line_parameters& lp1, line_parameters& lp2) const
{
int xmid = (x1 + x2) >> 1;
int ymid = (y1 + y2) >> 1;
int len2 = len >> 1;
lp1 = *this;
lp2 = *this;
lp1.x2 = xmid;
lp1.y2 = ymid;
lp1.len = len2;
lp1.dx = abs(lp1.x2 - lp1.x1);
lp1.dy = abs(lp1.y2 - lp1.y1);
lp2.x1 = xmid;
lp2.y1 = ymid;
lp2.len = len2;
lp2.dx = abs(lp2.x2 - lp2.x1);
lp2.dy = abs(lp2.y2 - lp2.y1);
}
//---------------------------------------------------------------------
int x1, y1, x2, y2, dx, dy, sx, sy;
bool vertical;
int inc;
int len;
int octant;
//---------------------------------------------------------------------
static const int8u s_orthogonal_quadrant[8];
static const int8u s_diagonal_quadrant[8];
};
// See Implementation agg_line_aa_basics.cpp
//----------------------------------------------------------------bisectrix
void bisectrix(const line_parameters& l1,
const line_parameters& l2,
int* x, int* y);
//-------------------------------------------fix_degenerate_bisectrix_start
void inline fix_degenerate_bisectrix_start(const line_parameters& lp,
int* x, int* y)
{
int d = iround((double(*x - lp.x2) * double(lp.y2 - lp.y1) -
double(*y - lp.y2) * double(lp.x2 - lp.x1)) / lp.len);
if(d < line_subpixel_scale/2)
{
*x = lp.x1 + (lp.y2 - lp.y1);
*y = lp.y1 - (lp.x2 - lp.x1);
}
}
//---------------------------------------------fix_degenerate_bisectrix_end
void inline fix_degenerate_bisectrix_end(const line_parameters& lp,
int* x, int* y)
{
int d = iround((double(*x - lp.x2) * double(lp.y2 - lp.y1) -
double(*y - lp.y2) * double(lp.x2 - lp.x1)) / lp.len);
if(d < line_subpixel_scale/2)
{
*x = lp.x2 + (lp.y2 - lp.y1);
*y = lp.y2 - (lp.x2 - lp.x1);
}
}
}
#endif

437
deps/agg/include/agg_math.h vendored Normal file
View file

@ -0,0 +1,437 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
// Bessel function (besj) was adapted for use in AGG library by Andy Wilk
// Contact: castor.vulgaris@gmail.com
//----------------------------------------------------------------------------
#ifndef AGG_MATH_INCLUDED
#define AGG_MATH_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//------------------------------------------------------vertex_dist_epsilon
// Coinciding points maximal distance (Epsilon)
const double vertex_dist_epsilon = 1e-14;
//-----------------------------------------------------intersection_epsilon
// See calc_intersection
const double intersection_epsilon = 1.0e-30;
//------------------------------------------------------------cross_product
AGG_INLINE double cross_product(double x1, double y1,
double x2, double y2,
double x, double y)
{
return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
}
//--------------------------------------------------------point_in_triangle
AGG_INLINE bool point_in_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x, double y)
{
bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0;
bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0;
bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0;
return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
}
//-----------------------------------------------------------calc_distance
AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return sqrt(dx * dx + dy * dy);
}
//--------------------------------------------------------calc_sq_distance
AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return dx * dx + dy * dy;
}
//------------------------------------------------calc_line_point_distance
AGG_INLINE double calc_line_point_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2-x1;
double dy = y2-y1;
double d = sqrt(dx * dx + dy * dy);
if(d < vertex_dist_epsilon)
{
return calc_distance(x1, y1, x, y);
}
return ((x - x2) * dy - (y - y2) * dx) / d;
}
//-------------------------------------------------------calc_line_point_u
AGG_INLINE double calc_segment_point_u(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2 - x1;
double dy = y2 - y1;
if(dx == 0 && dy == 0)
{
return 0;
}
double pdx = x - x1;
double pdy = y - y1;
return (pdx * dx + pdy * dy) / (dx * dx + dy * dy);
}
//---------------------------------------------calc_line_point_sq_distance
AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
double x2, double y2,
double x, double y,
double u)
{
if(u <= 0)
{
return calc_sq_distance(x, y, x1, y1);
}
else
if(u >= 1)
{
return calc_sq_distance(x, y, x2, y2);
}
return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1));
}
//---------------------------------------------calc_line_point_sq_distance
AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
return
calc_segment_point_sq_distance(
x1, y1, x2, y2, x, y,
calc_segment_point_u(x1, y1, x2, y2, x, y));
}
//-------------------------------------------------------calc_intersection
AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by,
double cx, double cy, double dx, double dy,
double* x, double* y)
{
double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
if(fabs(den) < intersection_epsilon) return false;
double r = num / den;
*x = ax + r * (bx-ax);
*y = ay + r * (by-ay);
return true;
}
//-----------------------------------------------------intersection_exists
AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2,
double x3, double y3, double x4, double y4)
{
// It's less expensive but you can't control the
// boundary conditions: Less or LessEqual
double dx1 = x2 - x1;
double dy1 = y2 - y1;
double dx2 = x4 - x3;
double dy2 = y4 - y3;
return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) !=
((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) &&
((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) !=
((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0);
// It's is more expensive but more flexible
// in terms of boundary conditions.
//--------------------
//double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3);
//if(fabs(den) < intersection_epsilon) return false;
//double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
//double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
//double ua = nom1 / den;
//double ub = nom2 / den;
//return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0;
}
//--------------------------------------------------------calc_orthogonal
AGG_INLINE void calc_orthogonal(double thickness,
double x1, double y1,
double x2, double y2,
double* x, double* y)
{
double dx = x2 - x1;
double dy = y2 - y1;
double d = sqrt(dx*dx + dy*dy);
*x = thickness * dy / d;
*y = -thickness * dx / d;
}
//--------------------------------------------------------dilate_triangle
AGG_INLINE void dilate_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double *x, double* y,
double d)
{
double dx1=0.0;
double dy1=0.0;
double dx2=0.0;
double dy2=0.0;
double dx3=0.0;
double dy3=0.0;
double loc = cross_product(x1, y1, x2, y2, x3, y3);
if(fabs(loc) > intersection_epsilon)
{
if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0)
{
d = -d;
}
calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
}
*x++ = x1 + dx1; *y++ = y1 + dy1;
*x++ = x2 + dx1; *y++ = y2 + dy1;
*x++ = x2 + dx2; *y++ = y2 + dy2;
*x++ = x3 + dx2; *y++ = y3 + dy2;
*x++ = x3 + dx3; *y++ = y3 + dy3;
*x++ = x1 + dx3; *y++ = y1 + dy3;
}
//------------------------------------------------------calc_triangle_area
AGG_INLINE double calc_triangle_area(double x1, double y1,
double x2, double y2,
double x3, double y3)
{
return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5;
}
//-------------------------------------------------------calc_polygon_area
template<class Storage> double calc_polygon_area(const Storage& st)
{
unsigned i;
double sum = 0.0;
double x = st[0].x;
double y = st[0].y;
double xs = x;
double ys = y;
for(i = 1; i < st.size(); i++)
{
const typename Storage::value_type& v = st[i];
sum += x * v.y - y * v.x;
x = v.x;
y = v.y;
}
return (sum + x * ys - y * xs) * 0.5;
}
//------------------------------------------------------------------------
// Tables for fast sqrt
extern int16u g_sqrt_table[1024];
extern int8 g_elder_bit_table[256];
//---------------------------------------------------------------fast_sqrt
//Fast integer Sqrt - really fast: no cycles, divisions or multiplications
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
#endif
AGG_INLINE unsigned fast_sqrt(unsigned val)
{
#if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
//For Ix86 family processors this assembler code is used.
//The key command here is bsr - determination the number of the most
//significant bit of the value. For other processors
//(and maybe compilers) the pure C "#else" section is used.
__asm
{
mov ebx, val
mov edx, 11
bsr ecx, ebx
sub ecx, 9
jle less_than_9_bits
shr ecx, 1
adc ecx, 0
sub edx, ecx
shl ecx, 1
shr ebx, cl
less_than_9_bits:
xor eax, eax
mov ax, g_sqrt_table[ebx*2]
mov ecx, edx
shr eax, cl
}
#else
//This code is actually pure C and portable to most
//arcitectures including 64bit ones.
unsigned t = val;
int bit=0;
unsigned shift = 11;
//The following piece of code is just an emulation of the
//Ix86 assembler command "bsr" (see above). However on old
//Intels (like Intel MMX 233MHz) this code is about twice
//faster (sic!) then just one "bsr". On PIII and PIV the
//bsr is optimized quite well.
bit = t >> 24;
if(bit)
{
bit = g_elder_bit_table[bit] + 24;
}
else
{
bit = (t >> 16) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 16;
}
else
{
bit = (t >> 8) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 8;
}
else
{
bit = g_elder_bit_table[t];
}
}
}
//This code calculates the sqrt.
bit -= 9;
if(bit > 0)
{
bit = (bit >> 1) + (bit & 1);
shift -= bit;
val >>= (bit << 1);
}
return g_sqrt_table[val] >> shift;
#endif
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
//--------------------------------------------------------------------besj
// Function BESJ calculates Bessel function of first kind of order n
// Arguments:
// n - an integer (>=0), the order
// x - value at which the Bessel function is required
//--------------------
// C++ Mathematical Library
// Convereted from equivalent FORTRAN library
// Converetd by Gareth Walker for use by course 392 computational project
// All functions tested and yield the same results as the corresponding
// FORTRAN versions.
//
// If you have any problems using these functions please report them to
// M.Muldoon@UMIST.ac.uk
//
// Documentation available on the web
// http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
// Version 1.0 8/98
// 29 October, 1999
//--------------------
// Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
//------------------------------------------------------------------------
inline double besj(double x, int n)
{
if(n < 0)
{
return 0;
}
double d = 1E-6;
double b = 0;
if(fabs(x) <= d)
{
if(n != 0) return 0;
return 1;
}
double b1 = 0; // b1 is the value from the previous iteration
// Set up a starting order for recurrence
int m1 = (int)fabs(x) + 6;
if(fabs(x) > 5)
{
m1 = (int)(fabs(1.4 * x + 60 / x));
}
int m2 = (int)(n + 2 + fabs(x) / 4);
if (m1 > m2)
{
m2 = m1;
}
// Apply recurrence down from curent max order
for(;;)
{
double c3 = 0;
double c2 = 1E-30;
double c4 = 0;
int m8 = 1;
if (m2 / 2 * 2 == m2)
{
m8 = -1;
}
int imax = m2 - 2;
for (int i = 1; i <= imax; i++)
{
double c6 = 2 * (m2 - i) * c2 / x - c3;
c3 = c2;
c2 = c6;
if(m2 - i - 1 == n)
{
b = c6;
}
m8 = -1 * m8;
if (m8 > 0)
{
c4 = c4 + 2 * c6;
}
}
double c6 = 2 * c2 / x - c3;
if(n == 0)
{
b = c6;
}
c4 += c6;
b /= c4;
if(fabs(b - b1) < d)
{
return b;
}
b1 = b;
m2 += 3;
}
}
}
#endif

526
deps/agg/include/agg_math_stroke.h vendored Normal file
View file

@ -0,0 +1,526 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Stroke math
//
//----------------------------------------------------------------------------
#ifndef AGG_STROKE_MATH_INCLUDED
#define AGG_STROKE_MATH_INCLUDED
#include "agg_math.h"
#include "agg_vertex_sequence.h"
namespace agg
{
//-------------------------------------------------------------line_cap_e
enum line_cap_e
{
butt_cap,
square_cap,
round_cap
};
//------------------------------------------------------------line_join_e
enum line_join_e
{
miter_join = 0,
miter_join_revert = 1,
round_join = 2,
bevel_join = 3,
miter_join_round = 4
};
//-----------------------------------------------------------inner_join_e
enum inner_join_e
{
inner_bevel,
inner_miter,
inner_jag,
inner_round
};
//------------------------------------------------------------math_stroke
template<class VertexConsumer> class math_stroke
{
public:
typedef typename VertexConsumer::value_type coord_type;
math_stroke();
void line_cap(line_cap_e lc) { m_line_cap = lc; }
void line_join(line_join_e lj) { m_line_join = lj; }
void inner_join(inner_join_e ij) { m_inner_join = ij; }
line_cap_e line_cap() const { return m_line_cap; }
line_join_e line_join() const { return m_line_join; }
inner_join_e inner_join() const { return m_inner_join; }
void width(double w);
void miter_limit(double ml) { m_miter_limit = ml; }
void miter_limit_theta(double t);
void inner_miter_limit(double ml) { m_inner_miter_limit = ml; }
void approximation_scale(double as) { m_approx_scale = as; }
double width() const { return m_width * 2.0; }
double miter_limit() const { return m_miter_limit; }
double inner_miter_limit() const { return m_inner_miter_limit; }
double approximation_scale() const { return m_approx_scale; }
void calc_cap(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
double len);
void calc_join(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double len1,
double len2);
private:
AGG_INLINE void add_vertex(VertexConsumer& vc, double x, double y)
{
vc.add(coord_type(x, y));
}
void calc_arc(VertexConsumer& vc,
double x, double y,
double dx1, double dy1,
double dx2, double dy2);
void calc_miter(VertexConsumer& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double dx1, double dy1,
double dx2, double dy2,
line_join_e lj,
double mlimit,
double dbevel);
double m_width;
double m_width_abs;
double m_width_eps;
int m_width_sign;
double m_miter_limit;
double m_inner_miter_limit;
double m_approx_scale;
line_cap_e m_line_cap;
line_join_e m_line_join;
inner_join_e m_inner_join;
};
//-----------------------------------------------------------------------
template<class VC> math_stroke<VC>::math_stroke() :
m_width(0.5),
m_width_abs(0.5),
m_width_eps(0.5/1024.0),
m_width_sign(1),
m_miter_limit(4.0),
m_inner_miter_limit(1.01),
m_approx_scale(1.0),
m_line_cap(butt_cap),
m_line_join(miter_join),
m_inner_join(inner_miter)
{
}
//-----------------------------------------------------------------------
template<class VC> void math_stroke<VC>::width(double w)
{
m_width = w * 0.5;
if(m_width < 0)
{
m_width_abs = -m_width;
m_width_sign = -1;
}
else
{
m_width_abs = m_width;
m_width_sign = 1;
}
m_width_eps = m_width / 1024.0;
}
//-----------------------------------------------------------------------
template<class VC> void math_stroke<VC>::miter_limit_theta(double t)
{
m_miter_limit = 1.0 / sin(t * 0.5) ;
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_arc(VC& vc,
double x, double y,
double dx1, double dy1,
double dx2, double dy2)
{
double a1 = atan2(dy1 * m_width_sign, dx1 * m_width_sign);
double a2 = atan2(dy2 * m_width_sign, dx2 * m_width_sign);
double da = a1 - a2;
int i, n;
da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
add_vertex(vc, x + dx1, y + dy1);
if(m_width_sign > 0)
{
if(a1 > a2) a2 += 2 * pi;
n = int((a2 - a1) / da);
da = (a2 - a1) / (n + 1);
a1 += da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 += da;
}
}
else
{
if(a1 < a2) a2 -= 2 * pi;
n = int((a1 - a2) / da);
da = (a1 - a2) / (n + 1);
a1 -= da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 -= da;
}
}
add_vertex(vc, x + dx2, y + dy2);
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_miter(VC& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double dx1, double dy1,
double dx2, double dy2,
line_join_e lj,
double mlimit,
double dbevel)
{
double xi = v1.x;
double yi = v1.y;
double di = 1;
double lim = m_width_abs * mlimit;
bool miter_limit_exceeded = true; // Assume the worst
bool intersection_failed = true; // Assume the worst
if(calc_intersection(v0.x + dx1, v0.y - dy1,
v1.x + dx1, v1.y - dy1,
v1.x + dx2, v1.y - dy2,
v2.x + dx2, v2.y - dy2,
&xi, &yi))
{
// Calculation of the intersection succeeded
//---------------------
di = calc_distance(v1.x, v1.y, xi, yi);
if(di <= lim)
{
// Inside the miter limit
//---------------------
add_vertex(vc, xi, yi);
miter_limit_exceeded = false;
}
intersection_failed = false;
}
else
{
// Calculation of the intersection failed, most probably
// the three points lie one straight line.
// First check if v0 and v2 lie on the opposite sides of vector:
// (v1.x, v1.y) -> (v1.x+dx1, v1.y-dy1), that is, the perpendicular
// to the line determined by vertices v0 and v1.
// This condition determines whether the next line segments continues
// the previous one or goes back.
//----------------
double x2 = v1.x + dx1;
double y2 = v1.y - dy1;
if((cross_product(v0.x, v0.y, v1.x, v1.y, x2, y2) < 0.0) ==
(cross_product(v1.x, v1.y, v2.x, v2.y, x2, y2) < 0.0))
{
// This case means that the next segment continues
// the previous one (straight line)
//-----------------
add_vertex(vc, v1.x + dx1, v1.y - dy1);
miter_limit_exceeded = false;
}
}
if(miter_limit_exceeded)
{
// Miter limit exceeded
//------------------------
switch(lj)
{
case miter_join_revert:
// For the compatibility with SVG, PDF, etc,
// we use a simple bevel join instead of
// "smart" bevel
//-------------------
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x + dx2, v1.y - dy2);
break;
case miter_join_round:
calc_arc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
break;
default:
// If no miter-revert, calculate new dx1, dy1, dx2, dy2
//----------------
if(intersection_failed)
{
mlimit *= m_width_sign;
add_vertex(vc, v1.x + dx1 + dy1 * mlimit,
v1.y - dy1 + dx1 * mlimit);
add_vertex(vc, v1.x + dx2 - dy2 * mlimit,
v1.y - dy2 - dx2 * mlimit);
}
else
{
double x1 = v1.x + dx1;
double y1 = v1.y - dy1;
double x2 = v1.x + dx2;
double y2 = v1.y - dy2;
di = (lim - dbevel) / (di - dbevel);
add_vertex(vc, x1 + (xi - x1) * di,
y1 + (yi - y1) * di);
add_vertex(vc, x2 + (xi - x2) * di,
y2 + (yi - y2) * di);
}
break;
}
}
}
//--------------------------------------------------------stroke_calc_cap
template<class VC>
void math_stroke<VC>::calc_cap(VC& vc,
const vertex_dist& v0,
const vertex_dist& v1,
double len)
{
vc.remove_all();
double dx1 = (v1.y - v0.y) / len;
double dy1 = (v1.x - v0.x) / len;
double dx2 = 0;
double dy2 = 0;
dx1 *= m_width;
dy1 *= m_width;
if(m_line_cap != round_cap)
{
if(m_line_cap == square_cap)
{
dx2 = dy1 * m_width_sign;
dy2 = dx1 * m_width_sign;
}
add_vertex(vc, v0.x - dx1 - dx2, v0.y + dy1 - dy2);
add_vertex(vc, v0.x + dx1 - dx2, v0.y - dy1 - dy2);
}
else
{
double da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
double a1;
int i;
int n = int(pi / da);
da = pi / (n + 1);
add_vertex(vc, v0.x - dx1, v0.y + dy1);
if(m_width_sign > 0)
{
a1 = atan2(dy1, -dx1);
a1 += da;
for(i = 0; i < n; i++)
{
add_vertex(vc, v0.x + cos(a1) * m_width,
v0.y + sin(a1) * m_width);
a1 += da;
}
}
else
{
a1 = atan2(-dy1, dx1);
a1 -= da;
for(i = 0; i < n; i++)
{
add_vertex(vc, v0.x + cos(a1) * m_width,
v0.y + sin(a1) * m_width);
a1 -= da;
}
}
add_vertex(vc, v0.x + dx1, v0.y - dy1);
}
}
//-----------------------------------------------------------------------
template<class VC>
void math_stroke<VC>::calc_join(VC& vc,
const vertex_dist& v0,
const vertex_dist& v1,
const vertex_dist& v2,
double len1,
double len2)
{
double dx1 = m_width * (v1.y - v0.y) / len1;
double dy1 = m_width * (v1.x - v0.x) / len1;
double dx2 = m_width * (v2.y - v1.y) / len2;
double dy2 = m_width * (v2.x - v1.x) / len2;
vc.remove_all();
double cp = cross_product(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y);
if(cp != 0 && (cp > 0) == (m_width > 0))
{
// Inner join
//---------------
double limit = ((len1 < len2) ? len1 : len2) / m_width_abs;
if(limit < m_inner_miter_limit)
{
limit = m_inner_miter_limit;
}
switch(m_inner_join)
{
default: // inner_bevel
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x + dx2, v1.y - dy2);
break;
case inner_miter:
calc_miter(vc,
v0, v1, v2, dx1, dy1, dx2, dy2,
miter_join_revert,
limit, 0);
break;
case inner_jag:
case inner_round:
cp = (dx1-dx2) * (dx1-dx2) + (dy1-dy2) * (dy1-dy2);
if(cp < len1 * len1 && cp < len2 * len2)
{
calc_miter(vc,
v0, v1, v2, dx1, dy1, dx2, dy2,
miter_join_revert,
limit, 0);
}
else
{
if(m_inner_join == inner_jag)
{
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x, v1.y );
add_vertex(vc, v1.x + dx2, v1.y - dy2);
}
else
{
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x, v1.y );
calc_arc(vc, v1.x, v1.y, dx2, -dy2, dx1, -dy1);
add_vertex(vc, v1.x, v1.y );
add_vertex(vc, v1.x + dx2, v1.y - dy2);
}
}
break;
}
}
else
{
// Outer join
//---------------
// Calculate the distance between v1 and
// the central point of the bevel line segment
//---------------
double dx = (dx1 + dx2) / 2;
double dy = (dy1 + dy2) / 2;
double dbevel = sqrt(dx * dx + dy * dy);
if(m_line_join == round_join || m_line_join == bevel_join)
{
// This is an optimization that reduces the number of points
// in cases of almost collinear segments. If there's no
// visible difference between bevel and miter joins we'd rather
// use miter join because it adds only one point instead of two.
//
// Here we calculate the middle point between the bevel points
// and then, the distance between v1 and this middle point.
// At outer joins this distance always less than stroke width,
// because it's actually the height of an isosceles triangle of
// v1 and its two bevel points. If the difference between this
// width and this value is small (no visible bevel) we can
// add just one point.
//
// The constant in the expression makes the result approximately
// the same as in round joins and caps. You can safely comment
// out this entire "if".
//-------------------
if(m_approx_scale * (m_width_abs - dbevel) < m_width_eps)
{
if(calc_intersection(v0.x + dx1, v0.y - dy1,
v1.x + dx1, v1.y - dy1,
v1.x + dx2, v1.y - dy2,
v2.x + dx2, v2.y - dy2,
&dx, &dy))
{
add_vertex(vc, dx, dy);
}
else
{
add_vertex(vc, v1.x + dx1, v1.y - dy1);
}
return;
}
}
switch(m_line_join)
{
case miter_join:
case miter_join_revert:
case miter_join_round:
calc_miter(vc,
v0, v1, v2, dx1, dy1, dx2, dy2,
m_line_join,
m_miter_limit,
dbevel);
break;
case round_join:
calc_arc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
break;
default: // Bevel join
add_vertex(vc, v1.x + dx1, v1.y - dy1);
add_vertex(vc, v1.x + dx2, v1.y - dy2);
break;
}
}
}
}
#endif

65
deps/agg/include/agg_path_length.h vendored Normal file
View file

@ -0,0 +1,65 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PATH_LENGTH_INCLUDED
#define AGG_PATH_LENGTH_INCLUDED
#include "agg_math.h"
namespace agg
{
template<class VertexSource>
double path_length(VertexSource& vs, unsigned path_id = 0)
{
double len = 0.0;
double start_x = 0.0;
double start_y = 0.0;
double x1 = 0.0;
double y1 = 0.0;
double x2 = 0.0;
double y2 = 0.0;
bool first = true;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x2, &y2)))
{
if(is_vertex(cmd))
{
if(first || is_move_to(cmd))
{
start_x = x2;
start_y = y2;
}
else
{
len += calc_distance(x1, y1, x2, y2);
}
x1 = x2;
y1 = y2;
first = false;
}
else
{
if(is_close(cmd) && !first)
{
len += calc_distance(x1, y1, start_x, start_y);
}
}
}
return len;
}
}
#endif

1555
deps/agg/include/agg_path_storage.h vendored Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,295 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PATH_STORAGE_INTEGER_INCLUDED
#define AGG_PATH_STORAGE_INTEGER_INCLUDED
#include <string.h>
#include "agg_array.h"
namespace agg
{
//---------------------------------------------------------vertex_integer
template<class T, unsigned CoordShift=6> struct vertex_integer
{
enum path_cmd
{
cmd_move_to = 0,
cmd_line_to = 1,
cmd_curve3 = 2,
cmd_curve4 = 3
};
enum coord_scale_e
{
coord_shift = CoordShift,
coord_scale = 1 << coord_shift
};
T x,y;
vertex_integer() {}
vertex_integer(T x_, T y_, unsigned flag) :
x(((x_ << 1) & ~1) | (flag & 1)),
y(((y_ << 1) & ~1) | (flag >> 1)) {}
unsigned vertex(double* x_, double* y_,
double dx=0, double dy=0,
double scale=1.0) const
{
*x_ = dx + (double(x >> 1) / coord_scale) * scale;
*y_ = dy + (double(y >> 1) / coord_scale) * scale;
switch(((y & 1) << 1) | (x & 1))
{
case cmd_move_to: return path_cmd_move_to;
case cmd_line_to: return path_cmd_line_to;
case cmd_curve3: return path_cmd_curve3;
case cmd_curve4: return path_cmd_curve4;
}
return path_cmd_stop;
}
};
//---------------------------------------------------path_storage_integer
template<class T, unsigned CoordShift=6> class path_storage_integer
{
public:
typedef T value_type;
typedef vertex_integer<T, CoordShift> vertex_integer_type;
//--------------------------------------------------------------------
path_storage_integer() : m_storage(), m_vertex_idx(0), m_closed(true) {}
//--------------------------------------------------------------------
void remove_all() { m_storage.remove_all(); }
//--------------------------------------------------------------------
void move_to(T x, T y)
{
m_storage.add(vertex_integer_type(x, y, vertex_integer_type::cmd_move_to));
}
//--------------------------------------------------------------------
void line_to(T x, T y)
{
m_storage.add(vertex_integer_type(x, y, vertex_integer_type::cmd_line_to));
}
//--------------------------------------------------------------------
void curve3(T x_ctrl, T y_ctrl,
T x_to, T y_to)
{
m_storage.add(vertex_integer_type(x_ctrl, y_ctrl, vertex_integer_type::cmd_curve3));
m_storage.add(vertex_integer_type(x_to, y_to, vertex_integer_type::cmd_curve3));
}
//--------------------------------------------------------------------
void curve4(T x_ctrl1, T y_ctrl1,
T x_ctrl2, T y_ctrl2,
T x_to, T y_to)
{
m_storage.add(vertex_integer_type(x_ctrl1, y_ctrl1, vertex_integer_type::cmd_curve4));
m_storage.add(vertex_integer_type(x_ctrl2, y_ctrl2, vertex_integer_type::cmd_curve4));
m_storage.add(vertex_integer_type(x_to, y_to, vertex_integer_type::cmd_curve4));
}
//--------------------------------------------------------------------
void close_polygon() {}
//--------------------------------------------------------------------
unsigned size() const { return m_storage.size(); }
unsigned vertex(unsigned idx, double* x, double* y) const
{
return m_storage[idx].vertex(x, y);
}
//--------------------------------------------------------------------
unsigned byte_size() const { return m_storage.size() * sizeof(vertex_integer_type); }
void serialize(int8u* ptr) const
{
unsigned i;
for(i = 0; i < m_storage.size(); i++)
{
memcpy(ptr, &m_storage[i], sizeof(vertex_integer_type));
ptr += sizeof(vertex_integer_type);
}
}
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_vertex_idx = 0;
m_closed = true;
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
if(m_storage.size() < 2 || m_vertex_idx > m_storage.size())
{
*x = 0;
*y = 0;
return path_cmd_stop;
}
if(m_vertex_idx == m_storage.size())
{
*x = 0;
*y = 0;
++m_vertex_idx;
return path_cmd_end_poly | path_flags_close;
}
unsigned cmd = m_storage[m_vertex_idx].vertex(x, y);
if(is_move_to(cmd) && !m_closed)
{
*x = 0;
*y = 0;
m_closed = true;
return path_cmd_end_poly | path_flags_close;
}
m_closed = false;
++m_vertex_idx;
return cmd;
}
//--------------------------------------------------------------------
rect_d bounding_rect() const
{
rect_d bounds(1e100, 1e100, -1e100, -1e100);
if(m_storage.size() == 0)
{
bounds.x1 = bounds.y1 = bounds.x2 = bounds.y2 = 0.0;
}
else
{
unsigned i;
for(i = 0; i < m_storage.size(); i++)
{
double x, y;
m_storage[i].vertex(&x, &y);
if(x < bounds.x1) bounds.x1 = x;
if(y < bounds.y1) bounds.y1 = y;
if(x > bounds.x2) bounds.x2 = x;
if(y > bounds.y2) bounds.y2 = y;
}
}
return bounds;
}
private:
pod_bvector<vertex_integer_type, 6> m_storage;
unsigned m_vertex_idx;
bool m_closed;
};
//-----------------------------------------serialized_integer_path_adaptor
template<class T, unsigned CoordShift=6> class serialized_integer_path_adaptor
{
public:
typedef vertex_integer<T, CoordShift> vertex_integer_type;
//--------------------------------------------------------------------
serialized_integer_path_adaptor() :
m_data(0),
m_end(0),
m_ptr(0),
m_dx(0.0),
m_dy(0.0),
m_scale(1.0),
m_vertices(0)
{}
//--------------------------------------------------------------------
serialized_integer_path_adaptor(const int8u* data, unsigned size,
double dx, double dy) :
m_data(data),
m_end(data + size),
m_ptr(data),
m_dx(dx),
m_dy(dy),
m_vertices(0)
{}
//--------------------------------------------------------------------
void init(const int8u* data, unsigned size,
double dx, double dy, double scale=1.0)
{
m_data = data;
m_end = data + size;
m_ptr = data;
m_dx = dx;
m_dy = dy;
m_scale = scale;
m_vertices = 0;
}
//--------------------------------------------------------------------
void rewind(unsigned)
{
m_ptr = m_data;
m_vertices = 0;
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
if(m_data == 0 || m_ptr > m_end)
{
*x = 0;
*y = 0;
return path_cmd_stop;
}
if(m_ptr == m_end)
{
*x = 0;
*y = 0;
m_ptr += sizeof(vertex_integer_type);
return path_cmd_end_poly | path_flags_close;
}
vertex_integer_type v;
memcpy(&v, m_ptr, sizeof(vertex_integer_type));
unsigned cmd = v.vertex(x, y, m_dx, m_dy, m_scale);
if(is_move_to(cmd) && m_vertices > 2)
{
*x = 0;
*y = 0;
m_vertices = 0;
return path_cmd_end_poly | path_flags_close;
}
++m_vertices;
m_ptr += sizeof(vertex_integer_type);
return cmd;
}
private:
const int8u* m_data;
const int8u* m_end;
const int8u* m_ptr;
double m_dx;
double m_dy;
double m_scale;
unsigned m_vertices;
};
}
#endif

View file

@ -0,0 +1,122 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PATTERN_FILTERS_RGBA8_INCLUDED
#define AGG_PATTERN_FILTERS_RGBA8_INCLUDED
#include "agg_basics.h"
#include "agg_line_aa_basics.h"
#include "agg_color_rgba.h"
namespace agg
{
//=======================================================pattern_filter_nn
template<class ColorT> struct pattern_filter_nn
{
typedef ColorT color_type;
static unsigned dilation() { return 0; }
static void AGG_INLINE pixel_low_res(color_type const* const* buf,
color_type* p, int x, int y)
{
*p = buf[y][x];
}
static void AGG_INLINE pixel_high_res(color_type const* const* buf,
color_type* p, int x, int y)
{
*p = buf[y >> line_subpixel_shift]
[x >> line_subpixel_shift];
}
};
typedef pattern_filter_nn<rgba8> pattern_filter_nn_rgba8;
typedef pattern_filter_nn<rgba16> pattern_filter_nn_rgba16;
//===========================================pattern_filter_bilinear_rgba
template<class ColorT> struct pattern_filter_bilinear_rgba
{
typedef ColorT color_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
static unsigned dilation() { return 1; }
static AGG_INLINE void pixel_low_res(color_type const* const* buf,
color_type* p, int x, int y)
{
*p = buf[y][x];
}
static AGG_INLINE void pixel_high_res(color_type const* const* buf,
color_type* p, int x, int y)
{
calc_type r, g, b, a;
r = g = b = a = line_subpixel_scale * line_subpixel_scale / 2;
calc_type weight;
int x_lr = x >> line_subpixel_shift;
int y_lr = y >> line_subpixel_shift;
x &= line_subpixel_mask;
y &= line_subpixel_mask;
const color_type* ptr = buf[y_lr] + x_lr;
weight = (line_subpixel_scale - x) *
(line_subpixel_scale - y);
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
++ptr;
weight = x * (line_subpixel_scale - y);
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
ptr = buf[y_lr + 1] + x_lr;
weight = (line_subpixel_scale - x) * y;
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
++ptr;
weight = x * y;
r += weight * ptr->r;
g += weight * ptr->g;
b += weight * ptr->b;
a += weight * ptr->a;
p->r = (value_type)(r >> line_subpixel_shift * 2);
p->g = (value_type)(g >> line_subpixel_shift * 2);
p->b = (value_type)(b >> line_subpixel_shift * 2);
p->a = (value_type)(a >> line_subpixel_shift * 2);
}
};
typedef pattern_filter_bilinear_rgba<rgba8> pattern_filter_bilinear_rgba8;
typedef pattern_filter_bilinear_rgba<rgba16> pattern_filter_bilinear_rgba16;
}
#endif

View file

@ -0,0 +1,240 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_AMASK_ADAPTOR_INCLUDED
#define AGG_PIXFMT_AMASK_ADAPTOR_INCLUDED
#include <string.h>
#include "agg_array.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//==================================================pixfmt_amask_adaptor
template<class PixFmt, class AlphaMask> class pixfmt_amask_adaptor
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
typedef AlphaMask amask_type;
typedef typename amask_type::cover_type cover_type;
private:
enum span_extra_tail_e { span_extra_tail = 256 };
void realloc_span(unsigned len)
{
if(len > m_span.size())
{
m_span.resize(len + span_extra_tail);
}
}
void init_span(unsigned len)
{
realloc_span(len);
memset(&m_span[0], amask_type::cover_full, len * sizeof(cover_type));
}
void init_span(unsigned len, const cover_type* covers)
{
realloc_span(len);
memcpy(&m_span[0], covers, len * sizeof(cover_type));
}
public:
pixfmt_amask_adaptor(pixfmt_type& pixf, const amask_type& mask) :
m_pixf(&pixf), m_mask(&mask), m_span()
{}
void attach_pixfmt(pixfmt_type& pixf) { m_pixf = &pixf; }
void attach_alpha_mask(const amask_type& mask) { m_mask = &mask; }
//--------------------------------------------------------------------
template<class PixFmt2>
bool attach_pixfmt(PixFmt2& pixf, int x1, int y1, int x2, int y2)
{
return m_pixf->attach(pixf, x1, y1, x2, y2);
}
//--------------------------------------------------------------------
unsigned width() const { return m_pixf->width(); }
unsigned height() const { return m_pixf->height(); }
//--------------------------------------------------------------------
color_type pixel(int x, int y)
{
return m_pixf->pixel(x, y);
}
//--------------------------------------------------------------------
void copy_pixel(int x, int y, const color_type& c)
{
m_pixf->blend_pixel(x, y, c, m_mask->pixel(x, y));
}
//--------------------------------------------------------------------
void blend_pixel(int x, int y, const color_type& c, cover_type cover)
{
m_pixf->blend_pixel(x, y, c, m_mask->combine_pixel(x, y, cover));
}
//--------------------------------------------------------------------
void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
realloc_span(len);
m_mask->fill_hspan(x, y, &m_span[0], len);
m_pixf->blend_solid_hspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void blend_hline(int x, int y,
unsigned len,
const color_type& c,
cover_type cover)
{
init_span(len);
m_mask->combine_hspan(x, y, &m_span[0], len);
m_pixf->blend_solid_hspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
realloc_span(len);
m_mask->fill_vspan(x, y, &m_span[0], len);
m_pixf->blend_solid_vspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void blend_vline(int x, int y,
unsigned len,
const color_type& c,
cover_type cover)
{
init_span(len);
m_mask->combine_vspan(x, y, &m_span[0], len);
m_pixf->blend_solid_vspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void copy_from(const rendering_buffer& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len)
{
m_pixf->copy_from(from, xdst, ydst, xsrc, ysrc, len);
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const cover_type* covers)
{
init_span(len, covers);
m_mask->combine_hspan(x, y, &m_span[0], len);
m_pixf->blend_solid_hspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const cover_type* covers)
{
init_span(len, covers);
m_mask->combine_vspan(x, y, &m_span[0], len);
m_pixf->blend_solid_vspan(x, y, len, c, &m_span[0]);
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y, unsigned len, const color_type* colors)
{
realloc_span(len);
m_mask->fill_hspan(x, y, &m_span[0], len);
m_pixf->blend_color_hspan(x, y, len, colors, &m_span[0], cover_full);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y, unsigned len, const color_type* colors)
{
realloc_span(len);
m_mask->fill_vspan(x, y, &m_span[0], len);
m_pixf->blend_color_vspan(x, y, len, colors, &m_span[0], cover_full);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
if(covers)
{
init_span(len, covers);
m_mask->combine_hspan(x, y, &m_span[0], len);
}
else
{
realloc_span(len);
m_mask->fill_hspan(x, y, &m_span[0], len);
}
m_pixf->blend_color_hspan(x, y, len, colors, &m_span[0], cover);
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
if(covers)
{
init_span(len, covers);
m_mask->combine_vspan(x, y, &m_span[0], len);
}
else
{
realloc_span(len);
m_mask->fill_vspan(x, y, &m_span[0], len);
}
m_pixf->blend_color_vspan(x, y, len, colors, &m_span[0], cover);
}
private:
pixfmt_type* m_pixf;
const amask_type* m_mask;
pod_array<cover_type> m_span;
};
}
#endif

670
deps/agg/include/agg_pixfmt_gray.h vendored Normal file
View file

@ -0,0 +1,670 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_GRAY_INCLUDED
#define AGG_PIXFMT_GRAY_INCLUDED
#include <string.h>
#include "agg_basics.h"
#include "agg_color_gray.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//============================================================blender_gray
template<class ColorT> struct blender_gray
{
typedef ColorT color_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
static AGG_INLINE void blend_pix(value_type* p, unsigned cv,
unsigned alpha, unsigned cover=0)
{
*p = (value_type)((((cv - calc_type(*p)) * alpha) + (calc_type(*p) << base_shift)) >> base_shift);
}
};
//======================================================blender_gray_pre
template<class ColorT> struct blender_gray_pre
{
typedef ColorT color_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
static AGG_INLINE void blend_pix(value_type* p, unsigned cv,
unsigned alpha, unsigned cover)
{
alpha = color_type::base_mask - alpha;
cover = (cover + 1) << (base_shift - 8);
*p = (value_type)((*p * alpha + cv * cover) >> base_shift);
}
static AGG_INLINE void blend_pix(value_type* p, unsigned cv,
unsigned alpha)
{
*p = (value_type)(((*p * (color_type::base_mask - alpha)) >> base_shift) + cv);
}
};
//=====================================================apply_gamma_dir_gray
template<class ColorT, class GammaLut> class apply_gamma_dir_gray
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_dir_gray(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
*p = m_gamma.dir(*p);
}
private:
const GammaLut& m_gamma;
};
//=====================================================apply_gamma_inv_gray
template<class ColorT, class GammaLut> class apply_gamma_inv_gray
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_inv_gray(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
*p = m_gamma.inv(*p);
}
private:
const GammaLut& m_gamma;
};
//=================================================pixfmt_alpha_blend_gray
template<class Blender, class RenBuf, unsigned Step=1, unsigned Offset=0>
class pixfmt_alpha_blend_gray
{
public:
typedef RenBuf rbuf_type;
typedef typename rbuf_type::row_data row_data;
typedef Blender blender_type;
typedef typename blender_type::color_type color_type;
typedef int order_type; // A fake one
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_scale = color_type::base_scale,
base_mask = color_type::base_mask,
pix_width = sizeof(value_type),
pix_step = Step,
pix_offset = Offset
};
private:
//--------------------------------------------------------------------
static AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c,
unsigned cover)
{
if (c.a)
{
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, alpha, cover);
}
}
}
static AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c)
{
if (c.a)
{
if(c.a == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, c.a);
}
}
}
public:
//--------------------------------------------------------------------
explicit pixfmt_alpha_blend_gray(rbuf_type& rb) :
m_rbuf(&rb)
{}
void attach(rbuf_type& rb) { m_rbuf = &rb; }
//--------------------------------------------------------------------
template<class PixFmt>
bool attach(PixFmt& pixf, int x1, int y1, int x2, int y2)
{
rect_i r(x1, y1, x2, y2);
if(r.clip(rect_i(0, 0, pixf.width()-1, pixf.height()-1)))
{
int stride = pixf.stride();
m_rbuf->attach(pixf.pix_ptr(r.x1, stride < 0 ? r.y2 : r.y1),
(r.x2 - r.x1) + 1,
(r.y2 - r.y1) + 1,
stride);
return true;
}
return false;
}
//--------------------------------------------------------------------
AGG_INLINE unsigned width() const { return m_rbuf->width(); }
AGG_INLINE unsigned height() const { return m_rbuf->height(); }
AGG_INLINE int stride() const { return m_rbuf->stride(); }
//--------------------------------------------------------------------
int8u* row_ptr(int y) { return m_rbuf->row_ptr(y); }
const int8u* row_ptr(int y) const { return m_rbuf->row_ptr(y); }
row_data row(int y) const { return m_rbuf->row(y); }
const int8u* pix_ptr(int x, int y) const
{
return m_rbuf->row_ptr(y) + x * Step + Offset;
}
int8u* pix_ptr(int x, int y)
{
return m_rbuf->row_ptr(y) + x * Step + Offset;
}
//--------------------------------------------------------------------
AGG_INLINE static void make_pix(int8u* p, const color_type& c)
{
*(value_type*)p = c.v;
}
//--------------------------------------------------------------------
AGG_INLINE color_type pixel(int x, int y) const
{
value_type* p = (value_type*)m_rbuf->row_ptr(y) + x * Step + Offset;
return color_type(*p);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_pixel(int x, int y, const color_type& c)
{
*((value_type*)m_rbuf->row_ptr(x, y, 1) + x * Step + Offset) = c.v;
}
//--------------------------------------------------------------------
AGG_INLINE void blend_pixel(int x, int y, const color_type& c, int8u cover)
{
copy_or_blend_pix((value_type*)
m_rbuf->row_ptr(x, y, 1) + x * Step + Offset,
c,
cover);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
do
{
*p = c.v;
p += Step;
}
while(--len);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
*p = c.v;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_hline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
do
{
*p = c.v;
p += Step;
}
while(--len);
}
else
{
do
{
Blender::blend_pix(p, c.v, alpha, cover);
p += Step;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_vline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p;
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
*p = c.v;
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
Blender::blend_pix(p, c.v, alpha, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
do
{
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
if(alpha == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, alpha, *covers);
}
p += Step;
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
do
{
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
if(alpha == base_mask)
{
*p = c.v;
}
else
{
Blender::blend_pix(p, c.v, alpha, *covers);
}
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y,
unsigned len,
const color_type* colors)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
do
{
*p = colors->v;
p += Step;
++colors;
}
while(--len);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y,
unsigned len,
const color_type* colors)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
*p = colors->v;
++colors;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x * Step + Offset;
if(covers)
{
do
{
copy_or_blend_pix(p, *colors++, *covers++);
p += Step;
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
if(colors->a == base_mask)
{
*p = colors->v;
}
else
{
copy_or_blend_pix(p, *colors);
}
p += Step;
++colors;
}
while(--len);
}
else
{
do
{
copy_or_blend_pix(p, *colors++, cover);
p += Step;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p;
if(covers)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
copy_or_blend_pix(p, *colors++, *covers++);
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
if(colors->a == base_mask)
{
*p = colors->v;
}
else
{
copy_or_blend_pix(p, *colors);
}
++colors;
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x * Step + Offset;
copy_or_blend_pix(p, *colors++, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class Function> void for_each_pixel(Function f)
{
unsigned y;
for(y = 0; y < height(); ++y)
{
row_data r = m_rbuf->row(y);
if(r.ptr)
{
unsigned len = r.x2 - r.x1 + 1;
value_type* p = (value_type*)
m_rbuf->row_ptr(r.x1, y, len) + r.x1 * Step + Offset;
do
{
f(p);
p += Step;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_dir(const GammaLut& g)
{
for_each_pixel(apply_gamma_dir_gray<color_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_inv(const GammaLut& g)
{
for_each_pixel(apply_gamma_inv_gray<color_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class RenBuf2>
void copy_from(const RenBuf2& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len)
{
const int8u* p = from.row_ptr(ysrc);
if(p)
{
memmove(m_rbuf->row_ptr(xdst, ydst, len) + xdst * pix_width,
p + xsrc * pix_width,
len * pix_width);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_color(const SrcPixelFormatRenderer& from,
const color_type& color,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst;
do
{
copy_or_blend_pix(pdst,
color,
(*psrc * cover + base_mask) >> base_shift);
++psrc;
++pdst;
}
while(--len);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_lut(const SrcPixelFormatRenderer& from,
const color_type* color_lut,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst;
do
{
copy_or_blend_pix(pdst, color_lut[*psrc], cover);
++psrc;
++pdst;
}
while(--len);
}
}
private:
rbuf_type* m_rbuf;
};
typedef blender_gray<gray8> blender_gray8;
typedef blender_gray_pre<gray8> blender_gray8_pre;
typedef blender_gray<gray16> blender_gray16;
typedef blender_gray_pre<gray16> blender_gray16_pre;
typedef pixfmt_alpha_blend_gray<blender_gray8, rendering_buffer> pixfmt_gray8; //----pixfmt_gray8
typedef pixfmt_alpha_blend_gray<blender_gray8_pre, rendering_buffer> pixfmt_gray8_pre; //----pixfmt_gray8_pre
typedef pixfmt_alpha_blend_gray<blender_gray16, rendering_buffer> pixfmt_gray16; //----pixfmt_gray16
typedef pixfmt_alpha_blend_gray<blender_gray16_pre, rendering_buffer> pixfmt_gray16_pre; //----pixfmt_gray16_pre
}
#endif

860
deps/agg/include/agg_pixfmt_rgb.h vendored Normal file
View file

@ -0,0 +1,860 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_RGB_INCLUDED
#define AGG_PIXFMT_RGB_INCLUDED
#include <string.h>
#include "agg_basics.h"
#include "agg_color_rgba.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//=====================================================apply_gamma_dir_rgb
template<class ColorT, class Order, class GammaLut> class apply_gamma_dir_rgb
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_dir_rgb(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
p[Order::R] = m_gamma.dir(p[Order::R]);
p[Order::G] = m_gamma.dir(p[Order::G]);
p[Order::B] = m_gamma.dir(p[Order::B]);
}
private:
const GammaLut& m_gamma;
};
//=====================================================apply_gamma_inv_rgb
template<class ColorT, class Order, class GammaLut> class apply_gamma_inv_rgb
{
public:
typedef typename ColorT::value_type value_type;
apply_gamma_inv_rgb(const GammaLut& gamma) : m_gamma(gamma) {}
AGG_INLINE void operator () (value_type* p)
{
p[Order::R] = m_gamma.inv(p[Order::R]);
p[Order::G] = m_gamma.inv(p[Order::G]);
p[Order::B] = m_gamma.inv(p[Order::B]);
}
private:
const GammaLut& m_gamma;
};
//=========================================================blender_rgb
template<class ColorT, class Order> struct blender_rgb
{
typedef ColorT color_type;
typedef Order order_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
//--------------------------------------------------------------------
static AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha,
unsigned cover=0)
{
p[Order::R] += (value_type)(((cr - p[Order::R]) * alpha) >> base_shift);
p[Order::G] += (value_type)(((cg - p[Order::G]) * alpha) >> base_shift);
p[Order::B] += (value_type)(((cb - p[Order::B]) * alpha) >> base_shift);
}
};
//======================================================blender_rgb_pre
template<class ColorT, class Order> struct blender_rgb_pre
{
typedef ColorT color_type;
typedef Order order_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
//--------------------------------------------------------------------
static AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha,
unsigned cover)
{
alpha = color_type::base_mask - alpha;
cover = (cover + 1) << (base_shift - 8);
p[Order::R] = (value_type)((p[Order::R] * alpha + cr * cover) >> base_shift);
p[Order::G] = (value_type)((p[Order::G] * alpha + cg * cover) >> base_shift);
p[Order::B] = (value_type)((p[Order::B] * alpha + cb * cover) >> base_shift);
}
//--------------------------------------------------------------------
static AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha)
{
alpha = color_type::base_mask - alpha;
p[Order::R] = (value_type)(((p[Order::R] * alpha) >> base_shift) + cr);
p[Order::G] = (value_type)(((p[Order::G] * alpha) >> base_shift) + cg);
p[Order::B] = (value_type)(((p[Order::B] * alpha) >> base_shift) + cb);
}
};
//===================================================blender_rgb_gamma
template<class ColorT, class Order, class Gamma> class blender_rgb_gamma
{
public:
typedef ColorT color_type;
typedef Order order_type;
typedef Gamma gamma_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e { base_shift = color_type::base_shift };
//--------------------------------------------------------------------
blender_rgb_gamma() : m_gamma(0) {}
void gamma(const gamma_type& g) { m_gamma = &g; }
//--------------------------------------------------------------------
AGG_INLINE void blend_pix(value_type* p,
unsigned cr, unsigned cg, unsigned cb,
unsigned alpha,
unsigned cover=0)
{
calc_type r = m_gamma->dir(p[Order::R]);
calc_type g = m_gamma->dir(p[Order::G]);
calc_type b = m_gamma->dir(p[Order::B]);
p[Order::R] = m_gamma->inv((((m_gamma->dir(cr) - r) * alpha) >> base_shift) + r);
p[Order::G] = m_gamma->inv((((m_gamma->dir(cg) - g) * alpha) >> base_shift) + g);
p[Order::B] = m_gamma->inv((((m_gamma->dir(cb) - b) * alpha) >> base_shift) + b);
}
private:
const gamma_type* m_gamma;
};
//==================================================pixfmt_alpha_blend_rgb
template<class Blender, class RenBuf> class pixfmt_alpha_blend_rgb
{
public:
typedef RenBuf rbuf_type;
typedef Blender blender_type;
typedef typename rbuf_type::row_data row_data;
typedef typename blender_type::color_type color_type;
typedef typename blender_type::order_type order_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_scale = color_type::base_scale,
base_mask = color_type::base_mask,
pix_width = sizeof(value_type) * 3
};
private:
//--------------------------------------------------------------------
AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c,
unsigned cover)
{
if (c.a)
{
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, cover);
}
}
}
//--------------------------------------------------------------------
AGG_INLINE void copy_or_blend_pix(value_type* p,
const color_type& c)
{
if (c.a)
{
if(c.a == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, c.a);
}
}
}
public:
//--------------------------------------------------------------------
explicit pixfmt_alpha_blend_rgb(rbuf_type& rb) :
m_rbuf(&rb)
{}
void attach(rbuf_type& rb) { m_rbuf = &rb; }
//--------------------------------------------------------------------
template<class PixFmt>
bool attach(PixFmt& pixf, int x1, int y1, int x2, int y2)
{
rect_i r(x1, y1, x2, y2);
if(r.clip(rect_i(0, 0, pixf.width()-1, pixf.height()-1)))
{
int stride = pixf.stride();
m_rbuf->attach(pixf.pix_ptr(r.x1, stride < 0 ? r.y2 : r.y1),
(r.x2 - r.x1) + 1,
(r.y2 - r.y1) + 1,
stride);
return true;
}
return false;
}
//--------------------------------------------------------------------
Blender& blender() { return m_blender; }
//--------------------------------------------------------------------
AGG_INLINE unsigned width() const { return m_rbuf->width(); }
AGG_INLINE unsigned height() const { return m_rbuf->height(); }
AGG_INLINE int stride() const { return m_rbuf->stride(); }
//--------------------------------------------------------------------
AGG_INLINE int8u* row_ptr(int y) { return m_rbuf->row_ptr(y); }
AGG_INLINE const int8u* row_ptr(int y) const { return m_rbuf->row_ptr(y); }
AGG_INLINE row_data row(int y) const { return m_rbuf->row(y); }
//--------------------------------------------------------------------
AGG_INLINE int8u* pix_ptr(int x, int y)
{
return m_rbuf->row_ptr(y) + x * pix_width;
}
AGG_INLINE const int8u* pix_ptr(int x, int y) const
{
return m_rbuf->row_ptr(y) + x * pix_width;
}
//--------------------------------------------------------------------
AGG_INLINE static void make_pix(int8u* p, const color_type& c)
{
((value_type*)p)[order_type::R] = c.r;
((value_type*)p)[order_type::G] = c.g;
((value_type*)p)[order_type::B] = c.b;
}
//--------------------------------------------------------------------
AGG_INLINE color_type pixel(int x, int y) const
{
value_type* p = (value_type*)m_rbuf->row_ptr(y) + x + x + x;
return color_type(p[order_type::R],
p[order_type::G],
p[order_type::B]);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_pixel(int x, int y, const color_type& c)
{
value_type* p = (value_type*)m_rbuf->row_ptr(x, y, 1) + x + x + x;
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
//--------------------------------------------------------------------
AGG_INLINE void blend_pixel(int x, int y, const color_type& c, int8u cover)
{
copy_or_blend_pix((value_type*)m_rbuf->row_ptr(x, y, 1) + x + x + x, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
value_type* p = (value_type*)m_rbuf->row_ptr(x, y, len) + x + x + x;
do
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
p += 3;
}
while(--len);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_hline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
calc_type alpha = (calc_type(c.a) * (calc_type(cover) + 1)) >> 8;
if(alpha == base_mask)
{
do
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
p += 3;
}
while(--len);
}
else
{
do
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, cover);
p += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_vline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
if (c.a)
{
value_type* p;
calc_type alpha = (calc_type(c.a) * (cover + 1)) >> 8;
if(alpha == base_mask)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
do
{
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
if(alpha == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, *covers);
}
p += 3;
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
if (c.a)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
calc_type alpha = (calc_type(c.a) * (calc_type(*covers) + 1)) >> 8;
if(alpha == base_mask)
{
p[order_type::R] = c.r;
p[order_type::G] = c.g;
p[order_type::B] = c.b;
}
else
{
m_blender.blend_pix(p, c.r, c.g, c.b, alpha, *covers);
}
++covers;
}
while(--len);
}
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y,
unsigned len,
const color_type* colors)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
do
{
p[order_type::R] = colors->r;
p[order_type::G] = colors->g;
p[order_type::B] = colors->b;
++colors;
p += 3;
}
while(--len);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y,
unsigned len,
const color_type* colors)
{
do
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
p[order_type::R] = colors->r;
p[order_type::G] = colors->g;
p[order_type::B] = colors->b;
++colors;
}
while(--len);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p = (value_type*)
m_rbuf->row_ptr(x, y, len) + x + x + x;
if(covers)
{
do
{
copy_or_blend_pix(p, *colors++, *covers++);
p += 3;
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
copy_or_blend_pix(p, *colors++);
p += 3;
}
while(--len);
}
else
{
do
{
copy_or_blend_pix(p, *colors++, cover);
p += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
value_type* p;
if(covers)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
copy_or_blend_pix(p, *colors++, *covers++);
}
while(--len);
}
else
{
if(cover == 255)
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
copy_or_blend_pix(p, *colors++);
}
while(--len);
}
else
{
do
{
p = (value_type*)
m_rbuf->row_ptr(x, y++, 1) + x + x + x;
copy_or_blend_pix(p, *colors++, cover);
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class Function> void for_each_pixel(Function f)
{
unsigned y;
for(y = 0; y < height(); ++y)
{
row_data r = m_rbuf->row(y);
if(r.ptr)
{
unsigned len = r.x2 - r.x1 + 1;
value_type* p = (value_type*)
m_rbuf->row_ptr(r.x1, y, len) + r.x1 * 3;
do
{
f(p);
p += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_dir(const GammaLut& g)
{
for_each_pixel(apply_gamma_dir_rgb<color_type, order_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class GammaLut> void apply_gamma_inv(const GammaLut& g)
{
for_each_pixel(apply_gamma_inv_rgb<color_type, order_type, GammaLut>(g));
}
//--------------------------------------------------------------------
template<class RenBuf2>
void copy_from(const RenBuf2& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len)
{
const int8u* p = from.row_ptr(ysrc);
if(p)
{
memmove(m_rbuf->row_ptr(xdst, ydst, len) + xdst * pix_width,
p + xsrc * pix_width,
len * pix_width);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from(const SrcPixelFormatRenderer& from,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::order_type src_order;
const value_type* psrc = (const value_type*)from.row_ptr(ysrc);
if(psrc)
{
psrc += xsrc * 4;
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst * 3;
if(cover == 255)
{
do
{
value_type alpha = psrc[src_order::A];
if(alpha)
{
if(alpha == base_mask)
{
pdst[order_type::R] = psrc[src_order::R];
pdst[order_type::G] = psrc[src_order::G];
pdst[order_type::B] = psrc[src_order::B];
}
else
{
m_blender.blend_pix(pdst,
psrc[src_order::R],
psrc[src_order::G],
psrc[src_order::B],
alpha);
}
}
psrc += 4;
pdst += 3;
}
while(--len);
}
else
{
color_type color;
do
{
color.r = psrc[src_order::R];
color.g = psrc[src_order::G];
color.b = psrc[src_order::B];
color.a = psrc[src_order::A];
copy_or_blend_pix(pdst, color, cover);
psrc += 4;
pdst += 3;
}
while(--len);
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_color(const SrcPixelFormatRenderer& from,
const color_type& color,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst * 3;
do
{
copy_or_blend_pix(pdst,
color,
(*psrc * cover + base_mask) >> base_shift);
++psrc;
pdst += 3;
}
while(--len);
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_lut(const SrcPixelFormatRenderer& from,
const color_type* color_lut,
int xdst, int ydst,
int xsrc, int ysrc,
unsigned len,
int8u cover)
{
typedef typename SrcPixelFormatRenderer::value_type src_value_type;
const src_value_type* psrc = (src_value_type*)from.row_ptr(ysrc);
if(psrc)
{
value_type* pdst =
(value_type*)m_rbuf->row_ptr(xdst, ydst, len) + xdst * 3;
if(cover == 255)
{
do
{
const color_type& color = color_lut[*psrc];
m_blender.blend_pix(pdst,
color.r, color.g, color.b, color.a);
++psrc;
pdst += 3;
}
while(--len);
}
else
{
do
{
copy_or_blend_pix(pdst, color_lut[*psrc], cover);
++psrc;
pdst += 3;
}
while(--len);
}
}
}
private:
rbuf_type* m_rbuf;
Blender m_blender;
};
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba8, order_rgb>, rendering_buffer> pixfmt_rgb24; //----pixfmt_rgb24
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba8, order_bgr>, rendering_buffer> pixfmt_bgr24; //----pixfmt_bgr24
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba16, order_rgb>, rendering_buffer> pixfmt_rgb48; //----pixfmt_rgb48
typedef pixfmt_alpha_blend_rgb<blender_rgb<rgba16, order_bgr>, rendering_buffer> pixfmt_bgr48; //----pixfmt_bgr48
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba8, order_rgb>, rendering_buffer> pixfmt_rgb24_pre; //----pixfmt_rgb24_pre
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba8, order_bgr>, rendering_buffer> pixfmt_bgr24_pre; //----pixfmt_bgr24_pre
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba16, order_rgb>, rendering_buffer> pixfmt_rgb48_pre; //----pixfmt_rgb48_pre
typedef pixfmt_alpha_blend_rgb<blender_rgb_pre<rgba16, order_bgr>, rendering_buffer> pixfmt_bgr48_pre; //----pixfmt_bgr48_pre
//-----------------------------------------------------pixfmt_rgb24_gamma
template<class Gamma> class pixfmt_rgb24_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_rgb, Gamma>, rendering_buffer>
{
public:
pixfmt_rgb24_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_rgb, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
//-----------------------------------------------------pixfmt_bgr24_gamma
template<class Gamma> class pixfmt_bgr24_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_bgr, Gamma>, rendering_buffer>
{
public:
pixfmt_bgr24_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba8, order_bgr, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
//-----------------------------------------------------pixfmt_rgb48_gamma
template<class Gamma> class pixfmt_rgb48_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_rgb, Gamma>, rendering_buffer>
{
public:
pixfmt_rgb48_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_rgb, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
//-----------------------------------------------------pixfmt_bgr48_gamma
template<class Gamma> class pixfmt_bgr48_gamma :
public pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_bgr, Gamma>, rendering_buffer>
{
public:
pixfmt_bgr48_gamma(rendering_buffer& rb, const Gamma& g) :
pixfmt_alpha_blend_rgb<blender_rgb_gamma<rgba16, order_bgr, Gamma>, rendering_buffer>(rb)
{
this->blender().gamma(g);
}
};
}
#endif

1309
deps/agg/include/agg_pixfmt_rgb_packed.h vendored Normal file

File diff suppressed because it is too large Load diff

2902
deps/agg/include/agg_pixfmt_rgba.h vendored Normal file

File diff suppressed because it is too large Load diff

157
deps/agg/include/agg_pixfmt_transposer.h vendored Normal file
View file

@ -0,0 +1,157 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_PIXFMT_TRANSPOSER_INCLUDED
#define AGG_PIXFMT_TRANSPOSER_INCLUDED
#include "agg_basics.h"
namespace agg
{
//=======================================================pixfmt_transposer
template<class PixFmt> class pixfmt_transposer
{
public:
typedef PixFmt pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
//--------------------------------------------------------------------
pixfmt_transposer() : m_pixf(0) {}
explicit pixfmt_transposer(pixfmt_type& pixf) : m_pixf(&pixf) {}
void attach(pixfmt_type& pixf) { m_pixf = &pixf; }
//--------------------------------------------------------------------
AGG_INLINE unsigned width() const { return m_pixf->height(); }
AGG_INLINE unsigned height() const { return m_pixf->width(); }
//--------------------------------------------------------------------
AGG_INLINE color_type pixel(int x, int y) const
{
return m_pixf->pixel(y, x);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_pixel(int x, int y, const color_type& c)
{
m_pixf->copy_pixel(y, x, c);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_pixel(int x, int y,
const color_type& c,
int8u cover)
{
m_pixf->blend_pixel(y, x, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_hline(int x, int y,
unsigned len,
const color_type& c)
{
m_pixf->copy_vline(y, x, len, c);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_vline(int x, int y,
unsigned len,
const color_type& c)
{
m_pixf->copy_hline(y, x, len, c);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_hline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
m_pixf->blend_vline(y, x, len, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_vline(int x, int y,
unsigned len,
const color_type& c,
int8u cover)
{
m_pixf->blend_hline(y, x, len, c, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_solid_hspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
m_pixf->blend_solid_vspan(y, x, len, c, covers);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_solid_vspan(int x, int y,
unsigned len,
const color_type& c,
const int8u* covers)
{
m_pixf->blend_solid_hspan(y, x, len, c, covers);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_color_hspan(int x, int y,
unsigned len,
const color_type* colors)
{
m_pixf->copy_color_vspan(y, x, len, colors);
}
//--------------------------------------------------------------------
AGG_INLINE void copy_color_vspan(int x, int y,
unsigned len,
const color_type* colors)
{
m_pixf->copy_color_hspan(y, x, len, colors);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_color_hspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
m_pixf->blend_color_vspan(y, x, len, colors, covers, cover);
}
//--------------------------------------------------------------------
AGG_INLINE void blend_color_vspan(int x, int y,
unsigned len,
const color_type* colors,
const int8u* covers,
int8u cover)
{
m_pixf->blend_color_hspan(y, x, len, colors, covers, cover);
}
private:
pixfmt_type* m_pixf;
};
}
#endif

761
deps/agg/include/agg_rasterizer_cells_aa.h vendored Executable file
View file

@ -0,0 +1,761 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_CELLS_AA_INCLUDED
#define AGG_RASTERIZER_CELLS_AA_INCLUDED
#include <string.h>
#include <cstdlib>
#include <limits>
#include "agg_math.h"
#include "agg_array.h"
namespace agg
{
//-----------------------------------------------------rasterizer_cells_aa
// An internal class that implements the main rasterization algorithm.
// Used in the rasterizer. Should not be used direcly.
template<class Cell> class rasterizer_cells_aa
{
enum cell_block_scale_e
{
cell_block_shift = 12,
cell_block_size = 1 << cell_block_shift,
cell_block_mask = cell_block_size - 1,
cell_block_pool = 256,
cell_block_limit = 1024
};
struct sorted_y
{
unsigned start;
unsigned num;
};
public:
typedef Cell cell_type;
typedef rasterizer_cells_aa<Cell> self_type;
~rasterizer_cells_aa();
rasterizer_cells_aa();
void reset();
void style(const cell_type& style_cell);
void line(int x1, int y1, int x2, int y2);
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
void sort_cells();
unsigned total_cells() const
{
return m_num_cells;
}
unsigned scanline_num_cells(unsigned y) const
{
return m_sorted_y[y - m_min_y].num;
}
const cell_type* const* scanline_cells(unsigned y) const
{
return m_sorted_cells.data() + m_sorted_y[y - m_min_y].start;
}
bool sorted() const { return m_sorted; }
private:
rasterizer_cells_aa(const self_type&);
const self_type& operator = (const self_type&);
void set_curr_cell(int x, int y);
void add_curr_cell();
void render_hline(int ey, int x1, int y1, int x2, int y2);
void allocate_block();
private:
unsigned m_num_blocks;
unsigned m_max_blocks;
unsigned m_curr_block;
unsigned m_num_cells;
cell_type** m_cells;
cell_type* m_curr_cell_ptr;
pod_vector<cell_type*> m_sorted_cells;
pod_vector<sorted_y> m_sorted_y;
cell_type m_curr_cell;
cell_type m_style_cell;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
bool m_sorted;
};
//------------------------------------------------------------------------
template<class Cell>
rasterizer_cells_aa<Cell>::~rasterizer_cells_aa()
{
if(m_num_blocks)
{
cell_type** ptr = m_cells + m_num_blocks - 1;
while(m_num_blocks--)
{
pod_allocator<cell_type>::deallocate(*ptr, cell_block_size);
ptr--;
}
pod_allocator<cell_type*>::deallocate(m_cells, m_max_blocks);
}
}
//------------------------------------------------------------------------
template<class Cell>
rasterizer_cells_aa<Cell>::rasterizer_cells_aa() :
m_num_blocks(0),
m_max_blocks(0),
m_curr_block(0),
m_num_cells(0),
m_cells(0),
m_curr_cell_ptr(0),
m_sorted_cells(),
m_sorted_y(),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF),
m_sorted(false)
{
m_style_cell.initial();
m_curr_cell.initial();
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::reset()
{
m_num_cells = 0;
m_curr_block = 0;
m_curr_cell.initial();
m_style_cell.initial();
m_sorted = false;
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::add_curr_cell()
{
if(m_curr_cell.area | m_curr_cell.cover)
{
if((m_num_cells & cell_block_mask) == 0)
{
if(m_num_blocks >= cell_block_limit) return;
allocate_block();
}
*m_curr_cell_ptr++ = m_curr_cell;
++m_num_cells;
}
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::set_curr_cell(int x, int y)
{
if(m_curr_cell.not_equal(x, y, m_style_cell))
{
add_curr_cell();
m_curr_cell.style(m_style_cell);
m_curr_cell.x = x;
m_curr_cell.y = y;
m_curr_cell.cover = 0;
m_curr_cell.area = 0;
}
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::render_hline(int ey,
int x1, int y1,
int x2, int y2)
{
int ex1 = x1 >> poly_subpixel_shift;
int ex2 = x2 >> poly_subpixel_shift;
int fx1 = x1 & poly_subpixel_mask;
int fx2 = x2 & poly_subpixel_mask;
int delta, p, first, dx;
int incr, lift, mod, rem;
//trivial case. Happens often
if(y1 == y2)
{
set_curr_cell(ex2, ey);
return;
}
//everything is located in a single cell. That is easy!
if(ex1 == ex2)
{
delta = y2 - y1;
m_curr_cell.cover += delta;
m_curr_cell.area += (fx1 + fx2) * delta;
return;
}
//ok, we'll have to render a run of adjacent cells on the same
//hline...
p = (poly_subpixel_scale - fx1) * (y2 - y1);
first = poly_subpixel_scale;
incr = 1;
dx = x2 - x1;
if(dx < 0)
{
p = fx1 * (y2 - y1);
first = 0;
incr = -1;
dx = -dx;
}
delta = p / dx;
mod = p % dx;
if(mod < 0)
{
delta--;
mod += dx;
}
m_curr_cell.cover += delta;
m_curr_cell.area += (fx1 + first) * delta;
ex1 += incr;
set_curr_cell(ex1, ey);
y1 += delta;
if(ex1 != ex2)
{
p = poly_subpixel_scale * (y2 - y1 + delta);
lift = p / dx;
rem = p % dx;
if (rem < 0)
{
lift--;
rem += dx;
}
mod -= dx;
while (ex1 != ex2)
{
delta = lift;
mod += rem;
if(mod >= 0)
{
mod -= dx;
delta++;
}
m_curr_cell.cover += delta;
m_curr_cell.area += poly_subpixel_scale * delta;
y1 += delta;
ex1 += incr;
set_curr_cell(ex1, ey);
}
}
delta = y2 - y1;
m_curr_cell.cover += delta;
m_curr_cell.area += (fx2 + poly_subpixel_scale - first) * delta;
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::style(const cell_type& style_cell)
{
m_style_cell.style(style_cell);
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::line(int x1, int y1, int x2, int y2)
{
enum dx_limit_e { dx_limit = 16384 << poly_subpixel_shift };
int dx = x2 - x1;
if(dx >= dx_limit || dx <= -dx_limit)
{
int cx = (x1 + x2) >> 1;
int cy = (y1 + y2) >> 1;
// Bail if values are so large they are likely to wrap
if ((std::abs(x1) >= std::numeric_limits<int>::max()/2) || (std::abs(y1) >= std::numeric_limits<int>::max()/2) ||
(std::abs(x2) >= std::numeric_limits<int>::max()/2) || (std::abs(y2) >= std::numeric_limits<int>::max()/2))
return;
line(x1, y1, cx, cy);
line(cx, cy, x2, y2);
}
int dy = y2 - y1;
int ex1 = x1 >> poly_subpixel_shift;
int ex2 = x2 >> poly_subpixel_shift;
int ey1 = y1 >> poly_subpixel_shift;
int ey2 = y2 >> poly_subpixel_shift;
int fy1 = y1 & poly_subpixel_mask;
int fy2 = y2 & poly_subpixel_mask;
int x_from, x_to;
int p, rem, mod, lift, delta, first, incr;
if(ex1 < m_min_x) m_min_x = ex1;
if(ex1 > m_max_x) m_max_x = ex1;
if(ey1 < m_min_y) m_min_y = ey1;
if(ey1 > m_max_y) m_max_y = ey1;
if(ex2 < m_min_x) m_min_x = ex2;
if(ex2 > m_max_x) m_max_x = ex2;
if(ey2 < m_min_y) m_min_y = ey2;
if(ey2 > m_max_y) m_max_y = ey2;
set_curr_cell(ex1, ey1);
//everything is on a single hline
if(ey1 == ey2)
{
render_hline(ey1, x1, fy1, x2, fy2);
return;
}
//Vertical line - we have to calculate start and end cells,
//and then - the common values of the area and coverage for
//all cells of the line. We know exactly there's only one
//cell, so, we don't have to call render_hline().
incr = 1;
if(dx == 0)
{
int ex = x1 >> poly_subpixel_shift;
int two_fx = (x1 - (ex << poly_subpixel_shift)) << 1;
int area;
first = poly_subpixel_scale;
if(dy < 0)
{
first = 0;
incr = -1;
}
x_from = x1;
//render_hline(ey1, x_from, fy1, x_from, first);
delta = first - fy1;
m_curr_cell.cover += delta;
m_curr_cell.area += two_fx * delta;
ey1 += incr;
set_curr_cell(ex, ey1);
delta = first + first - poly_subpixel_scale;
area = two_fx * delta;
while(ey1 != ey2)
{
//render_hline(ey1, x_from, poly_subpixel_scale - first, x_from, first);
m_curr_cell.cover = delta;
m_curr_cell.area = area;
ey1 += incr;
set_curr_cell(ex, ey1);
}
//render_hline(ey1, x_from, poly_subpixel_scale - first, x_from, fy2);
delta = fy2 - poly_subpixel_scale + first;
m_curr_cell.cover += delta;
m_curr_cell.area += two_fx * delta;
return;
}
//ok, we have to render several hlines
p = (poly_subpixel_scale - fy1) * dx;
first = poly_subpixel_scale;
if(dy < 0)
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = p / dy;
mod = p % dy;
if(mod < 0)
{
delta--;
mod += dy;
}
x_from = x1 + delta;
render_hline(ey1, x1, fy1, x_from, first);
ey1 += incr;
set_curr_cell(x_from >> poly_subpixel_shift, ey1);
if(ey1 != ey2)
{
p = poly_subpixel_scale * dx;
lift = p / dy;
rem = p % dy;
if(rem < 0)
{
lift--;
rem += dy;
}
mod -= dy;
while(ey1 != ey2)
{
delta = lift;
mod += rem;
if (mod >= 0)
{
mod -= dy;
delta++;
}
x_to = x_from + delta;
render_hline(ey1, x_from, poly_subpixel_scale - first, x_to, first);
x_from = x_to;
ey1 += incr;
set_curr_cell(x_from >> poly_subpixel_shift, ey1);
}
}
render_hline(ey1, x_from, poly_subpixel_scale - first, x2, fy2);
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::allocate_block()
{
if(m_curr_block >= m_num_blocks)
{
if(m_num_blocks >= m_max_blocks)
{
cell_type** new_cells =
pod_allocator<cell_type*>::allocate(m_max_blocks +
cell_block_pool);
if(m_cells)
{
memcpy(new_cells, m_cells, m_max_blocks * sizeof(cell_type*));
pod_allocator<cell_type*>::deallocate(m_cells, m_max_blocks);
}
m_cells = new_cells;
m_max_blocks += cell_block_pool;
}
m_cells[m_num_blocks++] =
pod_allocator<cell_type>::allocate(cell_block_size);
}
m_curr_cell_ptr = m_cells[m_curr_block++];
}
//------------------------------------------------------------------------
template <class T> static AGG_INLINE void swap_cells(T* a, T* b)
{
T temp = *a;
*a = *b;
*b = temp;
}
//------------------------------------------------------------------------
enum
{
qsort_threshold = 9
};
//------------------------------------------------------------------------
template<class Cell>
void qsort_cells(Cell** start, unsigned num)
{
Cell** stack[80];
Cell*** top;
Cell** limit;
Cell** base;
limit = start + num;
base = start;
top = stack;
for (;;)
{
int len = int(limit - base);
Cell** i;
Cell** j;
Cell** pivot;
if(len > qsort_threshold)
{
// we use base + len/2 as the pivot
pivot = base + len / 2;
swap_cells(base, pivot);
i = base + 1;
j = limit - 1;
// now ensure that *i <= *base <= *j
if((*j)->x < (*i)->x)
{
swap_cells(i, j);
}
if((*base)->x < (*i)->x)
{
swap_cells(base, i);
}
if((*j)->x < (*base)->x)
{
swap_cells(base, j);
}
for(;;)
{
int x = (*base)->x;
do i++; while( (*i)->x < x );
do j--; while( x < (*j)->x );
if(i > j)
{
break;
}
swap_cells(i, j);
}
swap_cells(base, j);
// now, push the largest sub-array
if(j - base > limit - i)
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
// the sub-array is small, perform insertion sort
j = base;
i = j + 1;
for(; i < limit; j = i, i++)
{
for(; j[1]->x < (*j)->x; j--)
{
swap_cells(j + 1, j);
if (j == base)
{
break;
}
}
}
if(top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
{
break;
}
}
}
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::sort_cells()
{
if(m_sorted) return; //Perform sort only the first time.
add_curr_cell();
m_curr_cell.x = 0x7FFFFFFF;
m_curr_cell.y = 0x7FFFFFFF;
m_curr_cell.cover = 0;
m_curr_cell.area = 0;
if(m_num_cells == 0) return;
// DBG: Check to see if min/max works well.
//for(unsigned nc = 0; nc < m_num_cells; nc++)
//{
// cell_type* cell = m_cells[nc >> cell_block_shift] + (nc & cell_block_mask);
// if(cell->x < m_min_x ||
// cell->y < m_min_y ||
// cell->x > m_max_x ||
// cell->y > m_max_y)
// {
// cell = cell; // Breakpoint here
// }
//}
// Allocate the array of cell pointers
m_sorted_cells.allocate(m_num_cells, 16);
// Allocate and zero the Y array
m_sorted_y.allocate(m_max_y - m_min_y + 1, 16);
m_sorted_y.zero();
// Create the Y-histogram (count the numbers of cells for each Y)
cell_type** block_ptr = m_cells;
cell_type* cell_ptr;
unsigned nb = m_num_cells >> cell_block_shift;
unsigned i;
while(nb--)
{
cell_ptr = *block_ptr++;
i = cell_block_size;
while(i--)
{
m_sorted_y[cell_ptr->y - m_min_y].start++;
++cell_ptr;
}
}
cell_ptr = *block_ptr++;
i = m_num_cells & cell_block_mask;
while(i--)
{
m_sorted_y[cell_ptr->y - m_min_y].start++;
++cell_ptr;
}
// Convert the Y-histogram into the array of starting indexes
unsigned start = 0;
for(i = 0; i < m_sorted_y.size(); i++)
{
unsigned v = m_sorted_y[i].start;
m_sorted_y[i].start = start;
start += v;
}
// Fill the cell pointer array sorted by Y
block_ptr = m_cells;
nb = m_num_cells >> cell_block_shift;
while(nb--)
{
cell_ptr = *block_ptr++;
i = cell_block_size;
while(i--)
{
sorted_y& curr_y = m_sorted_y[cell_ptr->y - m_min_y];
m_sorted_cells[curr_y.start + curr_y.num] = cell_ptr;
++curr_y.num;
++cell_ptr;
}
}
cell_ptr = *block_ptr++;
i = m_num_cells & cell_block_mask;
while(i--)
{
sorted_y& curr_y = m_sorted_y[cell_ptr->y - m_min_y];
m_sorted_cells[curr_y.start + curr_y.num] = cell_ptr;
++curr_y.num;
++cell_ptr;
}
// Finally arrange the X-arrays
for(i = 0; i < m_sorted_y.size(); i++)
{
const sorted_y& curr_y = m_sorted_y[i];
if(curr_y.num)
{
qsort_cells(m_sorted_cells.data() + curr_y.start, curr_y.num);
}
}
m_sorted = true;
}
//------------------------------------------------------scanline_hit_test
class scanline_hit_test
{
public:
scanline_hit_test(int x) : m_x(x), m_hit(false) {}
void reset_spans() {}
void finalize(int) {}
void add_cell(int x, int)
{
if(m_x == x) m_hit = true;
}
void add_span(int x, int len, int)
{
if(m_x >= x && m_x < x+len) m_hit = true;
}
unsigned num_spans() const { return 1; }
bool hit() const { return m_hit; }
private:
int m_x;
bool m_hit;
};
}
#endif

698
deps/agg/include/agg_rasterizer_compound_aa.h vendored Executable file
View file

@ -0,0 +1,698 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_COMPOUND_AA_INCLUDED
#define AGG_RASTERIZER_COMPOUND_AA_INCLUDED
#include "agg_rasterizer_cells_aa.h"
#include "agg_rasterizer_sl_clip.h"
namespace agg
{
//-----------------------------------------------------------cell_style_aa
// A pixel cell. There're no constructors defined and it was done
// intentionally in order to avoid extra overhead when allocating an
// array of cells.
struct cell_style_aa
{
int x;
int y;
int cover;
int area;
int16 left, right;
void initial()
{
x = 0x7FFFFFFF;
y = 0x7FFFFFFF;
cover = 0;
area = 0;
left = -1;
right = -1;
}
void style(const cell_style_aa& c)
{
left = c.left;
right = c.right;
}
int not_equal(int ex, int ey, const cell_style_aa& c) const
{
return (ex - x) | (ey - y) | (left - c.left) | (right - c.right);
}
};
//===========================================================layer_order_e
enum layer_order_e
{
layer_unsorted, //------layer_unsorted
layer_direct, //------layer_direct
layer_inverse //------layer_inverse
};
//==================================================rasterizer_compound_aa
template<class Clip=rasterizer_sl_clip_int> class rasterizer_compound_aa
{
struct style_info
{
unsigned start_cell;
unsigned num_cells;
int last_x;
};
struct cell_info
{
int x, area, cover;
};
public:
typedef Clip clip_type;
typedef typename Clip::conv_type conv_type;
typedef typename Clip::coord_type coord_type;
enum aa_scale_e
{
aa_shift = 8,
aa_scale = 1 << aa_shift,
aa_mask = aa_scale - 1,
aa_scale2 = aa_scale * 2,
aa_mask2 = aa_scale2 - 1
};
//--------------------------------------------------------------------
rasterizer_compound_aa() :
m_outline(),
m_clipper(),
m_filling_rule(fill_non_zero),
m_layer_order(layer_direct),
m_styles(), // Active Styles
m_ast(), // Active Style Table (unique values)
m_asm(), // Active Style Mask
m_cells(),
m_cover_buf(),
m_master_alpha(),
m_min_style(0x7FFFFFFF),
m_max_style(-0x7FFFFFFF),
m_start_x(0),
m_start_y(0),
m_scan_y(0x7FFFFFFF),
m_sl_start(0),
m_sl_len(0)
{}
//--------------------------------------------------------------------
void reset();
void reset_clipping();
void clip_box(double x1, double y1, double x2, double y2);
void filling_rule(filling_rule_e filling_rule);
void layer_order(layer_order_e order);
void master_alpha(int style, double alpha);
//--------------------------------------------------------------------
void styles(int left, int right);
void move_to(int x, int y);
void line_to(int x, int y);
void move_to_d(double x, double y);
void line_to_d(double x, double y);
void add_vertex(double x, double y, unsigned cmd);
void edge(int x1, int y1, int x2, int y2);
void edge_d(double x1, double y1, double x2, double y2);
//-------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
if(m_outline.sorted()) reset();
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
}
//--------------------------------------------------------------------
int min_x() const { return m_outline.min_x(); }
int min_y() const { return m_outline.min_y(); }
int max_x() const { return m_outline.max_x(); }
int max_y() const { return m_outline.max_y(); }
int min_style() const { return m_min_style; }
int max_style() const { return m_max_style; }
//--------------------------------------------------------------------
void sort();
bool rewind_scanlines();
unsigned sweep_styles();
int scanline_start() const { return m_sl_start; }
unsigned scanline_length() const { return m_sl_len; }
unsigned style(unsigned style_idx) const;
cover_type* allocate_cover_buffer(unsigned len);
//--------------------------------------------------------------------
bool navigate_scanline(int y);
bool hit_test(int tx, int ty);
//--------------------------------------------------------------------
AGG_INLINE unsigned calculate_alpha(int area, unsigned master_alpha) const
{
int cover = area >> (poly_subpixel_shift*2 + 1 - aa_shift);
if(cover < 0) cover = -cover;
if(m_filling_rule == fill_even_odd)
{
cover &= aa_mask2;
if(cover > aa_scale)
{
cover = aa_scale2 - cover;
}
}
if(cover > aa_mask) cover = aa_mask;
return (cover * master_alpha + aa_mask) >> aa_shift;
}
//--------------------------------------------------------------------
// Sweeps one scanline with one style index. The style ID can be
// determined by calling style().
template<class Scanline> bool sweep_scanline(Scanline& sl, int style_idx)
{
int scan_y = m_scan_y - 1;
if(scan_y > m_outline.max_y()) return false;
sl.reset_spans();
unsigned master_alpha = aa_mask;
if(style_idx < 0)
{
style_idx = 0;
}
else
{
style_idx++;
master_alpha = m_master_alpha[m_ast[style_idx] + m_min_style - 1];
}
const style_info& st = m_styles[m_ast[style_idx]];
unsigned num_cells = st.num_cells;
cell_info* cell = &m_cells[st.start_cell];
int cover = 0;
while(num_cells--)
{
unsigned alpha;
int x = cell->x;
int area = cell->area;
cover += cell->cover;
++cell;
if(area)
{
alpha = calculate_alpha((cover << (poly_subpixel_shift + 1)) - area,
master_alpha);
sl.add_cell(x, alpha);
x++;
}
if(num_cells && cell->x > x)
{
alpha = calculate_alpha(cover << (poly_subpixel_shift + 1),
master_alpha);
if(alpha)
{
sl.add_span(x, cell->x - x, alpha);
}
}
}
if(sl.num_spans() == 0) return false;
sl.finalize(scan_y);
return true;
}
private:
void add_style(int style_id);
void allocate_master_alpha();
//--------------------------------------------------------------------
// Disable copying
rasterizer_compound_aa(const rasterizer_compound_aa<Clip>&);
const rasterizer_compound_aa<Clip>&
operator = (const rasterizer_compound_aa<Clip>&);
private:
rasterizer_cells_aa<cell_style_aa> m_outline;
clip_type m_clipper;
filling_rule_e m_filling_rule;
layer_order_e m_layer_order;
pod_vector<style_info> m_styles; // Active Styles
pod_vector<unsigned> m_ast; // Active Style Table (unique values)
pod_vector<int8u> m_asm; // Active Style Mask
pod_vector<cell_info> m_cells;
pod_vector<cover_type> m_cover_buf;
pod_bvector<unsigned> m_master_alpha;
int m_min_style;
int m_max_style;
coord_type m_start_x;
coord_type m_start_y;
int m_scan_y;
int m_sl_start;
unsigned m_sl_len;
};
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::reset()
{
m_outline.reset();
m_min_style = 0x7FFFFFFF;
m_max_style = -0x7FFFFFFF;
m_scan_y = 0x7FFFFFFF;
m_sl_start = 0;
m_sl_len = 0;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::filling_rule(filling_rule_e filling_rule)
{
m_filling_rule = filling_rule;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::layer_order(layer_order_e order)
{
m_layer_order = order;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::clip_box(double x1, double y1,
double x2, double y2)
{
reset();
m_clipper.clip_box(conv_type::upscale(x1), conv_type::upscale(y1),
conv_type::upscale(x2), conv_type::upscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::reset_clipping()
{
reset();
m_clipper.reset_clipping();
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::styles(int left, int right)
{
cell_style_aa cell;
cell.initial();
cell.left = (int16)left;
cell.right = (int16)right;
m_outline.style(cell);
if(left >= 0 && left < m_min_style) m_min_style = left;
if(left >= 0 && left > m_max_style) m_max_style = left;
if(right >= 0 && right < m_min_style) m_min_style = right;
if(right >= 0 && right > m_max_style) m_max_style = right;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::move_to(int x, int y)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(m_start_x = conv_type::downscale(x),
m_start_y = conv_type::downscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::line_to(int x, int y)
{
m_clipper.line_to(m_outline,
conv_type::downscale(x),
conv_type::downscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::move_to_d(double x, double y)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(m_start_x = conv_type::upscale(x),
m_start_y = conv_type::upscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::line_to_d(double x, double y)
{
m_clipper.line_to(m_outline,
conv_type::upscale(x),
conv_type::upscale(y));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
move_to_d(x, y);
}
else
if(is_vertex(cmd))
{
line_to_d(x, y);
}
else
if(is_close(cmd))
{
m_clipper.line_to(m_outline, m_start_x, m_start_y);
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::edge(int x1, int y1, int x2, int y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::downscale(x1), conv_type::downscale(y1));
m_clipper.line_to(m_outline,
conv_type::downscale(x2),
conv_type::downscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::edge_d(double x1, double y1,
double x2, double y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::upscale(x1), conv_type::upscale(y1));
m_clipper.line_to(m_outline,
conv_type::upscale(x2),
conv_type::upscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE void rasterizer_compound_aa<Clip>::sort()
{
m_outline.sort_cells();
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_compound_aa<Clip>::rewind_scanlines()
{
m_outline.sort_cells();
if(m_outline.total_cells() == 0)
{
return false;
}
if(m_max_style < m_min_style)
{
return false;
}
m_scan_y = m_outline.min_y();
m_styles.allocate(m_max_style - m_min_style + 2, 128);
allocate_master_alpha();
return true;
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE void rasterizer_compound_aa<Clip>::add_style(int style_id)
{
if(style_id < 0) style_id = 0;
else style_id -= m_min_style - 1;
unsigned nbyte = style_id >> 3;
unsigned mask = 1 << (style_id & 7);
style_info* style = &m_styles[style_id];
if((m_asm[nbyte] & mask) == 0)
{
m_ast.add(style_id);
m_asm[nbyte] |= mask;
style->start_cell = 0;
style->num_cells = 0;
style->last_x = -0x7FFFFFFF;
}
++style->start_cell;
}
//------------------------------------------------------------------------
// Returns the number of styles
template<class Clip>
unsigned rasterizer_compound_aa<Clip>::sweep_styles()
{
for(;;)
{
if(m_scan_y > m_outline.max_y()) return 0;
unsigned num_cells = m_outline.scanline_num_cells(m_scan_y);
const cell_style_aa* const* cells = m_outline.scanline_cells(m_scan_y);
unsigned num_styles = m_max_style - m_min_style + 2;
const cell_style_aa* curr_cell;
unsigned style_id;
style_info* style;
cell_info* cell;
m_cells.allocate(num_cells * 2, 256); // Each cell can have two styles
m_ast.capacity(num_styles, 64);
m_asm.allocate((num_styles + 7) >> 3, 8);
m_asm.zero();
if(num_cells)
{
// Pre-add zero (for no-fill style, that is, -1).
// We need that to ensure that the "-1 style" would go first.
m_asm[0] |= 1;
m_ast.add(0);
style = &m_styles[0];
style->start_cell = 0;
style->num_cells = 0;
style->last_x = -0x7FFFFFFF;
m_sl_start = cells[0]->x;
m_sl_len = cells[num_cells-1]->x - m_sl_start + 1;
while(num_cells--)
{
curr_cell = *cells++;
add_style(curr_cell->left);
add_style(curr_cell->right);
}
// Convert the Y-histogram into the array of starting indexes
unsigned i;
unsigned start_cell = 0;
for(i = 0; i < m_ast.size(); i++)
{
style_info& st = m_styles[m_ast[i]];
unsigned v = st.start_cell;
st.start_cell = start_cell;
start_cell += v;
}
cells = m_outline.scanline_cells(m_scan_y);
num_cells = m_outline.scanline_num_cells(m_scan_y);
while(num_cells--)
{
curr_cell = *cells++;
style_id = (curr_cell->left < 0) ? 0 :
curr_cell->left - m_min_style + 1;
style = &m_styles[style_id];
if(curr_cell->x == style->last_x)
{
cell = &m_cells[style->start_cell + style->num_cells - 1];
cell->area += curr_cell->area;
cell->cover += curr_cell->cover;
}
else
{
cell = &m_cells[style->start_cell + style->num_cells];
cell->x = curr_cell->x;
cell->area = curr_cell->area;
cell->cover = curr_cell->cover;
style->last_x = curr_cell->x;
style->num_cells++;
}
style_id = (curr_cell->right < 0) ? 0 :
curr_cell->right - m_min_style + 1;
style = &m_styles[style_id];
if(curr_cell->x == style->last_x)
{
cell = &m_cells[style->start_cell + style->num_cells - 1];
cell->area -= curr_cell->area;
cell->cover -= curr_cell->cover;
}
else
{
cell = &m_cells[style->start_cell + style->num_cells];
cell->x = curr_cell->x;
cell->area = -curr_cell->area;
cell->cover = -curr_cell->cover;
style->last_x = curr_cell->x;
style->num_cells++;
}
}
}
if(m_ast.size() > 1) break;
++m_scan_y;
}
++m_scan_y;
if(m_layer_order != layer_unsorted)
{
range_adaptor<pod_vector<unsigned> > ra(m_ast, 1, m_ast.size() - 1);
if(m_layer_order == layer_direct) quick_sort(ra, unsigned_greater);
else quick_sort(ra, unsigned_less);
}
return m_ast.size() - 1;
}
//------------------------------------------------------------------------
// Returns style ID depending of the existing style index
template<class Clip>
AGG_INLINE
unsigned rasterizer_compound_aa<Clip>::style(unsigned style_idx) const
{
return m_ast[style_idx + 1] + m_min_style - 1;
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_compound_aa<Clip>::navigate_scanline(int y)
{
m_outline.sort_cells();
if(m_outline.total_cells() == 0)
{
return false;
}
if(m_max_style < m_min_style)
{
return false;
}
if(y < m_outline.min_y() || y > m_outline.max_y())
{
return false;
}
m_scan_y = y;
m_styles.allocate(m_max_style - m_min_style + 2, 128);
allocate_master_alpha();
return true;
}
//------------------------------------------------------------------------
template<class Clip>
bool rasterizer_compound_aa<Clip>::hit_test(int tx, int ty)
{
if(!navigate_scanline(ty))
{
return false;
}
unsigned num_styles = sweep_styles();
if(num_styles <= 0)
{
return false;
}
scanline_hit_test sl(tx);
sweep_scanline(sl, -1);
return sl.hit();
}
//------------------------------------------------------------------------
template<class Clip>
cover_type* rasterizer_compound_aa<Clip>::allocate_cover_buffer(unsigned len)
{
m_cover_buf.allocate(len, 256);
return &m_cover_buf[0];
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::allocate_master_alpha()
{
while((int)m_master_alpha.size() <= m_max_style)
{
m_master_alpha.add(aa_mask);
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_compound_aa<Clip>::master_alpha(int style, double alpha)
{
if(style >= 0)
{
while((int)m_master_alpha.size() <= style)
{
m_master_alpha.add(aa_mask);
}
m_master_alpha[style] = uround(alpha * aa_mask);
}
}
}
#endif

View file

@ -0,0 +1,147 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_OUTLINE_INCLUDED
#define AGG_RASTERIZER_OUTLINE_INCLUDED
#include "agg_basics.h"
namespace agg
{
//======================================================rasterizer_outline
template<class Renderer> class rasterizer_outline
{
public:
explicit rasterizer_outline(Renderer& ren) :
m_ren(&ren),
m_start_x(0),
m_start_y(0),
m_vertices(0)
{}
void attach(Renderer& ren) { m_ren = &ren; }
//--------------------------------------------------------------------
void move_to(int x, int y)
{
m_vertices = 1;
m_ren->move_to(m_start_x = x, m_start_y = y);
}
//--------------------------------------------------------------------
void line_to(int x, int y)
{
++m_vertices;
m_ren->line_to(x, y);
}
//--------------------------------------------------------------------
void move_to_d(double x, double y)
{
move_to(m_ren->coord(x), m_ren->coord(y));
}
//--------------------------------------------------------------------
void line_to_d(double x, double y)
{
line_to(m_ren->coord(x), m_ren->coord(y));
}
//--------------------------------------------------------------------
void close()
{
if(m_vertices > 2)
{
line_to(m_start_x, m_start_y);
}
m_vertices = 0;
}
//--------------------------------------------------------------------
void add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
move_to_d(x, y);
}
else
{
if(is_end_poly(cmd))
{
if(is_closed(cmd)) close();
}
else
{
line_to_d(x, y);
}
}
}
//--------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
}
//--------------------------------------------------------------------
template<class VertexSource, class ColorStorage, class PathId>
void render_all_paths(VertexSource& vs,
const ColorStorage& colors,
const PathId& path_id,
unsigned num_paths)
{
for(unsigned i = 0; i < num_paths; i++)
{
m_ren->line_color(colors[i]);
add_path(vs, path_id[i]);
}
}
//--------------------------------------------------------------------
template<class Ctrl> void render_ctrl(Ctrl& c)
{
unsigned i;
for(i = 0; i < c.num_paths(); i++)
{
m_ren->line_color(c.color(i));
add_path(c, i);
}
}
private:
Renderer* m_ren;
int m_start_x;
int m_start_y;
unsigned m_vertices;
};
}
#endif

View file

@ -0,0 +1,599 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_OUTLINE_AA_INCLUDED
#define AGG_RASTERIZER_OUTLINE_AA_INCLUDED
#include "agg_basics.h"
#include "agg_line_aa_basics.h"
#include "agg_vertex_sequence.h"
namespace agg
{
//-------------------------------------------------------------------------
inline bool cmp_dist_start(int d) { return d > 0; }
inline bool cmp_dist_end(int d) { return d <= 0; }
//-----------------------------------------------------------line_aa_vertex
// Vertex (x, y) with the distance to the next one. The last vertex has
// the distance between the last and the first points
struct line_aa_vertex
{
int x;
int y;
int len;
line_aa_vertex() {}
line_aa_vertex(int x_, int y_) :
x(x_),
y(y_),
len(0)
{
}
bool operator () (const line_aa_vertex& val)
{
double dx = val.x - x;
double dy = val.y - y;
return (len = uround(sqrt(dx * dx + dy * dy))) >
(line_subpixel_scale + line_subpixel_scale / 2);
}
};
//----------------------------------------------------------outline_aa_join_e
enum outline_aa_join_e
{
outline_no_join, //-----outline_no_join
outline_miter_join, //-----outline_miter_join
outline_round_join, //-----outline_round_join
outline_miter_accurate_join //-----outline_accurate_join
};
//=======================================================rasterizer_outline_aa
template<class Renderer, class Coord=line_coord> class rasterizer_outline_aa
{
private:
//------------------------------------------------------------------------
struct draw_vars
{
unsigned idx;
int x1, y1, x2, y2;
line_parameters curr, next;
int lcurr, lnext;
int xb1, yb1, xb2, yb2;
unsigned flags;
};
void draw(draw_vars& dv, unsigned start, unsigned end);
public:
typedef line_aa_vertex vertex_type;
typedef vertex_sequence<vertex_type, 6> vertex_storage_type;
explicit rasterizer_outline_aa(Renderer& ren) :
m_ren(&ren),
m_line_join(ren.accurate_join_only() ?
outline_miter_accurate_join :
outline_round_join),
m_round_cap(false),
m_start_x(0),
m_start_y(0)
{}
void attach(Renderer& ren) { m_ren = &ren; }
//------------------------------------------------------------------------
void line_join(outline_aa_join_e join)
{
m_line_join = m_ren->accurate_join_only() ?
outline_miter_accurate_join :
join;
}
bool line_join() const { return m_line_join; }
//------------------------------------------------------------------------
void round_cap(bool v) { m_round_cap = v; }
bool round_cap() const { return m_round_cap; }
//------------------------------------------------------------------------
void move_to(int x, int y)
{
m_src_vertices.modify_last(vertex_type(m_start_x = x, m_start_y = y));
}
//------------------------------------------------------------------------
void line_to(int x, int y)
{
m_src_vertices.add(vertex_type(x, y));
}
//------------------------------------------------------------------------
void move_to_d(double x, double y)
{
move_to(Coord::conv(x), Coord::conv(y));
}
//------------------------------------------------------------------------
void line_to_d(double x, double y)
{
line_to(Coord::conv(x), Coord::conv(y));
}
//------------------------------------------------------------------------
void render(bool close_polygon);
//------------------------------------------------------------------------
void add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
render(false);
move_to_d(x, y);
}
else
{
if(is_end_poly(cmd))
{
render(is_closed(cmd));
if(is_closed(cmd))
{
move_to(m_start_x, m_start_y);
}
}
else
{
line_to_d(x, y);
}
}
}
//------------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
render(false);
}
//------------------------------------------------------------------------
template<class VertexSource, class ColorStorage, class PathId>
void render_all_paths(VertexSource& vs,
const ColorStorage& colors,
const PathId& path_id,
unsigned num_paths)
{
for(unsigned i = 0; i < num_paths; i++)
{
m_ren->color(colors[i]);
add_path(vs, path_id[i]);
}
}
//------------------------------------------------------------------------
template<class Ctrl> void render_ctrl(Ctrl& c)
{
unsigned i;
for(i = 0; i < c.num_paths(); i++)
{
m_ren->color(c.color(i));
add_path(c, i);
}
}
private:
rasterizer_outline_aa(const rasterizer_outline_aa<Renderer, Coord>&);
const rasterizer_outline_aa<Renderer, Coord>& operator =
(const rasterizer_outline_aa<Renderer, Coord>&);
Renderer* m_ren;
vertex_storage_type m_src_vertices;
outline_aa_join_e m_line_join;
bool m_round_cap;
int m_start_x;
int m_start_y;
};
//----------------------------------------------------------------------------
template<class Renderer, class Coord>
void rasterizer_outline_aa<Renderer, Coord>::draw(draw_vars& dv,
unsigned start,
unsigned end)
{
unsigned i;
const vertex_storage_type::value_type* v;
for(i = start; i < end; i++)
{
if(m_line_join == outline_round_join)
{
dv.xb1 = dv.curr.x1 + (dv.curr.y2 - dv.curr.y1);
dv.yb1 = dv.curr.y1 - (dv.curr.x2 - dv.curr.x1);
dv.xb2 = dv.curr.x2 + (dv.curr.y2 - dv.curr.y1);
dv.yb2 = dv.curr.y2 - (dv.curr.x2 - dv.curr.x1);
}
switch(dv.flags)
{
case 0: m_ren->line3(dv.curr, dv.xb1, dv.yb1, dv.xb2, dv.yb2); break;
case 1: m_ren->line2(dv.curr, dv.xb2, dv.yb2); break;
case 2: m_ren->line1(dv.curr, dv.xb1, dv.yb1); break;
case 3: m_ren->line0(dv.curr); break;
}
if(m_line_join == outline_round_join && (dv.flags & 2) == 0)
{
m_ren->pie(dv.curr.x2, dv.curr.y2,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1),
dv.curr.x2 + (dv.next.y2 - dv.next.y1),
dv.curr.y2 - (dv.next.x2 - dv.next.x1));
}
dv.x1 = dv.x2;
dv.y1 = dv.y2;
dv.lcurr = dv.lnext;
dv.lnext = m_src_vertices[dv.idx].len;
++dv.idx;
if(dv.idx >= m_src_vertices.size()) dv.idx = 0;
v = &m_src_vertices[dv.idx];
dv.x2 = v->x;
dv.y2 = v->y;
dv.curr = dv.next;
dv.next = line_parameters(dv.x1, dv.y1, dv.x2, dv.y2, dv.lnext);
dv.xb1 = dv.xb2;
dv.yb1 = dv.yb2;
switch(m_line_join)
{
case outline_no_join:
dv.flags = 3;
break;
case outline_miter_join:
dv.flags >>= 1;
dv.flags |= ((dv.curr.diagonal_quadrant() ==
dv.next.diagonal_quadrant()) << 1);
if((dv.flags & 2) == 0)
{
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
}
break;
case outline_round_join:
dv.flags >>= 1;
dv.flags |= ((dv.curr.diagonal_quadrant() ==
dv.next.diagonal_quadrant()) << 1);
break;
case outline_miter_accurate_join:
dv.flags = 0;
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
break;
}
}
}
//----------------------------------------------------------------------------
template<class Renderer, class Coord>
void rasterizer_outline_aa<Renderer, Coord>::render(bool close_polygon)
{
m_src_vertices.close(close_polygon);
draw_vars dv;
const vertex_storage_type::value_type* v;
int x1;
int y1;
int x2;
int y2;
int lprev;
if(close_polygon)
{
if(m_src_vertices.size() >= 3)
{
dv.idx = 2;
v = &m_src_vertices[m_src_vertices.size() - 1];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[0];
x2 = v->x;
y2 = v->y;
dv.lcurr = v->len;
line_parameters prev(x1, y1, x2, y2, lprev);
v = &m_src_vertices[1];
dv.x1 = v->x;
dv.y1 = v->y;
dv.lnext = v->len;
dv.curr = line_parameters(x2, y2, dv.x1, dv.y1, dv.lcurr);
v = &m_src_vertices[dv.idx];
dv.x2 = v->x;
dv.y2 = v->y;
dv.next = line_parameters(dv.x1, dv.y1, dv.x2, dv.y2, dv.lnext);
dv.xb1 = 0;
dv.yb1 = 0;
dv.xb2 = 0;
dv.yb2 = 0;
switch(m_line_join)
{
case outline_no_join:
dv.flags = 3;
break;
case outline_miter_join:
case outline_round_join:
dv.flags =
(prev.diagonal_quadrant() == dv.curr.diagonal_quadrant()) |
((dv.curr.diagonal_quadrant() == dv.next.diagonal_quadrant()) << 1);
break;
case outline_miter_accurate_join:
dv.flags = 0;
break;
}
if((dv.flags & 1) == 0 && m_line_join != outline_round_join)
{
bisectrix(prev, dv.curr, &dv.xb1, &dv.yb1);
}
if((dv.flags & 2) == 0 && m_line_join != outline_round_join)
{
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
}
draw(dv, 0, m_src_vertices.size());
}
}
else
{
switch(m_src_vertices.size())
{
case 0:
case 1:
break;
case 2:
{
v = &m_src_vertices[0];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[1];
x2 = v->x;
y2 = v->y;
line_parameters lp(x1, y1, x2, y2, lprev);
if(m_round_cap)
{
m_ren->semidot(cmp_dist_start, x1, y1, x1 + (y2 - y1), y1 - (x2 - x1));
}
m_ren->line3(lp,
x1 + (y2 - y1),
y1 - (x2 - x1),
x2 + (y2 - y1),
y2 - (x2 - x1));
if(m_round_cap)
{
m_ren->semidot(cmp_dist_end, x2, y2, x2 + (y2 - y1), y2 - (x2 - x1));
}
}
break;
case 3:
{
int x3, y3;
int lnext;
v = &m_src_vertices[0];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[1];
x2 = v->x;
y2 = v->y;
lnext = v->len;
v = &m_src_vertices[2];
x3 = v->x;
y3 = v->y;
line_parameters lp1(x1, y1, x2, y2, lprev);
line_parameters lp2(x2, y2, x3, y3, lnext);
if(m_round_cap)
{
m_ren->semidot(cmp_dist_start, x1, y1, x1 + (y2 - y1), y1 - (x2 - x1));
}
if(m_line_join == outline_round_join)
{
m_ren->line3(lp1, x1 + (y2 - y1), y1 - (x2 - x1),
x2 + (y2 - y1), y2 - (x2 - x1));
m_ren->pie(x2, y2, x2 + (y2 - y1), y2 - (x2 - x1),
x2 + (y3 - y2), y2 - (x3 - x2));
m_ren->line3(lp2, x2 + (y3 - y2), y2 - (x3 - x2),
x3 + (y3 - y2), y3 - (x3 - x2));
}
else
{
bisectrix(lp1, lp2, &dv.xb1, &dv.yb1);
m_ren->line3(lp1, x1 + (y2 - y1), y1 - (x2 - x1),
dv.xb1, dv.yb1);
m_ren->line3(lp2, dv.xb1, dv.yb1,
x3 + (y3 - y2), y3 - (x3 - x2));
}
if(m_round_cap)
{
m_ren->semidot(cmp_dist_end, x3, y3, x3 + (y3 - y2), y3 - (x3 - x2));
}
}
break;
default:
{
dv.idx = 3;
v = &m_src_vertices[0];
x1 = v->x;
y1 = v->y;
lprev = v->len;
v = &m_src_vertices[1];
x2 = v->x;
y2 = v->y;
dv.lcurr = v->len;
line_parameters prev(x1, y1, x2, y2, lprev);
v = &m_src_vertices[2];
dv.x1 = v->x;
dv.y1 = v->y;
dv.lnext = v->len;
dv.curr = line_parameters(x2, y2, dv.x1, dv.y1, dv.lcurr);
v = &m_src_vertices[dv.idx];
dv.x2 = v->x;
dv.y2 = v->y;
dv.next = line_parameters(dv.x1, dv.y1, dv.x2, dv.y2, dv.lnext);
dv.xb1 = 0;
dv.yb1 = 0;
dv.xb2 = 0;
dv.yb2 = 0;
switch(m_line_join)
{
case outline_no_join:
dv.flags = 3;
break;
case outline_miter_join:
case outline_round_join:
dv.flags =
(prev.diagonal_quadrant() == dv.curr.diagonal_quadrant()) |
((dv.curr.diagonal_quadrant() == dv.next.diagonal_quadrant()) << 1);
break;
case outline_miter_accurate_join:
dv.flags = 0;
break;
}
if(m_round_cap)
{
m_ren->semidot(cmp_dist_start, x1, y1, x1 + (y2 - y1), y1 - (x2 - x1));
}
if((dv.flags & 1) == 0)
{
if(m_line_join == outline_round_join)
{
m_ren->line3(prev, x1 + (y2 - y1), y1 - (x2 - x1),
x2 + (y2 - y1), y2 - (x2 - x1));
m_ren->pie(prev.x2, prev.y2,
x2 + (y2 - y1), y2 - (x2 - x1),
dv.curr.x1 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y1 - (dv.curr.x2 - dv.curr.x1));
}
else
{
bisectrix(prev, dv.curr, &dv.xb1, &dv.yb1);
m_ren->line3(prev, x1 + (y2 - y1), y1 - (x2 - x1),
dv.xb1, dv.yb1);
}
}
else
{
m_ren->line1(prev,
x1 + (y2 - y1),
y1 - (x2 - x1));
}
if((dv.flags & 2) == 0 && m_line_join != outline_round_join)
{
bisectrix(dv.curr, dv.next, &dv.xb2, &dv.yb2);
}
draw(dv, 1, m_src_vertices.size() - 2);
if((dv.flags & 1) == 0)
{
if(m_line_join == outline_round_join)
{
m_ren->line3(dv.curr,
dv.curr.x1 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y1 - (dv.curr.x2 - dv.curr.x1),
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
else
{
m_ren->line3(dv.curr, dv.xb1, dv.yb1,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
}
else
{
m_ren->line2(dv.curr,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
if(m_round_cap)
{
m_ren->semidot(cmp_dist_end, dv.curr.x2, dv.curr.y2,
dv.curr.x2 + (dv.curr.y2 - dv.curr.y1),
dv.curr.y2 - (dv.curr.x2 - dv.curr.x1));
}
}
break;
}
}
m_src_vertices.remove_all();
}
}
#endif

View file

@ -0,0 +1,510 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#define AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#include "agg_rasterizer_cells_aa.h"
#include "agg_rasterizer_sl_clip.h"
#include "agg_gamma_functions.h"
namespace agg
{
//-----------------------------------------------------------------cell_aa
// A pixel cell. There're no constructors defined and it was done
// intentionally in order to avoid extra overhead when allocating an
// array of cells.
struct cell_aa
{
int x;
int y;
int cover;
int area;
void initial()
{
x = 0x7FFFFFFF;
y = 0x7FFFFFFF;
cover = 0;
area = 0;
}
void style(const cell_aa&) {}
int not_equal(int ex, int ey, const cell_aa&) const
{
return (ex - x) | (ey - y);
}
};
//==================================================rasterizer_scanline_aa
// Polygon rasterizer that is used to render filled polygons with
// high-quality Anti-Aliasing. Internally, by default, the class uses
// integer coordinates in format 24.8, i.e. 24 bits for integer part
// and 8 bits for fractional - see poly_subpixel_shift. This class can be
// used in the following way:
//
// 1. filling_rule(filling_rule_e ft) - optional.
//
// 2. gamma() - optional.
//
// 3. reset()
//
// 4. move_to(x, y) / line_to(x, y) - make the polygon. One can create
// more than one contour, but each contour must consist of at least 3
// vertices, i.e. move_to(x1, y1); line_to(x2, y2); line_to(x3, y3);
// is the absolute minimum of vertices that define a triangle.
// The algorithm does not check either the number of vertices nor
// coincidence of their coordinates, but in the worst case it just
// won't draw anything.
// The orger of the vertices (clockwise or counterclockwise)
// is important when using the non-zero filling rule (fill_non_zero).
// In this case the vertex order of all the contours must be the same
// if you want your intersecting polygons to be without "holes".
// You actually can use different vertices order. If the contours do not
// intersect each other the order is not important anyway. If they do,
// contours with the same vertex order will be rendered without "holes"
// while the intersecting contours with different orders will have "holes".
//
// filling_rule() and gamma() can be called anytime before "sweeping".
//------------------------------------------------------------------------
template<class Clip=rasterizer_sl_clip_int> class rasterizer_scanline_aa
{
enum status
{
status_initial,
status_move_to,
status_line_to,
status_closed
};
public:
typedef Clip clip_type;
typedef typename Clip::conv_type conv_type;
typedef typename Clip::coord_type coord_type;
enum aa_scale_e
{
aa_shift = 8,
aa_scale = 1 << aa_shift,
aa_mask = aa_scale - 1,
aa_scale2 = aa_scale * 2,
aa_mask2 = aa_scale2 - 1
};
//--------------------------------------------------------------------
rasterizer_scanline_aa() :
m_outline(),
m_clipper(),
m_filling_rule(fill_non_zero),
m_auto_close(true),
m_start_x(0),
m_start_y(0),
m_status(status_initial)
{
int i;
for(i = 0; i < aa_scale; i++) m_gamma[i] = i;
}
//--------------------------------------------------------------------
template<class GammaF>
rasterizer_scanline_aa(const GammaF& gamma_function) :
m_outline(),
m_clipper(m_outline),
m_filling_rule(fill_non_zero),
m_auto_close(true),
m_start_x(0),
m_start_y(0),
m_status(status_initial)
{
gamma(gamma_function);
}
//--------------------------------------------------------------------
void reset();
void reset_clipping();
void clip_box(double x1, double y1, double x2, double y2);
void filling_rule(filling_rule_e filling_rule);
void auto_close(bool flag) { m_auto_close = flag; }
//--------------------------------------------------------------------
template<class GammaF> void gamma(const GammaF& gamma_function)
{
int i;
for(i = 0; i < aa_scale; i++)
{
m_gamma[i] = uround(gamma_function(double(i) / aa_mask) * aa_mask);
}
}
//--------------------------------------------------------------------
unsigned apply_gamma(unsigned cover) const
{
return m_gamma[cover];
}
//--------------------------------------------------------------------
void move_to(int x, int y);
void line_to(int x, int y);
void move_to_d(double x, double y);
void line_to_d(double x, double y);
void close_polygon();
void add_vertex(double x, double y, unsigned cmd);
void edge(int x1, int y1, int x2, int y2);
void edge_d(double x1, double y1, double x2, double y2);
//-------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned path_id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(path_id);
if(m_outline.sorted()) reset();
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
}
//--------------------------------------------------------------------
int min_x() const { return m_outline.min_x(); }
int min_y() const { return m_outline.min_y(); }
int max_x() const { return m_outline.max_x(); }
int max_y() const { return m_outline.max_y(); }
//--------------------------------------------------------------------
void sort();
bool rewind_scanlines();
bool navigate_scanline(int y);
//--------------------------------------------------------------------
AGG_INLINE unsigned calculate_alpha(int area) const
{
int cover = area >> (poly_subpixel_shift*2 + 1 - aa_shift);
if(cover < 0) cover = -cover;
if(m_filling_rule == fill_even_odd)
{
cover &= aa_mask2;
if(cover > aa_scale)
{
cover = aa_scale2 - cover;
}
}
if(cover > aa_mask) cover = aa_mask;
return m_gamma[cover];
}
//--------------------------------------------------------------------
template<class Scanline> bool sweep_scanline(Scanline& sl)
{
for(;;)
{
if(m_scan_y > m_outline.max_y()) return false;
sl.reset_spans();
unsigned num_cells = m_outline.scanline_num_cells(m_scan_y);
const cell_aa* const* cells = m_outline.scanline_cells(m_scan_y);
int cover = 0;
while(num_cells)
{
const cell_aa* cur_cell = *cells;
int x = cur_cell->x;
int area = cur_cell->area;
unsigned alpha;
cover += cur_cell->cover;
//accumulate all cells with the same X
while(--num_cells)
{
cur_cell = *++cells;
if(cur_cell->x != x) break;
area += cur_cell->area;
cover += cur_cell->cover;
}
if(area)
{
alpha = calculate_alpha((cover << (poly_subpixel_shift + 1)) - area);
if(alpha)
{
sl.add_cell(x, alpha);
}
x++;
}
if(num_cells && cur_cell->x > x)
{
alpha = calculate_alpha(cover << (poly_subpixel_shift + 1));
if(alpha)
{
sl.add_span(x, cur_cell->x - x, alpha);
}
}
}
if(sl.num_spans()) break;
++m_scan_y;
}
sl.finalize(m_scan_y);
++m_scan_y;
return true;
}
//--------------------------------------------------------------------
bool hit_test(int tx, int ty);
private:
//--------------------------------------------------------------------
// Disable copying
rasterizer_scanline_aa(const rasterizer_scanline_aa<Clip>&);
const rasterizer_scanline_aa<Clip>&
operator = (const rasterizer_scanline_aa<Clip>&);
private:
rasterizer_cells_aa<cell_aa> m_outline;
clip_type m_clipper;
int m_gamma[aa_scale];
filling_rule_e m_filling_rule;
bool m_auto_close;
coord_type m_start_x;
coord_type m_start_y;
unsigned m_status;
int m_scan_y;
};
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::reset()
{
m_outline.reset();
m_status = status_initial;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::filling_rule(filling_rule_e filling_rule)
{
m_filling_rule = filling_rule;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::clip_box(double x1, double y1,
double x2, double y2)
{
reset();
m_clipper.clip_box(conv_type::upscale(x1), conv_type::upscale(y1),
conv_type::upscale(x2), conv_type::upscale(y2));
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::reset_clipping()
{
reset();
m_clipper.reset_clipping();
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::close_polygon()
{
if(m_status == status_line_to)
{
m_clipper.line_to(m_outline, m_start_x, m_start_y);
m_status = status_closed;
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::move_to(int x, int y)
{
if(m_outline.sorted()) reset();
if(m_auto_close) close_polygon();
m_clipper.move_to(m_start_x = conv_type::downscale(x),
m_start_y = conv_type::downscale(y));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::line_to(int x, int y)
{
m_clipper.line_to(m_outline,
conv_type::downscale(x),
conv_type::downscale(y));
m_status = status_line_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::move_to_d(double x, double y)
{
if(m_outline.sorted()) reset();
if(m_auto_close) close_polygon();
m_clipper.move_to(m_start_x = conv_type::upscale(x),
m_start_y = conv_type::upscale(y));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::line_to_d(double x, double y)
{
m_clipper.line_to(m_outline,
conv_type::upscale(x),
conv_type::upscale(y));
m_status = status_line_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::add_vertex(double x, double y, unsigned cmd)
{
if(is_move_to(cmd))
{
move_to_d(x, y);
}
else
if(is_vertex(cmd))
{
line_to_d(x, y);
}
else
if(is_close(cmd))
{
close_polygon();
}
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::edge(int x1, int y1, int x2, int y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::downscale(x1), conv_type::downscale(y1));
m_clipper.line_to(m_outline,
conv_type::downscale(x2),
conv_type::downscale(y2));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::edge_d(double x1, double y1,
double x2, double y2)
{
if(m_outline.sorted()) reset();
m_clipper.move_to(conv_type::upscale(x1), conv_type::upscale(y1));
m_clipper.line_to(m_outline,
conv_type::upscale(x2),
conv_type::upscale(y2));
m_status = status_move_to;
}
//------------------------------------------------------------------------
template<class Clip>
void rasterizer_scanline_aa<Clip>::sort()
{
if(m_auto_close) close_polygon();
m_outline.sort_cells();
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_scanline_aa<Clip>::rewind_scanlines()
{
if(m_auto_close) close_polygon();
m_outline.sort_cells();
if(m_outline.total_cells() == 0)
{
return false;
}
m_scan_y = m_outline.min_y();
return true;
}
//------------------------------------------------------------------------
template<class Clip>
AGG_INLINE bool rasterizer_scanline_aa<Clip>::navigate_scanline(int y)
{
if(m_auto_close) close_polygon();
m_outline.sort_cells();
if(m_outline.total_cells() == 0 ||
y < m_outline.min_y() ||
y > m_outline.max_y())
{
return false;
}
m_scan_y = y;
return true;
}
//------------------------------------------------------------------------
template<class Clip>
bool rasterizer_scanline_aa<Clip>::hit_test(int tx, int ty)
{
if(!navigate_scanline(ty)) return false;
scanline_hit_test sl(tx);
sweep_scanline(sl);
return sl.hit();
}
}
#endif

View file

@ -0,0 +1,351 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_SL_CLIP_INCLUDED
#define AGG_RASTERIZER_SL_CLIP_INCLUDED
#include "agg_clip_liang_barsky.h"
namespace agg
{
//--------------------------------------------------------poly_max_coord_e
enum poly_max_coord_e
{
poly_max_coord = (1 << 30) - 1 //----poly_max_coord
};
//------------------------------------------------------------ras_conv_int
struct ras_conv_int
{
typedef int coord_type;
static AGG_INLINE int mul_div(double a, double b, double c)
{
return iround(a * b / c);
}
static int xi(int v) { return v; }
static int yi(int v) { return v; }
static int upscale(double v) { return iround(v * poly_subpixel_scale); }
static int downscale(int v) { return v; }
};
//--------------------------------------------------------ras_conv_int_sat
struct ras_conv_int_sat
{
typedef int coord_type;
static AGG_INLINE int mul_div(double a, double b, double c)
{
return saturation<poly_max_coord>::iround(a * b / c);
}
static int xi(int v) { return v; }
static int yi(int v) { return v; }
static int upscale(double v)
{
return saturation<poly_max_coord>::iround(v * poly_subpixel_scale);
}
static int downscale(int v) { return v; }
};
//---------------------------------------------------------ras_conv_int_3x
struct ras_conv_int_3x
{
typedef int coord_type;
static AGG_INLINE int mul_div(double a, double b, double c)
{
return iround(a * b / c);
}
static int xi(int v) { return v * 3; }
static int yi(int v) { return v; }
static int upscale(double v) { return iround(v * poly_subpixel_scale); }
static int downscale(int v) { return v; }
};
//-----------------------------------------------------------ras_conv_dbl
struct ras_conv_dbl
{
typedef double coord_type;
static AGG_INLINE double mul_div(double a, double b, double c)
{
return a * b / c;
}
static int xi(double v) { return iround(v * poly_subpixel_scale); }
static int yi(double v) { return iround(v * poly_subpixel_scale); }
static double upscale(double v) { return v; }
static double downscale(int v) { return v / double(poly_subpixel_scale); }
};
//--------------------------------------------------------ras_conv_dbl_3x
struct ras_conv_dbl_3x
{
typedef double coord_type;
static AGG_INLINE double mul_div(double a, double b, double c)
{
return a * b / c;
}
static int xi(double v) { return iround(v * poly_subpixel_scale * 3); }
static int yi(double v) { return iround(v * poly_subpixel_scale); }
static double upscale(double v) { return v; }
static double downscale(int v) { return v / double(poly_subpixel_scale); }
};
//------------------------------------------------------rasterizer_sl_clip
template<class Conv> class rasterizer_sl_clip
{
public:
typedef Conv conv_type;
typedef typename Conv::coord_type coord_type;
typedef rect_base<coord_type> rect_type;
//--------------------------------------------------------------------
rasterizer_sl_clip() :
m_clip_box(0,0,0,0),
m_x1(0),
m_y1(0),
m_f1(0),
m_clipping(false)
{}
//--------------------------------------------------------------------
void reset_clipping()
{
m_clipping = false;
}
//--------------------------------------------------------------------
void clip_box(coord_type x1, coord_type y1, coord_type x2, coord_type y2)
{
m_clip_box = rect_type(x1, y1, x2, y2);
m_clip_box.normalize();
m_clipping = true;
}
//--------------------------------------------------------------------
void move_to(coord_type x1, coord_type y1)
{
m_x1 = x1;
m_y1 = y1;
if(m_clipping) m_f1 = clipping_flags(x1, y1, m_clip_box);
}
private:
//------------------------------------------------------------------------
template<class Rasterizer>
AGG_INLINE void line_clip_y(Rasterizer& ras,
coord_type x1, coord_type y1,
coord_type x2, coord_type y2,
unsigned f1, unsigned f2) const
{
f1 &= 10;
f2 &= 10;
if((f1 | f2) == 0)
{
// Fully visible
ras.line(Conv::xi(x1), Conv::yi(y1), Conv::xi(x2), Conv::yi(y2));
}
else
{
if(f1 == f2)
{
// Invisible by Y
return;
}
coord_type tx1 = x1;
coord_type ty1 = y1;
coord_type tx2 = x2;
coord_type ty2 = y2;
if(f1 & 8) // y1 < clip.y1
{
tx1 = x1 + Conv::mul_div(m_clip_box.y1-y1, x2-x1, y2-y1);
ty1 = m_clip_box.y1;
}
if(f1 & 2) // y1 > clip.y2
{
tx1 = x1 + Conv::mul_div(m_clip_box.y2-y1, x2-x1, y2-y1);
ty1 = m_clip_box.y2;
}
if(f2 & 8) // y2 < clip.y1
{
tx2 = x1 + Conv::mul_div(m_clip_box.y1-y1, x2-x1, y2-y1);
ty2 = m_clip_box.y1;
}
if(f2 & 2) // y2 > clip.y2
{
tx2 = x1 + Conv::mul_div(m_clip_box.y2-y1, x2-x1, y2-y1);
ty2 = m_clip_box.y2;
}
ras.line(Conv::xi(tx1), Conv::yi(ty1),
Conv::xi(tx2), Conv::yi(ty2));
}
}
public:
//--------------------------------------------------------------------
template<class Rasterizer>
void line_to(Rasterizer& ras, coord_type x2, coord_type y2)
{
if(m_clipping)
{
unsigned f2 = clipping_flags(x2, y2, m_clip_box);
if((m_f1 & 10) == (f2 & 10) && (m_f1 & 10) != 0)
{
// Invisible by Y
m_x1 = x2;
m_y1 = y2;
m_f1 = f2;
return;
}
coord_type x1 = m_x1;
coord_type y1 = m_y1;
unsigned f1 = m_f1;
coord_type y3, y4;
unsigned f3, f4;
switch(((f1 & 5) << 1) | (f2 & 5))
{
case 0: // Visible by X
line_clip_y(ras, x1, y1, x2, y2, f1, f2);
break;
case 1: // x2 > clip.x2
y3 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, x1, y1, m_clip_box.x2, y3, f1, f3);
line_clip_y(ras, m_clip_box.x2, y3, m_clip_box.x2, y2, f3, f2);
break;
case 2: // x1 > clip.x2
y3 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, m_clip_box.x2, y1, m_clip_box.x2, y3, f1, f3);
line_clip_y(ras, m_clip_box.x2, y3, x2, y2, f3, f2);
break;
case 3: // x1 > clip.x2 && x2 > clip.x2
line_clip_y(ras, m_clip_box.x2, y1, m_clip_box.x2, y2, f1, f2);
break;
case 4: // x2 < clip.x1
y3 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, x1, y1, m_clip_box.x1, y3, f1, f3);
line_clip_y(ras, m_clip_box.x1, y3, m_clip_box.x1, y2, f3, f2);
break;
case 6: // x1 > clip.x2 && x2 < clip.x1
y3 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
y4 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
f4 = clipping_flags_y(y4, m_clip_box);
line_clip_y(ras, m_clip_box.x2, y1, m_clip_box.x2, y3, f1, f3);
line_clip_y(ras, m_clip_box.x2, y3, m_clip_box.x1, y4, f3, f4);
line_clip_y(ras, m_clip_box.x1, y4, m_clip_box.x1, y2, f4, f2);
break;
case 8: // x1 < clip.x1
y3 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
line_clip_y(ras, m_clip_box.x1, y1, m_clip_box.x1, y3, f1, f3);
line_clip_y(ras, m_clip_box.x1, y3, x2, y2, f3, f2);
break;
case 9: // x1 < clip.x1 && x2 > clip.x2
y3 = y1 + Conv::mul_div(m_clip_box.x1-x1, y2-y1, x2-x1);
y4 = y1 + Conv::mul_div(m_clip_box.x2-x1, y2-y1, x2-x1);
f3 = clipping_flags_y(y3, m_clip_box);
f4 = clipping_flags_y(y4, m_clip_box);
line_clip_y(ras, m_clip_box.x1, y1, m_clip_box.x1, y3, f1, f3);
line_clip_y(ras, m_clip_box.x1, y3, m_clip_box.x2, y4, f3, f4);
line_clip_y(ras, m_clip_box.x2, y4, m_clip_box.x2, y2, f4, f2);
break;
case 12: // x1 < clip.x1 && x2 < clip.x1
line_clip_y(ras, m_clip_box.x1, y1, m_clip_box.x1, y2, f1, f2);
break;
}
m_f1 = f2;
}
else
{
ras.line(Conv::xi(m_x1), Conv::yi(m_y1),
Conv::xi(x2), Conv::yi(y2));
}
m_x1 = x2;
m_y1 = y2;
}
private:
rect_type m_clip_box;
coord_type m_x1;
coord_type m_y1;
unsigned m_f1;
bool m_clipping;
};
//---------------------------------------------------rasterizer_sl_no_clip
class rasterizer_sl_no_clip
{
public:
typedef ras_conv_int conv_type;
typedef int coord_type;
rasterizer_sl_no_clip() : m_x1(0), m_y1(0) {}
void reset_clipping() {}
void clip_box(coord_type /*x1*/, coord_type /*y1*/, coord_type /*x2*/, coord_type /*y2*/) {}
void move_to(coord_type x1, coord_type y1) { m_x1 = x1; m_y1 = y1; }
template<class Rasterizer>
void line_to(Rasterizer& ras, coord_type x2, coord_type y2)
{
ras.line(m_x1, m_y1, x2, y2);
m_x1 = x2;
m_y1 = y2;
}
private:
int m_x1, m_y1;
};
// -----rasterizer_sl_clip_int
// -----rasterizer_sl_clip_int_sat
// -----rasterizer_sl_clip_int_3x
// -----rasterizer_sl_clip_dbl
// -----rasterizer_sl_clip_dbl_3x
//------------------------------------------------------------------------
typedef rasterizer_sl_clip<ras_conv_int> rasterizer_sl_clip_int;
typedef rasterizer_sl_clip<ras_conv_int_sat> rasterizer_sl_clip_int_sat;
typedef rasterizer_sl_clip<ras_conv_int_3x> rasterizer_sl_clip_int_3x;
typedef rasterizer_sl_clip<ras_conv_dbl> rasterizer_sl_clip_dbl;
typedef rasterizer_sl_clip<ras_conv_dbl_3x> rasterizer_sl_clip_dbl_3x;
}
#endif

718
deps/agg/include/agg_renderer_base.h vendored Normal file
View file

@ -0,0 +1,718 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_base
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_BASE_INCLUDED
#define AGG_RENDERER_BASE_INCLUDED
#include "agg_basics.h"
#include "agg_rendering_buffer.h"
namespace agg
{
//-----------------------------------------------------------renderer_base
template<class PixelFormat> class renderer_base
{
public:
typedef PixelFormat pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
//--------------------------------------------------------------------
renderer_base() : m_ren(0), m_clip_box(1, 1, 0, 0) {}
explicit renderer_base(pixfmt_type& ren) :
m_ren(&ren),
m_clip_box(0, 0, ren.width() - 1, ren.height() - 1)
{}
void attach(pixfmt_type& ren)
{
m_ren = &ren;
m_clip_box = rect_i(0, 0, ren.width() - 1, ren.height() - 1);
}
//--------------------------------------------------------------------
const pixfmt_type& ren() const { return *m_ren; }
pixfmt_type& ren() { return *m_ren; }
//--------------------------------------------------------------------
unsigned width() const { return m_ren->width(); }
unsigned height() const { return m_ren->height(); }
//--------------------------------------------------------------------
bool clip_box(int x1, int y1, int x2, int y2)
{
rect_i cb(x1, y1, x2, y2);
cb.normalize();
if(cb.clip(rect_i(0, 0, width() - 1, height() - 1)))
{
m_clip_box = cb;
return true;
}
m_clip_box.x1 = 1;
m_clip_box.y1 = 1;
m_clip_box.x2 = 0;
m_clip_box.y2 = 0;
return false;
}
//--------------------------------------------------------------------
void reset_clipping(bool visibility)
{
if(visibility)
{
m_clip_box.x1 = 0;
m_clip_box.y1 = 0;
m_clip_box.x2 = width() - 1;
m_clip_box.y2 = height() - 1;
}
else
{
m_clip_box.x1 = 1;
m_clip_box.y1 = 1;
m_clip_box.x2 = 0;
m_clip_box.y2 = 0;
}
}
//--------------------------------------------------------------------
void clip_box_naked(int x1, int y1, int x2, int y2)
{
m_clip_box.x1 = x1;
m_clip_box.y1 = y1;
m_clip_box.x2 = x2;
m_clip_box.y2 = y2;
}
//--------------------------------------------------------------------
bool inbox(int x, int y) const
{
return x >= m_clip_box.x1 && y >= m_clip_box.y1 &&
x <= m_clip_box.x2 && y <= m_clip_box.y2;
}
//--------------------------------------------------------------------
const rect_i& clip_box() const { return m_clip_box; }
int xmin() const { return m_clip_box.x1; }
int ymin() const { return m_clip_box.y1; }
int xmax() const { return m_clip_box.x2; }
int ymax() const { return m_clip_box.y2; }
//--------------------------------------------------------------------
const rect_i& bounding_clip_box() const { return m_clip_box; }
int bounding_xmin() const { return m_clip_box.x1; }
int bounding_ymin() const { return m_clip_box.y1; }
int bounding_xmax() const { return m_clip_box.x2; }
int bounding_ymax() const { return m_clip_box.y2; }
//--------------------------------------------------------------------
void clear(const color_type& c)
{
unsigned y;
if(width())
{
for(y = 0; y < height(); y++)
{
m_ren->copy_hline(0, y, width(), c);
}
}
}
//--------------------------------------------------------------------
void copy_pixel(int x, int y, const color_type& c)
{
if(inbox(x, y))
{
m_ren->copy_pixel(x, y, c);
}
}
//--------------------------------------------------------------------
void blend_pixel(int x, int y, const color_type& c, cover_type cover)
{
if(inbox(x, y))
{
m_ren->blend_pixel(x, y, c, cover);
}
}
//--------------------------------------------------------------------
color_type pixel(int x, int y) const
{
return inbox(x, y) ?
m_ren->pixel(x, y) :
color_type::no_color();
}
//--------------------------------------------------------------------
void copy_hline(int x1, int y, int x2, const color_type& c)
{
if(x1 > x2) { int t = x2; x2 = x1; x1 = t; }
if(y > ymax()) return;
if(y < ymin()) return;
if(x1 > xmax()) return;
if(x2 < xmin()) return;
if(x1 < xmin()) x1 = xmin();
if(x2 > xmax()) x2 = xmax();
m_ren->copy_hline(x1, y, x2 - x1 + 1, c);
}
//--------------------------------------------------------------------
void copy_vline(int x, int y1, int y2, const color_type& c)
{
if(y1 > y2) { int t = y2; y2 = y1; y1 = t; }
if(x > xmax()) return;
if(x < xmin()) return;
if(y1 > ymax()) return;
if(y2 < ymin()) return;
if(y1 < ymin()) y1 = ymin();
if(y2 > ymax()) y2 = ymax();
m_ren->copy_vline(x, y1, y2 - y1 + 1, c);
}
//--------------------------------------------------------------------
void blend_hline(int x1, int y, int x2,
const color_type& c, cover_type cover)
{
if(x1 > x2) { int t = x2; x2 = x1; x1 = t; }
if(y > ymax()) return;
if(y < ymin()) return;
if(x1 > xmax()) return;
if(x2 < xmin()) return;
if(x1 < xmin()) x1 = xmin();
if(x2 > xmax()) x2 = xmax();
m_ren->blend_hline(x1, y, x2 - x1 + 1, c, cover);
}
//--------------------------------------------------------------------
void blend_vline(int x, int y1, int y2,
const color_type& c, cover_type cover)
{
if(y1 > y2) { int t = y2; y2 = y1; y1 = t; }
if(x > xmax()) return;
if(x < xmin()) return;
if(y1 > ymax()) return;
if(y2 < ymin()) return;
if(y1 < ymin()) y1 = ymin();
if(y2 > ymax()) y2 = ymax();
m_ren->blend_vline(x, y1, y2 - y1 + 1, c, cover);
}
//--------------------------------------------------------------------
void copy_bar(int x1, int y1, int x2, int y2, const color_type& c)
{
rect_i rc(x1, y1, x2, y2);
rc.normalize();
if(rc.clip(clip_box()))
{
int y;
for(y = rc.y1; y <= rc.y2; y++)
{
m_ren->copy_hline(rc.x1, y, unsigned(rc.x2 - rc.x1 + 1), c);
}
}
}
//--------------------------------------------------------------------
void blend_bar(int x1, int y1, int x2, int y2,
const color_type& c, cover_type cover)
{
rect_i rc(x1, y1, x2, y2);
rc.normalize();
if(rc.clip(clip_box()))
{
int y;
for(y = rc.y1; y <= rc.y2; y++)
{
m_ren->blend_hline(rc.x1,
y,
unsigned(rc.x2 - rc.x1 + 1),
c,
cover);
}
}
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y, int len,
const color_type& c,
const cover_type* covers)
{
if(y > ymax()) return;
if(y < ymin()) return;
if(x < xmin())
{
len -= xmin() - x;
if(len <= 0) return;
covers += xmin() - x;
x = xmin();
}
if(x + len > xmax())
{
len = xmax() - x + 1;
if(len <= 0) return;
}
m_ren->blend_solid_hspan(x, y, len, c, covers);
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y, int len,
const color_type& c,
const cover_type* covers)
{
if(x > xmax()) return;
if(x < xmin()) return;
if(y < ymin())
{
len -= ymin() - y;
if(len <= 0) return;
covers += ymin() - y;
y = ymin();
}
if(y + len > ymax())
{
len = ymax() - y + 1;
if(len <= 0) return;
}
m_ren->blend_solid_vspan(x, y, len, c, covers);
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y, int len, const color_type* colors)
{
if(y > ymax()) return;
if(y < ymin()) return;
if(x < xmin())
{
int d = xmin() - x;
len -= d;
if(len <= 0) return;
colors += d;
x = xmin();
}
if(x + len > xmax())
{
len = xmax() - x + 1;
if(len <= 0) return;
}
m_ren->copy_color_hspan(x, y, len, colors);
}
//--------------------------------------------------------------------
void copy_color_vspan(int x, int y, int len, const color_type* colors)
{
if(x > xmax()) return;
if(x < xmin()) return;
if(y < ymin())
{
int d = ymin() - y;
len -= d;
if(len <= 0) return;
colors += d;
y = ymin();
}
if(y + len > ymax())
{
len = ymax() - y + 1;
if(len <= 0) return;
}
m_ren->copy_color_vspan(x, y, len, colors);
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = agg::cover_full)
{
if(y > ymax()) return;
if(y < ymin()) return;
if(x < xmin())
{
int d = xmin() - x;
len -= d;
if(len <= 0) return;
if(covers) covers += d;
colors += d;
x = xmin();
}
if(x + len > xmax())
{
len = xmax() - x + 1;
if(len <= 0) return;
}
m_ren->blend_color_hspan(x, y, len, colors, covers, cover);
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = agg::cover_full)
{
if(x > xmax()) return;
if(x < xmin()) return;
if(y < ymin())
{
int d = ymin() - y;
len -= d;
if(len <= 0) return;
if(covers) covers += d;
colors += d;
y = ymin();
}
if(y + len > ymax())
{
len = ymax() - y + 1;
if(len <= 0) return;
}
m_ren->blend_color_vspan(x, y, len, colors, covers, cover);
}
//--------------------------------------------------------------------
rect_i clip_rect_area(rect_i& dst, rect_i& src, int wsrc, int hsrc) const
{
rect_i rc(0,0,0,0);
rect_i cb = clip_box();
++cb.x2;
++cb.y2;
if(src.x1 < 0)
{
dst.x1 -= src.x1;
src.x1 = 0;
}
if(src.y1 < 0)
{
dst.y1 -= src.y1;
src.y1 = 0;
}
if(src.x2 > wsrc) src.x2 = wsrc;
if(src.y2 > hsrc) src.y2 = hsrc;
if(dst.x1 < cb.x1)
{
src.x1 += cb.x1 - dst.x1;
dst.x1 = cb.x1;
}
if(dst.y1 < cb.y1)
{
src.y1 += cb.y1 - dst.y1;
dst.y1 = cb.y1;
}
if(dst.x2 > cb.x2) dst.x2 = cb.x2;
if(dst.y2 > cb.y2) dst.y2 = cb.y2;
rc.x2 = dst.x2 - dst.x1;
rc.y2 = dst.y2 - dst.y1;
if(rc.x2 > src.x2 - src.x1) rc.x2 = src.x2 - src.x1;
if(rc.y2 > src.y2 - src.y1) rc.y2 = src.y2 - src.y1;
return rc;
}
//--------------------------------------------------------------------
template<class RenBuf>
void copy_from(const RenBuf& src,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
m_ren->copy_from(src,
rdst.x1, rdst.y1,
rsrc.x1, rsrc.y1,
rc.x2);
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from(const SrcPixelFormatRenderer& src,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = agg::cover_full)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
typename SrcPixelFormatRenderer::row_data rw = src.row(rsrc.y1);
if(rw.ptr)
{
int x1src = rsrc.x1;
int x1dst = rdst.x1;
int len = rc.x2;
if(rw.x1 > x1src)
{
x1dst += rw.x1 - x1src;
len -= rw.x1 - x1src;
x1src = rw.x1;
}
if(len > 0)
{
if(x1src + len-1 > rw.x2)
{
len -= x1src + len - rw.x2 - 1;
}
if(len > 0)
{
m_ren->blend_from(src,
x1dst, rdst.y1,
x1src, rsrc.y1,
len,
cover);
}
}
}
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_color(const SrcPixelFormatRenderer& src,
const color_type& color,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = agg::cover_full)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
typename SrcPixelFormatRenderer::row_data rw = src.row(rsrc.y1);
if(rw.ptr)
{
int x1src = rsrc.x1;
int x1dst = rdst.x1;
int len = rc.x2;
if(rw.x1 > x1src)
{
x1dst += rw.x1 - x1src;
len -= rw.x1 - x1src;
x1src = rw.x1;
}
if(len > 0)
{
if(x1src + len-1 > rw.x2)
{
len -= x1src + len - rw.x2 - 1;
}
if(len > 0)
{
m_ren->blend_from_color(src,
color,
x1dst, rdst.y1,
x1src, rsrc.y1,
len,
cover);
}
}
}
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from_lut(const SrcPixelFormatRenderer& src,
const color_type* color_lut,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = agg::cover_full)
{
rect_i rsrc(0, 0, src.width(), src.height());
if(rect_src_ptr)
{
rsrc.x1 = rect_src_ptr->x1;
rsrc.y1 = rect_src_ptr->y1;
rsrc.x2 = rect_src_ptr->x2 + 1;
rsrc.y2 = rect_src_ptr->y2 + 1;
}
// Version with xdst, ydst (absolute positioning)
//rect_i rdst(xdst, ydst, xdst + rsrc.x2 - rsrc.x1, ydst + rsrc.y2 - rsrc.y1);
// Version with dx, dy (relative positioning)
rect_i rdst(rsrc.x1 + dx, rsrc.y1 + dy, rsrc.x2 + dx, rsrc.y2 + dy);
rect_i rc = clip_rect_area(rdst, rsrc, src.width(), src.height());
if(rc.x2 > 0)
{
int incy = 1;
if(rdst.y1 > rsrc.y1)
{
rsrc.y1 += rc.y2 - 1;
rdst.y1 += rc.y2 - 1;
incy = -1;
}
while(rc.y2 > 0)
{
typename SrcPixelFormatRenderer::row_data rw = src.row(rsrc.y1);
if(rw.ptr)
{
int x1src = rsrc.x1;
int x1dst = rdst.x1;
int len = rc.x2;
if(rw.x1 > x1src)
{
x1dst += rw.x1 - x1src;
len -= rw.x1 - x1src;
x1src = rw.x1;
}
if(len > 0)
{
if(x1src + len-1 > rw.x2)
{
len -= x1src + len - rw.x2 - 1;
}
if(len > 0)
{
m_ren->blend_from_lut(src,
color_lut,
x1dst, rdst.y1,
x1src, rsrc.y1,
len,
cover);
}
}
}
rdst.y1 += incy;
rsrc.y1 += incy;
--rc.y2;
}
}
}
private:
pixfmt_type* m_ren;
rect_i m_clip_box;
};
}
#endif

706
deps/agg/include/agg_renderer_markers.h vendored Normal file
View file

@ -0,0 +1,706 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_markers
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_MARKERS_INCLUDED
#define AGG_RENDERER_MARKERS_INCLUDED
#include "agg_basics.h"
#include "agg_renderer_primitives.h"
namespace agg
{
//---------------------------------------------------------------marker_e
enum marker_e
{
marker_square,
marker_diamond,
marker_circle,
marker_crossed_circle,
marker_semiellipse_left,
marker_semiellipse_right,
marker_semiellipse_up,
marker_semiellipse_down,
marker_triangle_left,
marker_triangle_right,
marker_triangle_up,
marker_triangle_down,
marker_four_rays,
marker_cross,
marker_x,
marker_dash,
marker_dot,
marker_pixel,
end_of_markers
};
//--------------------------------------------------------renderer_markers
template<class BaseRenderer> class renderer_markers :
public renderer_primitives<BaseRenderer>
{
public:
typedef renderer_primitives<BaseRenderer> base_type;
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
renderer_markers(base_ren_type& rbuf) :
base_type(rbuf)
{}
//--------------------------------------------------------------------
bool visible(int x, int y, int r) const
{
rect_i rc(x-r, y-r, x+y, y+r);
return rc.clip(base_type::ren().bounding_clip_box());
}
//--------------------------------------------------------------------
void square(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::outlined_rectangle(x-r, y-r, x+r, y+r);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void diamond(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
do
{
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
}
++dy;
++dx;
}
while(dy <= 0);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void circle(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::outlined_ellipse(x, y, r, r);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void crossed_circle(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
base_type::outlined_ellipse(x, y, r, r);
int r6 = r + (r >> 1);
if(r <= 2) r6++;
r >>= 1;
base_type::ren().blend_hline(x-r6, y, x-r, base_type::line_color(), cover_full);
base_type::ren().blend_hline(x+r, y, x+r6, base_type::line_color(), cover_full);
base_type::ren().blend_vline(x, y-r6, y-r, base_type::line_color(), cover_full);
base_type::ren().blend_vline(x, y+r, y+r6, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//------------------------------------------------------------------------
void semiellipse_left(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x + dy, y + dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y - dx, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_vline(x+dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_vline(x+dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void semiellipse_right(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x - dy, y + dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y - dx, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_vline(x-dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_vline(x-dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void semiellipse_up(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_hline(x-dx, y-dy-1, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void semiellipse_down(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int r8 = r * 4 / 5;
int dy = -r;
int dx = 0;
ellipse_bresenham_interpolator ei(r * 3 / 5, r+r8);
do
{
dx += ei.dx();
dy += ei.dy();
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
if(ei.dy() && dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
}
++ei;
}
while(dy < r8);
base_type::ren().blend_hline(x-dx, y+dy+1, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_left(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x + dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y + dx, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_vline(x+dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_vline(x+dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_right(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x - dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y + dx, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_vline(x-dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_vline(x-dy, y-dx, y+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_up(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_hline(x-dx, y-dy, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void triangle_down(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r6 = r * 3 / 5;
do
{
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy < r6);
base_type::ren().blend_hline(x-dx, y+dy, x+dx, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void four_rays(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r;
int dx = 0;
int flip = 0;
int r3 = -(r / 3);
do
{
base_type::ren().blend_pixel(x - dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dx, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y + dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y - dx, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y + dx, base_type::line_color(), cover_full);
if(dx)
{
base_type::ren().blend_hline(x-dx+1, y+dy, x+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_hline(x-dx+1, y-dy, x+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_vline(x+dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
base_type::ren().blend_vline(x-dy, y-dx+1, y+dx-1, base_type::fill_color(), cover_full);
}
++dy;
dx += flip;
flip ^= 1;
}
while(dy <= r3);
base_type::solid_rectangle(x+r3+1, y+r3+1, x-r3-1, y-r3-1);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void cross(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
base_type::ren().blend_vline(x, y-r, y+r, base_type::line_color(), cover_full);
base_type::ren().blend_hline(x-r, y, x+r, base_type::line_color(), cover_full);
}
else
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
}
//--------------------------------------------------------------------
void xing(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r)
{
int dy = -r * 7 / 10;
do
{
base_type::ren().blend_pixel(x + dy, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y + dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x + dy, y - dy, base_type::line_color(), cover_full);
base_type::ren().blend_pixel(x - dy, y - dy, base_type::line_color(), cover_full);
++dy;
}
while(dy < 0);
}
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void dash(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::ren().blend_hline(x-r, y, x+r, base_type::line_color(), cover_full);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void dot(int x, int y, int r)
{
if(visible(x, y, r))
{
if(r) base_type::solid_ellipse(x, y, r, r);
else base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
}
//--------------------------------------------------------------------
void pixel(int x, int y, int)
{
base_type::ren().blend_pixel(x, y, base_type::fill_color(), cover_full);
}
//--------------------------------------------------------------------
void marker(int x, int y, int r, marker_e type)
{
switch(type)
{
case marker_square: square(x, y, r); break;
case marker_diamond: diamond(x, y, r); break;
case marker_circle: circle(x, y, r); break;
case marker_crossed_circle: crossed_circle(x, y, r); break;
case marker_semiellipse_left: semiellipse_left(x, y, r); break;
case marker_semiellipse_right: semiellipse_right(x, y, r); break;
case marker_semiellipse_up: semiellipse_up(x, y, r); break;
case marker_semiellipse_down: semiellipse_down(x, y, r); break;
case marker_triangle_left: triangle_left(x, y, r); break;
case marker_triangle_right: triangle_right(x, y, r); break;
case marker_triangle_up: triangle_up(x, y, r); break;
case marker_triangle_down: triangle_down(x, y, r); break;
case marker_four_rays: four_rays(x, y, r); break;
case marker_cross: cross(x, y, r); break;
case marker_x: xing(x, y, r); break;
case marker_dash: dash(x, y, r); break;
case marker_dot: dot(x, y, r); break;
case marker_pixel: pixel(x, y, r); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, T r, marker_e type)
{
if(n <= 0) return;
if(r == 0)
{
do
{
base_type::ren().blend_pixel(int(*x), int(*y), base_type::fill_color(), cover_full);
++x;
++y;
}
while(--n);
return;
}
switch(type)
{
case marker_square: do { square (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_diamond: do { diamond (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_circle: do { circle (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_crossed_circle: do { crossed_circle (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_left: do { semiellipse_left (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_right: do { semiellipse_right(int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_up: do { semiellipse_up (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_semiellipse_down: do { semiellipse_down (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_left: do { triangle_left (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_right: do { triangle_right (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_up: do { triangle_up (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_triangle_down: do { triangle_down (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_four_rays: do { four_rays (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_cross: do { cross (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_x: do { xing (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_dash: do { dash (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_dot: do { dot (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
case marker_pixel: do { pixel (int(*x), int(*y), int(r)); ++x; ++y; } while(--n); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, const T* r, marker_e type)
{
if(n <= 0) return;
switch(type)
{
case marker_square: do { square (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_diamond: do { diamond (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_circle: do { circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_crossed_circle: do { crossed_circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_left: do { semiellipse_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_right: do { semiellipse_right(int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_up: do { semiellipse_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_semiellipse_down: do { semiellipse_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_left: do { triangle_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_right: do { triangle_right (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_up: do { triangle_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_triangle_down: do { triangle_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_four_rays: do { four_rays (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_cross: do { cross (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_x: do { xing (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_dash: do { dash (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_dot: do { dot (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
case marker_pixel: do { pixel (int(*x), int(*y), int(*r)); ++x; ++y; ++r; } while(--n); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, const T* r, const color_type* fc, marker_e type)
{
if(n <= 0) return;
switch(type)
{
case marker_square: do { base_type::fill_color(*fc); square (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_diamond: do { base_type::fill_color(*fc); diamond (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_circle: do { base_type::fill_color(*fc); circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_crossed_circle: do { base_type::fill_color(*fc); crossed_circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_left: do { base_type::fill_color(*fc); semiellipse_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_right: do { base_type::fill_color(*fc); semiellipse_right(int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_up: do { base_type::fill_color(*fc); semiellipse_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_semiellipse_down: do { base_type::fill_color(*fc); semiellipse_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_left: do { base_type::fill_color(*fc); triangle_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_right: do { base_type::fill_color(*fc); triangle_right (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_up: do { base_type::fill_color(*fc); triangle_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_triangle_down: do { base_type::fill_color(*fc); triangle_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_four_rays: do { base_type::fill_color(*fc); four_rays (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_cross: do { base_type::fill_color(*fc); cross (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_x: do { base_type::fill_color(*fc); xing (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_dash: do { base_type::fill_color(*fc); dash (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_dot: do { base_type::fill_color(*fc); dot (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
case marker_pixel: do { base_type::fill_color(*fc); pixel (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; } while(--n); break;
}
}
//--------------------------------------------------------------------
template<class T>
void markers(int n, const T* x, const T* y, const T* r, const color_type* fc, const color_type* lc, marker_e type)
{
if(n <= 0) return;
switch(type)
{
case marker_square: do { base_type::fill_color(*fc); base_type::line_color(*lc); square (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_diamond: do { base_type::fill_color(*fc); base_type::line_color(*lc); diamond (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_circle: do { base_type::fill_color(*fc); base_type::line_color(*lc); circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_crossed_circle: do { base_type::fill_color(*fc); base_type::line_color(*lc); crossed_circle (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_left: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_right: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_right(int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_up: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_semiellipse_down: do { base_type::fill_color(*fc); base_type::line_color(*lc); semiellipse_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_left: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_left (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_right: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_right (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_up: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_up (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_triangle_down: do { base_type::fill_color(*fc); base_type::line_color(*lc); triangle_down (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_four_rays: do { base_type::fill_color(*fc); base_type::line_color(*lc); four_rays (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_cross: do { base_type::fill_color(*fc); base_type::line_color(*lc); cross (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_x: do { base_type::fill_color(*fc); base_type::line_color(*lc); xing (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_dash: do { base_type::fill_color(*fc); base_type::line_color(*lc); dash (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_dot: do { base_type::fill_color(*fc); base_type::line_color(*lc); dot (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
case marker_pixel: do { base_type::fill_color(*fc); base_type::line_color(*lc); pixel (int(*x), int(*y), int(*r)); ++x; ++y; ++r; ++fc; ++lc; } while(--n); break;
}
}
};
}
#endif

349
deps/agg/include/agg_renderer_mclip.h vendored Normal file
View file

@ -0,0 +1,349 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_mclip
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_MCLIP_INCLUDED
#define AGG_RENDERER_MCLIP_INCLUDED
#include "agg_basics.h"
#include "agg_array.h"
#include "agg_renderer_base.h"
namespace agg
{
//----------------------------------------------------------renderer_mclip
template<class PixelFormat> class renderer_mclip
{
public:
typedef PixelFormat pixfmt_type;
typedef typename pixfmt_type::color_type color_type;
typedef typename pixfmt_type::row_data row_data;
typedef renderer_base<pixfmt_type> base_ren_type;
//--------------------------------------------------------------------
explicit renderer_mclip(pixfmt_type& pixf) :
m_ren(pixf),
m_curr_cb(0),
m_bounds(m_ren.xmin(), m_ren.ymin(), m_ren.xmax(), m_ren.ymax())
{}
void attach(pixfmt_type& pixf)
{
m_ren.attach(pixf);
reset_clipping(true);
}
//--------------------------------------------------------------------
const pixfmt_type& ren() const { return m_ren.ren(); }
pixfmt_type& ren() { return m_ren.ren(); }
//--------------------------------------------------------------------
unsigned width() const { return m_ren.width(); }
unsigned height() const { return m_ren.height(); }
//--------------------------------------------------------------------
const rect_i& clip_box() const { return m_ren.clip_box(); }
int xmin() const { return m_ren.xmin(); }
int ymin() const { return m_ren.ymin(); }
int xmax() const { return m_ren.xmax(); }
int ymax() const { return m_ren.ymax(); }
//--------------------------------------------------------------------
const rect_i& bounding_clip_box() const { return m_bounds; }
int bounding_xmin() const { return m_bounds.x1; }
int bounding_ymin() const { return m_bounds.y1; }
int bounding_xmax() const { return m_bounds.x2; }
int bounding_ymax() const { return m_bounds.y2; }
//--------------------------------------------------------------------
void first_clip_box()
{
m_curr_cb = 0;
if(m_clip.size())
{
const rect_i& cb = m_clip[0];
m_ren.clip_box_naked(cb.x1, cb.y1, cb.x2, cb.y2);
}
}
//--------------------------------------------------------------------
bool next_clip_box()
{
if(++m_curr_cb < m_clip.size())
{
const rect_i& cb = m_clip[m_curr_cb];
m_ren.clip_box_naked(cb.x1, cb.y1, cb.x2, cb.y2);
return true;
}
return false;
}
//--------------------------------------------------------------------
void reset_clipping(bool visibility)
{
m_ren.reset_clipping(visibility);
m_clip.remove_all();
m_curr_cb = 0;
m_bounds = m_ren.clip_box();
}
//--------------------------------------------------------------------
void add_clip_box(int x1, int y1, int x2, int y2)
{
rect_i cb(x1, y1, x2, y2);
cb.normalize();
if(cb.clip(rect_i(0, 0, width() - 1, height() - 1)))
{
m_clip.add(cb);
if(cb.x1 < m_bounds.x1) m_bounds.x1 = cb.x1;
if(cb.y1 < m_bounds.y1) m_bounds.y1 = cb.y1;
if(cb.x2 > m_bounds.x2) m_bounds.x2 = cb.x2;
if(cb.y2 > m_bounds.y2) m_bounds.y2 = cb.y2;
}
}
//--------------------------------------------------------------------
void clear(const color_type& c)
{
m_ren.clear(c);
}
//--------------------------------------------------------------------
void copy_pixel(int x, int y, const color_type& c)
{
first_clip_box();
do
{
if(m_ren.inbox(x, y))
{
m_ren.ren().copy_pixel(x, y, c);
break;
}
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_pixel(int x, int y, const color_type& c, cover_type cover)
{
first_clip_box();
do
{
if(m_ren.inbox(x, y))
{
m_ren.ren().blend_pixel(x, y, c, cover);
break;
}
}
while(next_clip_box());
}
//--------------------------------------------------------------------
color_type pixel(int x, int y) const
{
first_clip_box();
do
{
if(m_ren.inbox(x, y))
{
return m_ren.ren().pixel(x, y);
}
}
while(next_clip_box());
return color_type::no_color();
}
//--------------------------------------------------------------------
void copy_hline(int x1, int y, int x2, const color_type& c)
{
first_clip_box();
do
{
m_ren.copy_hline(x1, y, x2, c);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_vline(int x, int y1, int y2, const color_type& c)
{
first_clip_box();
do
{
m_ren.copy_vline(x, y1, y2, c);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_hline(int x1, int y, int x2,
const color_type& c, cover_type cover)
{
first_clip_box();
do
{
m_ren.blend_hline(x1, y, x2, c, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_vline(int x, int y1, int y2,
const color_type& c, cover_type cover)
{
first_clip_box();
do
{
m_ren.blend_vline(x, y1, y2, c, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_bar(int x1, int y1, int x2, int y2, const color_type& c)
{
first_clip_box();
do
{
m_ren.copy_bar(x1, y1, x2, y2, c);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_bar(int x1, int y1, int x2, int y2,
const color_type& c, cover_type cover)
{
first_clip_box();
do
{
m_ren.blend_bar(x1, y1, x2, y2, c, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_solid_hspan(int x, int y, int len,
const color_type& c, const cover_type* covers)
{
first_clip_box();
do
{
m_ren.blend_solid_hspan(x, y, len, c, covers);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_solid_vspan(int x, int y, int len,
const color_type& c, const cover_type* covers)
{
first_clip_box();
do
{
m_ren.blend_solid_vspan(x, y, len, c, covers);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_color_hspan(int x, int y, int len, const color_type* colors)
{
first_clip_box();
do
{
m_ren.copy_color_hspan(x, y, len, colors);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_color_hspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
first_clip_box();
do
{
m_ren.blend_color_hspan(x, y, len, colors, covers, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void blend_color_vspan(int x, int y, int len,
const color_type* colors,
const cover_type* covers,
cover_type cover = cover_full)
{
first_clip_box();
do
{
m_ren.blend_color_vspan(x, y, len, colors, covers, cover);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
void copy_from(const rendering_buffer& from,
const rect_i* rc=0,
int x_to=0,
int y_to=0)
{
first_clip_box();
do
{
m_ren.copy_from(from, rc, x_to, y_to);
}
while(next_clip_box());
}
//--------------------------------------------------------------------
template<class SrcPixelFormatRenderer>
void blend_from(const SrcPixelFormatRenderer& src,
const rect_i* rect_src_ptr = 0,
int dx = 0,
int dy = 0,
cover_type cover = cover_full)
{
first_clip_box();
do
{
m_ren.blend_from(src, rect_src_ptr, dx, dy, cover);
}
while(next_clip_box());
}
private:
renderer_mclip(const renderer_mclip<PixelFormat>&);
const renderer_mclip<PixelFormat>&
operator = (const renderer_mclip<PixelFormat>&);
base_ren_type m_ren;
pod_bvector<rect_i, 4> m_clip;
unsigned m_curr_cb;
rect_i m_bounds;
};
}
#endif

1840
deps/agg/include/agg_renderer_outline_aa.h vendored Normal file

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,224 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class renderer_primitives
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_PRIMITIVES_INCLUDED
#define AGG_RENDERER_PRIMITIVES_INCLUDED
#include "agg_basics.h"
#include "agg_renderer_base.h"
#include "agg_dda_line.h"
#include "agg_ellipse_bresenham.h"
namespace agg
{
//-----------------------------------------------------renderer_primitives
template<class BaseRenderer> class renderer_primitives
{
public:
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
explicit renderer_primitives(base_ren_type& ren) :
m_ren(&ren),
m_fill_color(),
m_line_color(),
m_curr_x(0),
m_curr_y(0)
{}
void attach(base_ren_type& ren) { m_ren = &ren; }
//--------------------------------------------------------------------
static int coord(double c)
{
return iround(c * line_bresenham_interpolator::subpixel_scale);
}
//--------------------------------------------------------------------
void fill_color(const color_type& c) { m_fill_color = c; }
void line_color(const color_type& c) { m_line_color = c; }
const color_type& fill_color() const { return m_fill_color; }
const color_type& line_color() const { return m_line_color; }
//--------------------------------------------------------------------
void rectangle(int x1, int y1, int x2, int y2)
{
m_ren->blend_hline(x1, y1, x2-1, m_line_color, cover_full);
m_ren->blend_vline(x2, y1, y2-1, m_line_color, cover_full);
m_ren->blend_hline(x1+1, y2, x2, m_line_color, cover_full);
m_ren->blend_vline(x1, y1+1, y2, m_line_color, cover_full);
}
//--------------------------------------------------------------------
void solid_rectangle(int x1, int y1, int x2, int y2)
{
m_ren->blend_bar(x1, y1, x2, y2, m_fill_color, cover_full);
}
//--------------------------------------------------------------------
void outlined_rectangle(int x1, int y1, int x2, int y2)
{
rectangle(x1, y1, x2, y2);
m_ren->blend_bar(x1+1, y1+1, x2-1, y2-1, m_fill_color, cover_full);
}
//--------------------------------------------------------------------
void ellipse(int x, int y, int rx, int ry)
{
ellipse_bresenham_interpolator ei(rx, ry);
int dx = 0;
int dy = -ry;
do
{
dx += ei.dx();
dy += ei.dy();
m_ren->blend_pixel(x + dx, y + dy, m_line_color, cover_full);
m_ren->blend_pixel(x + dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y + dy, m_line_color, cover_full);
++ei;
}
while(dy < 0);
}
//--------------------------------------------------------------------
void solid_ellipse(int x, int y, int rx, int ry)
{
ellipse_bresenham_interpolator ei(rx, ry);
int dx = 0;
int dy = -ry;
int dy0 = dy;
int dx0 = dx;
do
{
dx += ei.dx();
dy += ei.dy();
if(dy != dy0)
{
m_ren->blend_hline(x-dx0, y+dy0, x+dx0, m_fill_color, cover_full);
m_ren->blend_hline(x-dx0, y-dy0, x+dx0, m_fill_color, cover_full);
}
dx0 = dx;
dy0 = dy;
++ei;
}
while(dy < 0);
m_ren->blend_hline(x-dx0, y+dy0, x+dx0, m_fill_color, cover_full);
}
//--------------------------------------------------------------------
void outlined_ellipse(int x, int y, int rx, int ry)
{
ellipse_bresenham_interpolator ei(rx, ry);
int dx = 0;
int dy = -ry;
do
{
dx += ei.dx();
dy += ei.dy();
m_ren->blend_pixel(x + dx, y + dy, m_line_color, cover_full);
m_ren->blend_pixel(x + dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y - dy, m_line_color, cover_full);
m_ren->blend_pixel(x - dx, y + dy, m_line_color, cover_full);
if(ei.dy() && dx)
{
m_ren->blend_hline(x-dx+1, y+dy, x+dx-1, m_fill_color, cover_full);
m_ren->blend_hline(x-dx+1, y-dy, x+dx-1, m_fill_color, cover_full);
}
++ei;
}
while(dy < 0);
}
//--------------------------------------------------------------------
void line(int x1, int y1, int x2, int y2, bool last=false)
{
line_bresenham_interpolator li(x1, y1, x2, y2);
unsigned len = li.len();
if(len == 0)
{
if(last)
{
m_ren->blend_pixel(li.line_lr(x1), li.line_lr(y1), m_line_color, cover_full);
}
return;
}
if(last) ++len;
if(li.is_ver())
{
do
{
m_ren->blend_pixel(li.x2(), li.y1(), m_line_color, cover_full);
li.vstep();
}
while(--len);
}
else
{
do
{
m_ren->blend_pixel(li.x1(), li.y2(), m_line_color, cover_full);
li.hstep();
}
while(--len);
}
}
//--------------------------------------------------------------------
void move_to(int x, int y)
{
m_curr_x = x;
m_curr_y = y;
}
//--------------------------------------------------------------------
void line_to(int x, int y, bool last=false)
{
line(m_curr_x, m_curr_y, x, y, last);
m_curr_x = x;
m_curr_y = y;
}
//--------------------------------------------------------------------
const base_ren_type& ren() const { return *m_ren; }
base_ren_type& ren() { return *m_ren; }
//--------------------------------------------------------------------
const rendering_buffer& rbuf() const { return m_ren->rbuf(); }
rendering_buffer& rbuf() { return m_ren->rbuf(); }
private:
base_ren_type* m_ren;
color_type m_fill_color;
color_type m_line_color;
int m_curr_x;
int m_curr_y;
};
}
#endif

View file

@ -0,0 +1,264 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_RASTER_TEXT_INCLUDED
#define AGG_RENDERER_RASTER_TEXT_INCLUDED
#include "agg_basics.h"
namespace agg
{
//==============================================renderer_raster_htext_solid
template<class BaseRenderer, class GlyphGenerator>
class renderer_raster_htext_solid
{
public:
typedef BaseRenderer ren_type;
typedef GlyphGenerator glyph_gen_type;
typedef typename glyph_gen_type::glyph_rect glyph_rect;
typedef typename ren_type::color_type color_type;
renderer_raster_htext_solid(ren_type& ren, glyph_gen_type& glyph) :
m_ren(&ren),
m_glyph(&glyph)
{}
void attach(ren_type& ren) { m_ren = &ren; }
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
template<class CharT>
void render_text(double x, double y, const CharT* str, bool flip=false)
{
glyph_rect r;
while(*str)
{
m_glyph->prepare(&r, x, y, *str, flip);
if(r.x2 >= r.x1)
{
int i;
if(flip)
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_hspan(r.x1, i, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(r.y2 - i));
}
}
else
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_hspan(r.x1, i, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(i - r.y1));
}
}
}
x += r.dx;
y += r.dy;
++str;
}
}
private:
ren_type* m_ren;
glyph_gen_type* m_glyph;
color_type m_color;
};
//=============================================renderer_raster_vtext_solid
template<class BaseRenderer, class GlyphGenerator>
class renderer_raster_vtext_solid
{
public:
typedef BaseRenderer ren_type;
typedef GlyphGenerator glyph_gen_type;
typedef typename glyph_gen_type::glyph_rect glyph_rect;
typedef typename ren_type::color_type color_type;
renderer_raster_vtext_solid(ren_type& ren, glyph_gen_type& glyph) :
m_ren(&ren),
m_glyph(&glyph)
{
}
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
template<class CharT>
void render_text(double x, double y, const CharT* str, bool flip=false)
{
glyph_rect r;
while(*str)
{
m_glyph->prepare(&r, x, y, *str, !flip);
if(r.x2 >= r.x1)
{
int i;
if(flip)
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_vspan(i, r.x1, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(i - r.y1));
}
}
else
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->blend_solid_vspan(i, r.x1, (r.x2 - r.x1 + 1),
m_color,
m_glyph->span(r.y2 - i));
}
}
}
x += r.dx;
y += r.dy;
++str;
}
}
private:
ren_type* m_ren;
glyph_gen_type* m_glyph;
color_type m_color;
};
//===================================================renderer_raster_htext
template<class ScanlineRenderer, class GlyphGenerator>
class renderer_raster_htext
{
public:
typedef ScanlineRenderer ren_type;
typedef GlyphGenerator glyph_gen_type;
typedef typename glyph_gen_type::glyph_rect glyph_rect;
class scanline_single_span
{
public:
typedef agg::cover_type cover_type;
//----------------------------------------------------------------
struct const_span
{
int x;
unsigned len;
const cover_type* covers;
const_span() {}
const_span(int x_, unsigned len_, const cover_type* covers_) :
x(x_), len(len_), covers(covers_)
{}
};
typedef const const_span* const_iterator;
//----------------------------------------------------------------
scanline_single_span(int x, int y, unsigned len,
const cover_type* covers) :
m_y(y),
m_span(x, len, covers)
{}
//----------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return 1; }
const_iterator begin() const { return &m_span; }
private:
//----------------------------------------------------------------
int m_y;
const_span m_span;
};
//--------------------------------------------------------------------
renderer_raster_htext(ren_type& ren, glyph_gen_type& glyph) :
m_ren(&ren),
m_glyph(&glyph)
{
}
//--------------------------------------------------------------------
template<class CharT>
void render_text(double x, double y, const CharT* str, bool flip=false)
{
glyph_rect r;
while(*str)
{
m_glyph->prepare(&r, x, y, *str, flip);
if(r.x2 >= r.x1)
{
m_ren->prepare();
int i;
if(flip)
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->render(
scanline_single_span(r.x1,
i,
(r.x2 - r.x1 + 1),
m_glyph->span(r.y2 - i)));
}
}
else
{
for(i = r.y1; i <= r.y2; i++)
{
m_ren->render(
scanline_single_span(r.x1,
i,
(r.x2 - r.x1 + 1),
m_glyph->span(i - r.y1)));
}
}
}
x += r.dx;
y += r.dy;
++str;
}
}
private:
ren_type* m_ren;
glyph_gen_type* m_glyph;
};
}
#endif

852
deps/agg/include/agg_renderer_scanline.h vendored Normal file
View file

@ -0,0 +1,852 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_RENDERER_SCANLINE_INCLUDED
#define AGG_RENDERER_SCANLINE_INCLUDED
#include "agg_basics.h"
#include "agg_renderer_base.h"
namespace agg
{
//================================================render_scanline_aa_solid
template<class Scanline, class BaseRenderer, class ColorT>
void render_scanline_aa_solid(const Scanline& sl,
BaseRenderer& ren,
const ColorT& color)
{
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
if(span->len > 0)
{
ren.blend_solid_hspan(x, y, (unsigned)span->len,
color,
span->covers);
}
else
{
ren.blend_hline(x, y, (unsigned)(x - span->len - 1),
color,
*(span->covers));
}
if(--num_spans == 0) break;
++span;
}
}
//===============================================render_scanlines_aa_solid
template<class Rasterizer, class Scanline,
class BaseRenderer, class ColorT>
void render_scanlines_aa_solid(Rasterizer& ras, Scanline& sl,
BaseRenderer& ren, const ColorT& color)
{
if(ras.rewind_scanlines())
{
// Explicitly convert "color" to the BaseRenderer color type.
// For example, it can be called with color type "rgba", while
// "rgba8" is needed. Otherwise it will be implicitly
// converted in the loop many times.
//----------------------
typename BaseRenderer::color_type ren_color(color);
sl.reset(ras.min_x(), ras.max_x());
while(ras.sweep_scanline(sl))
{
//render_scanline_aa_solid(sl, ren, ren_color);
// This code is equivalent to the above call (copy/paste).
// It's just a "manual" optimization for old compilers,
// like Microsoft Visual C++ v6.0
//-------------------------------
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
if(span->len > 0)
{
ren.blend_solid_hspan(x, y, (unsigned)span->len,
ren_color,
span->covers);
}
else
{
ren.blend_hline(x, y, (unsigned)(x - span->len - 1),
ren_color,
*(span->covers));
}
if(--num_spans == 0) break;
++span;
}
}
}
}
//==============================================renderer_scanline_aa_solid
template<class BaseRenderer> class renderer_scanline_aa_solid
{
public:
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
renderer_scanline_aa_solid() : m_ren(0) {}
explicit renderer_scanline_aa_solid(base_ren_type& ren) : m_ren(&ren) {}
void attach(base_ren_type& ren)
{
m_ren = &ren;
}
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
void prepare() {}
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_aa_solid(sl, *m_ren, m_color);
}
private:
base_ren_type* m_ren;
color_type m_color;
};
//======================================================render_scanline_aa
template<class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanline_aa(const Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
int len = span->len;
const typename Scanline::cover_type* covers = span->covers;
if(len < 0) len = -len;
typename BaseRenderer::color_type* colors = alloc.allocate(len);
span_gen.generate(colors, x, y, len);
ren.blend_color_hspan(x, y, len, colors,
(span->len < 0) ? 0 : covers, *covers);
if(--num_spans == 0) break;
++span;
}
}
//=====================================================render_scanlines_aa
template<class Rasterizer, class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanlines_aa(Rasterizer& ras, Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
if(ras.rewind_scanlines())
{
sl.reset(ras.min_x(), ras.max_x());
span_gen.prepare();
while(ras.sweep_scanline(sl))
{
render_scanline_aa(sl, ren, alloc, span_gen);
}
}
}
//====================================================renderer_scanline_aa
template<class BaseRenderer, class SpanAllocator, class SpanGenerator>
class renderer_scanline_aa
{
public:
typedef BaseRenderer base_ren_type;
typedef SpanAllocator alloc_type;
typedef SpanGenerator span_gen_type;
//--------------------------------------------------------------------
renderer_scanline_aa() : m_ren(0), m_alloc(0), m_span_gen(0) {}
renderer_scanline_aa(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen) :
m_ren(&ren),
m_alloc(&alloc),
m_span_gen(&span_gen)
{}
void attach(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen)
{
m_ren = &ren;
m_alloc = &alloc;
m_span_gen = &span_gen;
}
//--------------------------------------------------------------------
void prepare() { m_span_gen->prepare(); }
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_aa(sl, *m_ren, *m_alloc, *m_span_gen);
}
private:
base_ren_type* m_ren;
alloc_type* m_alloc;
span_gen_type* m_span_gen;
};
//===============================================render_scanline_bin_solid
template<class Scanline, class BaseRenderer, class ColorT>
void render_scanline_bin_solid(const Scanline& sl,
BaseRenderer& ren,
const ColorT& color)
{
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
ren.blend_hline(span->x,
sl.y(),
span->x - 1 + ((span->len < 0) ?
-span->len :
span->len),
color,
cover_full);
if(--num_spans == 0) break;
++span;
}
}
//==============================================render_scanlines_bin_solid
template<class Rasterizer, class Scanline,
class BaseRenderer, class ColorT>
void render_scanlines_bin_solid(Rasterizer& ras, Scanline& sl,
BaseRenderer& ren, const ColorT& color)
{
if(ras.rewind_scanlines())
{
// Explicitly convert "color" to the BaseRenderer color type.
// For example, it can be called with color type "rgba", while
// "rgba8" is needed. Otherwise it will be implicitly
// converted in the loop many times.
//----------------------
typename BaseRenderer::color_type ren_color(color);
sl.reset(ras.min_x(), ras.max_x());
while(ras.sweep_scanline(sl))
{
//render_scanline_bin_solid(sl, ren, ren_color);
// This code is equivalent to the above call (copy/paste).
// It's just a "manual" optimization for old compilers,
// like Microsoft Visual C++ v6.0
//-------------------------------
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
ren.blend_hline(span->x,
sl.y(),
span->x - 1 + ((span->len < 0) ?
-span->len :
span->len),
ren_color,
cover_full);
if(--num_spans == 0) break;
++span;
}
}
}
}
//=============================================renderer_scanline_bin_solid
template<class BaseRenderer> class renderer_scanline_bin_solid
{
public:
typedef BaseRenderer base_ren_type;
typedef typename base_ren_type::color_type color_type;
//--------------------------------------------------------------------
renderer_scanline_bin_solid() : m_ren(0) {}
explicit renderer_scanline_bin_solid(base_ren_type& ren) : m_ren(&ren) {}
void attach(base_ren_type& ren)
{
m_ren = &ren;
}
//--------------------------------------------------------------------
void color(const color_type& c) { m_color = c; }
const color_type& color() const { return m_color; }
//--------------------------------------------------------------------
void prepare() {}
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_bin_solid(sl, *m_ren, m_color);
}
private:
base_ren_type* m_ren;
color_type m_color;
};
//======================================================render_scanline_bin
template<class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanline_bin(const Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
int y = sl.y();
unsigned num_spans = sl.num_spans();
typename Scanline::const_iterator span = sl.begin();
for(;;)
{
int x = span->x;
int len = span->len;
if(len < 0) len = -len;
typename BaseRenderer::color_type* colors = alloc.allocate(len);
span_gen.generate(colors, x, y, len);
ren.blend_color_hspan(x, y, len, colors, 0, cover_full);
if(--num_spans == 0) break;
++span;
}
}
//=====================================================render_scanlines_bin
template<class Rasterizer, class Scanline, class BaseRenderer,
class SpanAllocator, class SpanGenerator>
void render_scanlines_bin(Rasterizer& ras, Scanline& sl, BaseRenderer& ren,
SpanAllocator& alloc, SpanGenerator& span_gen)
{
if(ras.rewind_scanlines())
{
sl.reset(ras.min_x(), ras.max_x());
span_gen.prepare();
while(ras.sweep_scanline(sl))
{
render_scanline_bin(sl, ren, alloc, span_gen);
}
}
}
//====================================================renderer_scanline_bin
template<class BaseRenderer, class SpanAllocator, class SpanGenerator>
class renderer_scanline_bin
{
public:
typedef BaseRenderer base_ren_type;
typedef SpanAllocator alloc_type;
typedef SpanGenerator span_gen_type;
//--------------------------------------------------------------------
renderer_scanline_bin() : m_ren(0), m_alloc(0), m_span_gen(0) {}
renderer_scanline_bin(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen) :
m_ren(&ren),
m_alloc(&alloc),
m_span_gen(&span_gen)
{}
void attach(base_ren_type& ren,
alloc_type& alloc,
span_gen_type& span_gen)
{
m_ren = &ren;
m_alloc = &alloc;
m_span_gen = &span_gen;
}
//--------------------------------------------------------------------
void prepare() { m_span_gen->prepare(); }
//--------------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
render_scanline_bin(sl, *m_ren, *m_alloc, *m_span_gen);
}
private:
base_ren_type* m_ren;
alloc_type* m_alloc;
span_gen_type* m_span_gen;
};
//========================================================render_scanlines
template<class Rasterizer, class Scanline, class Renderer>
void render_scanlines(Rasterizer& ras, Scanline& sl, Renderer& ren)
{
if(ras.rewind_scanlines())
{
sl.reset(ras.min_x(), ras.max_x());
ren.prepare();
while(ras.sweep_scanline(sl))
{
ren.render(sl);
}
}
}
//========================================================render_all_paths
template<class Rasterizer, class Scanline, class Renderer,
class VertexSource, class ColorStorage, class PathId>
void render_all_paths(Rasterizer& ras,
Scanline& sl,
Renderer& r,
VertexSource& vs,
const ColorStorage& as,
const PathId& path_id,
unsigned num_paths)
{
for(unsigned i = 0; i < num_paths; i++)
{
ras.reset();
ras.add_path(vs, path_id[i]);
r.color(as[i]);
render_scanlines(ras, sl, r);
}
}
//=============================================render_scanlines_compound
template<class Rasterizer,
class ScanlineAA,
class ScanlineBin,
class BaseRenderer,
class SpanAllocator,
class StyleHandler>
void render_scanlines_compound(Rasterizer& ras,
ScanlineAA& sl_aa,
ScanlineBin& sl_bin,
BaseRenderer& ren,
SpanAllocator& alloc,
StyleHandler& sh)
{
if(ras.rewind_scanlines())
{
int min_x = ras.min_x();
int len = ras.max_x() - min_x + 2;
sl_aa.reset(min_x, ras.max_x());
sl_bin.reset(min_x, ras.max_x());
typedef typename BaseRenderer::color_type color_type;
color_type* color_span = alloc.allocate(len * 2);
color_type* mix_buffer = color_span + len;
unsigned num_spans;
unsigned num_styles;
unsigned style;
bool solid;
while((num_styles = ras.sweep_styles()) > 0)
{
typename ScanlineAA::const_iterator span_aa;
if(num_styles == 1)
{
// Optimization for a single style. Happens often
//-------------------------
if(ras.sweep_scanline(sl_aa, 0))
{
style = ras.style(0);
if(sh.is_solid(style))
{
// Just solid fill
//-----------------------
render_scanline_aa_solid(sl_aa, ren, sh.color(style));
}
else
{
// Arbitrary span generator
//-----------------------
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
for(;;)
{
len = span_aa->len;
sh.generate_span(color_span,
span_aa->x,
sl_aa.y(),
len,
style);
ren.blend_color_hspan(span_aa->x,
sl_aa.y(),
span_aa->len,
color_span,
span_aa->covers);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
else
{
if(ras.sweep_scanline(sl_bin, -1))
{
// Clear the spans of the mix_buffer
//--------------------
typename ScanlineBin::const_iterator span_bin = sl_bin.begin();
num_spans = sl_bin.num_spans();
for(;;)
{
memset(mix_buffer + span_bin->x - min_x,
0,
span_bin->len * sizeof(color_type));
if(--num_spans == 0) break;
++span_bin;
}
unsigned i;
for(i = 0; i < num_styles; i++)
{
style = ras.style(i);
solid = sh.is_solid(style);
if(ras.sweep_scanline(sl_aa, i))
{
color_type* colors;
color_type* cspan;
typename ScanlineAA::cover_type* covers;
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
if(solid)
{
// Just solid fill
//-----------------------
for(;;)
{
color_type c = sh.color(style);
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
covers = span_aa->covers;
do
{
if(*covers == cover_full)
{
*colors = c;
}
else
{
colors->add(c, *covers);
}
++colors;
++covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
else
{
// Arbitrary span generator
//-----------------------
for(;;)
{
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
cspan = color_span;
sh.generate_span(cspan,
span_aa->x,
sl_aa.y(),
len,
style);
covers = span_aa->covers;
do
{
if(*covers == cover_full)
{
*colors = *cspan;
}
else
{
colors->add(*cspan, *covers);
}
++cspan;
++colors;
++covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
// Emit the blended result as a color hspan
//-------------------------
span_bin = sl_bin.begin();
num_spans = sl_bin.num_spans();
for(;;)
{
ren.blend_color_hspan(span_bin->x,
sl_bin.y(),
span_bin->len,
mix_buffer + span_bin->x - min_x,
0,
cover_full);
if(--num_spans == 0) break;
++span_bin;
}
} // if(ras.sweep_scanline(sl_bin, -1))
} // if(num_styles == 1) ... else
} // while((num_styles = ras.sweep_styles()) > 0)
} // if(ras.rewind_scanlines())
}
//=======================================render_scanlines_compound_layered
template<class Rasterizer,
class ScanlineAA,
class BaseRenderer,
class SpanAllocator,
class StyleHandler>
void render_scanlines_compound_layered(Rasterizer& ras,
ScanlineAA& sl_aa,
BaseRenderer& ren,
SpanAllocator& alloc,
StyleHandler& sh)
{
if(ras.rewind_scanlines())
{
int min_x = ras.min_x();
int len = ras.max_x() - min_x + 2;
sl_aa.reset(min_x, ras.max_x());
typedef typename BaseRenderer::color_type color_type;
color_type* color_span = alloc.allocate(len * 2);
color_type* mix_buffer = color_span + len;
cover_type* cover_buffer = ras.allocate_cover_buffer(len);
unsigned num_spans;
unsigned num_styles;
unsigned style;
bool solid;
while((num_styles = ras.sweep_styles()) > 0)
{
typename ScanlineAA::const_iterator span_aa;
if(num_styles == 1)
{
// Optimization for a single style. Happens often
//-------------------------
if(ras.sweep_scanline(sl_aa, 0))
{
style = ras.style(0);
if(sh.is_solid(style))
{
// Just solid fill
//-----------------------
render_scanline_aa_solid(sl_aa, ren, sh.color(style));
}
else
{
// Arbitrary span generator
//-----------------------
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
for(;;)
{
len = span_aa->len;
sh.generate_span(color_span,
span_aa->x,
sl_aa.y(),
len,
style);
ren.blend_color_hspan(span_aa->x,
sl_aa.y(),
span_aa->len,
color_span,
span_aa->covers);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
else
{
int sl_start = ras.scanline_start();
unsigned sl_len = ras.scanline_length();
if(sl_len)
{
memset(mix_buffer + sl_start - min_x,
0,
sl_len * sizeof(color_type));
memset(cover_buffer + sl_start - min_x,
0,
sl_len * sizeof(cover_type));
int sl_y = 0x7FFFFFFF;
unsigned i;
for(i = 0; i < num_styles; i++)
{
style = ras.style(i);
solid = sh.is_solid(style);
if(ras.sweep_scanline(sl_aa, i))
{
unsigned cover;
color_type* colors;
color_type* cspan;
cover_type* src_covers;
cover_type* dst_covers;
span_aa = sl_aa.begin();
num_spans = sl_aa.num_spans();
sl_y = sl_aa.y();
if(solid)
{
// Just solid fill
//-----------------------
for(;;)
{
color_type c = sh.color(style);
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
src_covers = span_aa->covers;
dst_covers = cover_buffer + span_aa->x - min_x;
do
{
cover = *src_covers;
if(*dst_covers + cover > cover_full)
{
cover = cover_full - *dst_covers;
}
if(cover)
{
colors->add(c, cover);
*dst_covers += cover;
}
++colors;
++src_covers;
++dst_covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
else
{
// Arbitrary span generator
//-----------------------
for(;;)
{
len = span_aa->len;
colors = mix_buffer + span_aa->x - min_x;
cspan = color_span;
sh.generate_span(cspan,
span_aa->x,
sl_aa.y(),
len,
style);
src_covers = span_aa->covers;
dst_covers = cover_buffer + span_aa->x - min_x;
do
{
cover = *src_covers;
if(*dst_covers + cover > cover_full)
{
cover = cover_full - *dst_covers;
}
if(cover)
{
colors->add(*cspan, cover);
*dst_covers += cover;
}
++cspan;
++colors;
++src_covers;
++dst_covers;
}
while(--len);
if(--num_spans == 0) break;
++span_aa;
}
}
}
}
ren.blend_color_hspan(sl_start,
sl_y,
sl_len,
mix_buffer + sl_start - min_x,
0,
cover_full);
} //if(sl_len)
} //if(num_styles == 1) ... else
} //while((num_styles = ras.sweep_styles()) > 0)
} //if(ras.rewind_scanlines())
}
}
#endif

300
deps/agg/include/agg_rendering_buffer.h vendored Normal file
View file

@ -0,0 +1,300 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class rendering_buffer
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERING_BUFFER_INCLUDED
#define AGG_RENDERING_BUFFER_INCLUDED
#include "agg_array.h"
namespace agg
{
//===========================================================row_accessor
template<class T> class row_accessor
{
public:
typedef const_row_info<T> row_data;
//-------------------------------------------------------------------
row_accessor() :
m_buf(0),
m_start(0),
m_width(0),
m_height(0),
m_stride(0)
{
}
//--------------------------------------------------------------------
row_accessor(T* buf, unsigned width, unsigned height, int stride) :
m_buf(0),
m_start(0),
m_width(0),
m_height(0),
m_stride(0)
{
attach(buf, width, height, stride);
}
//--------------------------------------------------------------------
void attach(T* buf, unsigned width, unsigned height, int stride)
{
m_buf = m_start = buf;
m_width = width;
m_height = height;
m_stride = stride;
if(stride < 0)
{
m_start = m_buf - int(height - 1) * stride;
}
}
//--------------------------------------------------------------------
AGG_INLINE T* buf() { return m_buf; }
AGG_INLINE const T* buf() const { return m_buf; }
AGG_INLINE unsigned width() const { return m_width; }
AGG_INLINE unsigned height() const { return m_height; }
AGG_INLINE int stride() const { return m_stride; }
AGG_INLINE unsigned stride_abs() const
{
return (m_stride < 0) ? unsigned(-m_stride) : unsigned(m_stride);
}
//--------------------------------------------------------------------
AGG_INLINE T* row_ptr(int, int y, unsigned)
{
return m_start + y * m_stride;
}
AGG_INLINE T* row_ptr(int y) { return m_start + y * m_stride; }
AGG_INLINE const T* row_ptr(int y) const { return m_start + y * m_stride; }
AGG_INLINE row_data row (int y) const
{
return row_data(0, m_width-1, row_ptr(y));
}
//--------------------------------------------------------------------
template<class RenBuf>
void copy_from(const RenBuf& src)
{
unsigned h = height();
if(src.height() < h) h = src.height();
unsigned l = stride_abs();
if(src.stride_abs() < l) l = src.stride_abs();
l *= sizeof(T);
unsigned y;
unsigned w = width();
for (y = 0; y < h; y++)
{
memcpy(row_ptr(0, y, w), src.row_ptr(y), l);
}
}
//--------------------------------------------------------------------
void clear(T value)
{
unsigned y;
unsigned w = width();
unsigned stride = stride_abs();
for(y = 0; y < height(); y++)
{
T* p = row_ptr(0, y, w);
unsigned x;
for(x = 0; x < stride; x++)
{
*p++ = value;
}
}
}
private:
//--------------------------------------------------------------------
T* m_buf; // Pointer to renrdering buffer
T* m_start; // Pointer to first pixel depending on stride
unsigned m_width; // Width in pixels
unsigned m_height; // Height in pixels
int m_stride; // Number of bytes per row. Can be < 0
};
//==========================================================row_ptr_cache
template<class T> class row_ptr_cache
{
public:
typedef const_row_info<T> row_data;
//-------------------------------------------------------------------
row_ptr_cache() :
m_buf(0),
m_rows(),
m_width(0),
m_height(0),
m_stride(0)
{
}
//--------------------------------------------------------------------
row_ptr_cache(T* buf, unsigned width, unsigned height, int stride) :
m_buf(0),
m_rows(),
m_width(0),
m_height(0),
m_stride(0)
{
attach(buf, width, height, stride);
}
//--------------------------------------------------------------------
void attach(T* buf, unsigned width, unsigned height, int stride)
{
m_buf = buf;
m_width = width;
m_height = height;
m_stride = stride;
if(height > m_rows.size())
{
m_rows.resize(height);
}
T* row_ptr = m_buf;
if(stride < 0)
{
row_ptr = m_buf - int(height - 1) * stride;
}
T** rows = &m_rows[0];
while(height--)
{
*rows++ = row_ptr;
row_ptr += stride;
}
}
//--------------------------------------------------------------------
AGG_INLINE T* buf() { return m_buf; }
AGG_INLINE const T* buf() const { return m_buf; }
AGG_INLINE unsigned width() const { return m_width; }
AGG_INLINE unsigned height() const { return m_height; }
AGG_INLINE int stride() const { return m_stride; }
AGG_INLINE unsigned stride_abs() const
{
return (m_stride < 0) ? unsigned(-m_stride) : unsigned(m_stride);
}
//--------------------------------------------------------------------
AGG_INLINE T* row_ptr(int, int y, unsigned)
{
return m_rows[y];
}
AGG_INLINE T* row_ptr(int y) { return m_rows[y]; }
AGG_INLINE const T* row_ptr(int y) const { return m_rows[y]; }
AGG_INLINE row_data row (int y) const
{
return row_data(0, m_width-1, m_rows[y]);
}
//--------------------------------------------------------------------
T const* const* rows() const { return &m_rows[0]; }
//--------------------------------------------------------------------
template<class RenBuf>
void copy_from(const RenBuf& src)
{
unsigned h = height();
if(src.height() < h) h = src.height();
unsigned l = stride_abs();
if(src.stride_abs() < l) l = src.stride_abs();
l *= sizeof(T);
unsigned y;
unsigned w = width();
for (y = 0; y < h; y++)
{
memcpy(row_ptr(0, y, w), src.row_ptr(y), l);
}
}
//--------------------------------------------------------------------
void clear(T value)
{
unsigned y;
unsigned w = width();
unsigned stride = stride_abs();
for(y = 0; y < height(); y++)
{
T* p = row_ptr(0, y, w);
unsigned x;
for(x = 0; x < stride; x++)
{
*p++ = value;
}
}
}
private:
//--------------------------------------------------------------------
T* m_buf; // Pointer to renrdering buffer
pod_array<T*> m_rows; // Pointers to each row of the buffer
unsigned m_width; // Width in pixels
unsigned m_height; // Height in pixels
int m_stride; // Number of bytes per row. Can be < 0
};
//========================================================rendering_buffer
//
// The definition of the main type for accessing the rows in the frame
// buffer. It provides functionality to navigate to the rows in a
// rectangular matrix, from top to bottom or from bottom to top depending
// on stride.
//
// row_accessor is cheap to create/destroy, but performs one multiplication
// when calling row_ptr().
//
// row_ptr_cache creates an array of pointers to rows, so, the access
// via row_ptr() may be faster. But it requires memory allocation
// when creating. For example, on typical Intel Pentium hardware
// row_ptr_cache speeds span_image_filter_rgb_nn up to 10%
//
// It's used only in short hand typedefs like pixfmt_rgba32 and can be
// redefined in agg_config.h
// In real applications you can use both, depending on your needs
//------------------------------------------------------------------------
#ifdef AGG_RENDERING_BUFFER
typedef AGG_RENDERING_BUFFER rendering_buffer;
#else
typedef row_ptr_cache<int8u> rendering_buffer;
//typedef row_accessor<int8u> rendering_buffer;
#endif
}
#endif

View file

@ -0,0 +1,137 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// class rendering_buffer_dynarow
//
//----------------------------------------------------------------------------
#ifndef AGG_RENDERING_BUFFER_DYNAROW_INCLUDED
#define AGG_RENDERING_BUFFER_DYNAROW_INCLUDED
#include "agg_array.h"
namespace agg
{
//===============================================rendering_buffer_dynarow
// Rendering buffer class with dynamic allocation of the rows.
// The rows are allocated as needed when requesting for span_ptr().
// The class automatically calculates min_x and max_x for each row.
// Generally it's more efficient to use this class as a temporary buffer
// for rendering a few lines and then to blend it with another buffer.
//
class rendering_buffer_dynarow
{
public:
typedef row_info<int8u> row_data;
//-------------------------------------------------------------------
~rendering_buffer_dynarow()
{
init(0,0,0);
}
//-------------------------------------------------------------------
rendering_buffer_dynarow() :
m_rows(),
m_width(0),
m_height(0),
m_byte_width(0)
{
}
// Allocate and clear the buffer
//--------------------------------------------------------------------
rendering_buffer_dynarow(unsigned width, unsigned height,
unsigned byte_width) :
m_rows(height),
m_width(width),
m_height(height),
m_byte_width(byte_width)
{
memset(&m_rows[0], 0, sizeof(row_data) * height);
}
// Allocate and clear the buffer
//--------------------------------------------------------------------
void init(unsigned width, unsigned height, unsigned byte_width)
{
unsigned i;
for(i = 0; i < m_height; ++i)
{
pod_allocator<int8u>::deallocate((int8u*)m_rows[i].ptr, m_byte_width);
}
if(width && height)
{
m_width = width;
m_height = height;
m_byte_width = byte_width;
m_rows.resize(height);
memset(&m_rows[0], 0, sizeof(row_data) * height);
}
}
//--------------------------------------------------------------------
unsigned width() const { return m_width; }
unsigned height() const { return m_height; }
unsigned byte_width() const { return m_byte_width; }
// The main function used for rendering. Returns pointer to the
// pre-allocated span. Memory for the row is allocated as needed.
//--------------------------------------------------------------------
int8u* row_ptr(int x, int y, unsigned len)
{
row_data* r = &m_rows[y];
int x2 = x + len - 1;
if(r->ptr)
{
if(x < r->x1) { r->x1 = x; }
if(x2 > r->x2) { r->x2 = x2; }
}
else
{
int8u* p = pod_allocator<int8u>::allocate(m_byte_width);
r->ptr = p;
r->x1 = x;
r->x2 = x2;
memset(p, 0, m_byte_width);
}
return (int8u*)r->ptr;
}
//--------------------------------------------------------------------
const int8u* row_ptr(int y) const { return m_rows[y].ptr; }
int8u* row_ptr(int y) { return row_ptr(0, y, m_width); }
row_data row (int y) const { return m_rows[y]; }
private:
//--------------------------------------------------------------------
// Prohibit copying
rendering_buffer_dynarow(const rendering_buffer_dynarow&);
const rendering_buffer_dynarow& operator = (const rendering_buffer_dynarow&);
private:
//--------------------------------------------------------------------
pod_array<row_data> m_rows; // Pointers to each row of the buffer
unsigned m_width; // Width in pixels
unsigned m_height; // Height in pixels
unsigned m_byte_width; // Width in bytes
};
}
#endif

72
deps/agg/include/agg_rounded_rect.h vendored Normal file
View file

@ -0,0 +1,72 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Rounded rectangle vertex generator
//
//----------------------------------------------------------------------------
#ifndef AGG_ROUNDED_RECT_INCLUDED
#define AGG_ROUNDED_RECT_INCLUDED
#include "agg_basics.h"
#include "agg_arc.h"
namespace agg
{
//------------------------------------------------------------rounded_rect
//
// See Implemantation agg_rounded_rect.cpp
//
class rounded_rect
{
public:
rounded_rect() {}
rounded_rect(double x1, double y1, double x2, double y2, double r);
void rect(double x1, double y1, double x2, double y2);
void radius(double r);
void radius(double rx, double ry);
void radius(double rx_bottom, double ry_bottom, double rx_top, double ry_top);
void radius(double rx1, double ry1, double rx2, double ry2,
double rx3, double ry3, double rx4, double ry4);
void normalize_radius();
void approximation_scale(double s) { m_arc.approximation_scale(s); }
double approximation_scale() const { return m_arc.approximation_scale(); }
void rewind(unsigned);
unsigned vertex(double* x, double* y);
private:
double m_x1;
double m_y1;
double m_x2;
double m_y2;
double m_rx1;
double m_ry1;
double m_rx2;
double m_ry2;
double m_rx3;
double m_ry3;
double m_rx4;
double m_ry4;
unsigned m_status;
arc m_arc;
};
}
#endif

264
deps/agg/include/agg_scanline_bin.h vendored Normal file
View file

@ -0,0 +1,264 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class scanline_bin - binary scanline.
//
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates (scanline32_bin) has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SCANLINE_BIN_INCLUDED
#define AGG_SCANLINE_BIN_INCLUDED
#include "agg_array.h"
namespace agg
{
//=============================================================scanline_bin
//
// This is binary scaline container which supports the interface
// used in the rasterizer::render(). See description of agg_scanline_u8
// for details.
//
//------------------------------------------------------------------------
class scanline_bin
{
public:
typedef int32 coord_type;
struct span
{
int16 x;
int16 len;
};
typedef const span* const_iterator;
//--------------------------------------------------------------------
scanline_bin() :
m_last_x(0x7FFFFFF0),
m_spans(),
m_cur_span(0)
{
}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 3;
if(max_len > m_spans.size())
{
m_spans.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_cur_span = &m_spans[0];
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned)
{
if(x == m_last_x+1)
{
m_cur_span->len++;
}
else
{
++m_cur_span;
m_cur_span->x = (int16)x;
m_cur_span->len = 1;
}
m_last_x = x;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned)
{
if(x == m_last_x+1)
{
m_cur_span->len = (int16)(m_cur_span->len + len);
}
else
{
++m_cur_span;
m_cur_span->x = (int16)x;
m_cur_span->len = (int16)len;
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const void*)
{
add_span(x, len, 0);
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_cur_span = &m_spans[0];
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return unsigned(m_cur_span - &m_spans[0]); }
const_iterator begin() const { return &m_spans[1]; }
private:
scanline_bin(const scanline_bin&);
const scanline_bin operator = (const scanline_bin&);
int m_last_x;
int m_y;
pod_array<span> m_spans;
span* m_cur_span;
};
//===========================================================scanline32_bin
class scanline32_bin
{
public:
typedef int32 coord_type;
//--------------------------------------------------------------------
struct span
{
span() {}
span(coord_type x_, coord_type len_) : x(x_), len(len_) {}
coord_type x;
coord_type len;
};
typedef pod_bvector<span, 4> span_array_type;
//--------------------------------------------------------------------
class const_iterator
{
public:
const_iterator(const span_array_type& spans) :
m_spans(spans),
m_span_idx(0)
{}
const span& operator*() const { return m_spans[m_span_idx]; }
const span* operator->() const { return &m_spans[m_span_idx]; }
void operator ++ () { ++m_span_idx; }
private:
const span_array_type& m_spans;
unsigned m_span_idx;
};
//--------------------------------------------------------------------
scanline32_bin() : m_max_len(0), m_last_x(0x7FFFFFF0) {}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
m_last_x = 0x7FFFFFF0;
m_spans.remove_all();
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned)
{
if(x == m_last_x+1)
{
m_spans.last().len++;
}
else
{
m_spans.add(span(coord_type(x), 1));
}
m_last_x = x;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned)
{
if(x == m_last_x+1)
{
m_spans.last().len += coord_type(len);
}
else
{
m_spans.add(span(coord_type(x), coord_type(len)));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const void*)
{
add_span(x, len, 0);
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_spans.remove_all();
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return m_spans.size(); }
const_iterator begin() const { return const_iterator(m_spans); }
private:
scanline32_bin(const scanline32_bin&);
const scanline32_bin operator = (const scanline32_bin&);
unsigned m_max_len;
int m_last_x;
int m_y;
span_array_type m_spans;
};
}
#endif

File diff suppressed because it is too large Load diff

329
deps/agg/include/agg_scanline_p.h vendored Normal file
View file

@ -0,0 +1,329 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class scanline_p - a general purpose scanline container with packed spans.
//
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates (scanline32_p) has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SCANLINE_P_INCLUDED
#define AGG_SCANLINE_P_INCLUDED
#include "agg_array.h"
namespace agg
{
//=============================================================scanline_p8
//
// This is a general purpose scaline container which supports the interface
// used in the rasterizer::render(). See description of scanline_u8
// for details.
//
//------------------------------------------------------------------------
class scanline_p8
{
public:
typedef scanline_p8 self_type;
typedef int8u cover_type;
typedef int16 coord_type;
//--------------------------------------------------------------------
struct span
{
coord_type x;
coord_type len; // If negative, it's a solid span, covers is valid
const cover_type* covers;
};
typedef span* iterator;
typedef const span* const_iterator;
scanline_p8() :
m_last_x(0x7FFFFFF0),
m_covers(),
m_cover_ptr(0),
m_spans(),
m_cur_span(0)
{
}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 3;
if(max_len > m_spans.size())
{
m_spans.resize(max_len);
m_covers.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_cur_span = &m_spans[0];
m_cur_span->len = 0;
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned cover)
{
*m_cover_ptr = (cover_type)cover;
if(x == m_last_x+1 && m_cur_span->len > 0)
{
m_cur_span->len++;
}
else
{
m_cur_span++;
m_cur_span->covers = m_cover_ptr;
m_cur_span->x = (int16)x;
m_cur_span->len = 1;
}
m_last_x = x;
m_cover_ptr++;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const cover_type* covers)
{
memcpy(m_cover_ptr, covers, len * sizeof(cover_type));
if(x == m_last_x+1 && m_cur_span->len > 0)
{
m_cur_span->len += (int16)len;
}
else
{
m_cur_span++;
m_cur_span->covers = m_cover_ptr;
m_cur_span->x = (int16)x;
m_cur_span->len = (int16)len;
}
m_cover_ptr += len;
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned cover)
{
if(x == m_last_x+1 &&
m_cur_span->len < 0 &&
cover == *m_cur_span->covers)
{
m_cur_span->len -= (int16)len;
}
else
{
*m_cover_ptr = (cover_type)cover;
m_cur_span++;
m_cur_span->covers = m_cover_ptr++;
m_cur_span->x = (int16)x;
m_cur_span->len = (int16)(-int(len));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_cur_span = &m_spans[0];
m_cur_span->len = 0;
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return unsigned(m_cur_span - &m_spans[0]); }
const_iterator begin() const { return &m_spans[1]; }
private:
scanline_p8(const self_type&);
const self_type& operator = (const self_type&);
int m_last_x;
int m_y;
pod_array<cover_type> m_covers;
cover_type* m_cover_ptr;
pod_array<span> m_spans;
span* m_cur_span;
};
//==========================================================scanline32_p8
class scanline32_p8
{
public:
typedef scanline32_p8 self_type;
typedef int8u cover_type;
typedef int32 coord_type;
struct span
{
span() {}
span(coord_type x_, coord_type len_, const cover_type* covers_) :
x(x_), len(len_), covers(covers_) {}
coord_type x;
coord_type len; // If negative, it's a solid span, covers is valid
const cover_type* covers;
};
typedef pod_bvector<span, 4> span_array_type;
//--------------------------------------------------------------------
class const_iterator
{
public:
const_iterator(const span_array_type& spans) :
m_spans(spans),
m_span_idx(0)
{}
const span& operator*() const { return m_spans[m_span_idx]; }
const span* operator->() const { return &m_spans[m_span_idx]; }
void operator ++ () { ++m_span_idx; }
private:
const span_array_type& m_spans;
unsigned m_span_idx;
};
//--------------------------------------------------------------------
scanline32_p8() :
m_max_len(0),
m_last_x(0x7FFFFFF0),
m_covers(),
m_cover_ptr(0)
{
}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 3;
if(max_len > m_covers.size())
{
m_covers.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_spans.remove_all();
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned cover)
{
*m_cover_ptr = cover_type(cover);
if(x == m_last_x+1 && m_spans.size() && m_spans.last().len > 0)
{
m_spans.last().len++;
}
else
{
m_spans.add(span(coord_type(x), 1, m_cover_ptr));
}
m_last_x = x;
m_cover_ptr++;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const cover_type* covers)
{
memcpy(m_cover_ptr, covers, len * sizeof(cover_type));
if(x == m_last_x+1 && m_spans.size() && m_spans.last().len > 0)
{
m_spans.last().len += coord_type(len);
}
else
{
m_spans.add(span(coord_type(x), coord_type(len), m_cover_ptr));
}
m_cover_ptr += len;
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned cover)
{
if(x == m_last_x+1 &&
m_spans.size() &&
m_spans.last().len < 0 &&
cover == *m_spans.last().covers)
{
m_spans.last().len -= coord_type(len);
}
else
{
*m_cover_ptr = cover_type(cover);
m_spans.add(span(coord_type(x), -coord_type(len), m_cover_ptr++));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_cover_ptr = &m_covers[0];
m_spans.remove_all();
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return m_spans.size(); }
const_iterator begin() const { return const_iterator(m_spans); }
private:
scanline32_p8(const self_type&);
const self_type& operator = (const self_type&);
unsigned m_max_len;
int m_last_x;
int m_y;
pod_array<cover_type> m_covers;
cover_type* m_cover_ptr;
span_array_type m_spans;
};
}
#endif

View file

@ -0,0 +1,815 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SCANLINE_STORAGE_AA_INCLUDED
#define AGG_SCANLINE_STORAGE_AA_INCLUDED
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "agg_array.h"
namespace agg
{
//----------------------------------------------scanline_cell_storage
template<class T> class scanline_cell_storage
{
struct extra_span
{
unsigned len;
T* ptr;
};
public:
typedef T value_type;
//---------------------------------------------------------------
~scanline_cell_storage()
{
remove_all();
}
//---------------------------------------------------------------
scanline_cell_storage() :
m_cells(128-2),
m_extra_storage()
{}
// Copying
//---------------------------------------------------------------
scanline_cell_storage(const scanline_cell_storage<T>& v) :
m_cells(v.m_cells),
m_extra_storage()
{
copy_extra_storage(v);
}
//---------------------------------------------------------------
const scanline_cell_storage<T>&
operator = (const scanline_cell_storage<T>& v)
{
remove_all();
m_cells = v.m_cells;
copy_extra_storage(v);
return *this;
}
//---------------------------------------------------------------
void remove_all()
{
int i;
for(i = m_extra_storage.size()-1; i >= 0; --i)
{
pod_allocator<T>::deallocate(m_extra_storage[i].ptr,
m_extra_storage[i].len);
}
m_extra_storage.remove_all();
m_cells.remove_all();
}
//---------------------------------------------------------------
int add_cells(const T* cells, unsigned num_cells)
{
int idx = m_cells.allocate_continuous_block(num_cells);
if(idx >= 0)
{
T* ptr = &m_cells[idx];
memcpy(ptr, cells, sizeof(T) * num_cells);
return idx;
}
extra_span s;
s.len = num_cells;
s.ptr = pod_allocator<T>::allocate(num_cells);
memcpy(s.ptr, cells, sizeof(T) * num_cells);
m_extra_storage.add(s);
return -int(m_extra_storage.size());
}
//---------------------------------------------------------------
const T* operator [] (int idx) const
{
if(idx >= 0)
{
if((unsigned)idx >= m_cells.size()) return 0;
return &m_cells[(unsigned)idx];
}
unsigned i = unsigned(-idx - 1);
if(i >= m_extra_storage.size()) return 0;
return m_extra_storage[i].ptr;
}
//---------------------------------------------------------------
T* operator [] (int idx)
{
if(idx >= 0)
{
if((unsigned)idx >= m_cells.size()) return 0;
return &m_cells[(unsigned)idx];
}
unsigned i = unsigned(-idx - 1);
if(i >= m_extra_storage.size()) return 0;
return m_extra_storage[i].ptr;
}
private:
void copy_extra_storage(const scanline_cell_storage<T>& v)
{
unsigned i;
for(i = 0; i < v.m_extra_storage.size(); ++i)
{
const extra_span& src = v.m_extra_storage[i];
extra_span dst;
dst.len = src.len;
dst.ptr = pod_allocator<T>::allocate(dst.len);
memcpy(dst.ptr, src.ptr, dst.len * sizeof(T));
m_extra_storage.add(dst);
}
}
pod_bvector<T, 12> m_cells;
pod_bvector<extra_span, 6> m_extra_storage;
};
//-----------------------------------------------scanline_storage_aa
template<class T> class scanline_storage_aa
{
public:
typedef T cover_type;
//---------------------------------------------------------------
struct span_data
{
int32 x;
int32 len; // If negative, it's a solid span, covers is valid
int covers_id; // The index of the cells in the scanline_cell_storage
};
//---------------------------------------------------------------
struct scanline_data
{
int y;
unsigned num_spans;
unsigned start_span;
};
//---------------------------------------------------------------
class embedded_scanline
{
public:
//-----------------------------------------------------------
class const_iterator
{
public:
struct span
{
int32 x;
int32 len; // If negative, it's a solid span, covers is valid
const T* covers;
};
const_iterator() : m_storage(0) {}
const_iterator(const embedded_scanline& sl) :
m_storage(sl.m_storage),
m_span_idx(sl.m_scanline.start_span)
{
init_span();
}
const span& operator*() const { return m_span; }
const span* operator->() const { return &m_span; }
void operator ++ ()
{
++m_span_idx;
init_span();
}
private:
void init_span()
{
const span_data& s = m_storage->span_by_index(m_span_idx);
m_span.x = s.x;
m_span.len = s.len;
m_span.covers = m_storage->covers_by_index(s.covers_id);
}
const scanline_storage_aa* m_storage;
unsigned m_span_idx;
span m_span;
};
friend class const_iterator;
//-----------------------------------------------------------
embedded_scanline(const scanline_storage_aa& storage) :
m_storage(&storage)
{
init(0);
}
//-----------------------------------------------------------
void reset(int, int) {}
unsigned num_spans() const { return m_scanline.num_spans; }
int y() const { return m_scanline.y; }
const_iterator begin() const { return const_iterator(*this); }
//-----------------------------------------------------------
void init(unsigned scanline_idx)
{
m_scanline_idx = scanline_idx;
m_scanline = m_storage->scanline_by_index(m_scanline_idx);
}
private:
const scanline_storage_aa* m_storage;
scanline_data m_scanline;
unsigned m_scanline_idx;
};
//---------------------------------------------------------------
scanline_storage_aa() :
m_covers(),
m_spans(256-2), // Block increment size
m_scanlines(),
m_min_x( 0x7FFFFFFF),
m_min_y( 0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF),
m_cur_scanline(0)
{
m_fake_scanline.y = 0;
m_fake_scanline.num_spans = 0;
m_fake_scanline.start_span = 0;
m_fake_span.x = 0;
m_fake_span.len = 0;
m_fake_span.covers_id = 0;
}
// Renderer Interface
//---------------------------------------------------------------
void prepare()
{
m_covers.remove_all();
m_scanlines.remove_all();
m_spans.remove_all();
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
m_cur_scanline = 0;
}
//---------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
scanline_data sl_this;
int y = sl.y();
if(y < m_min_y) m_min_y = y;
if(y > m_max_y) m_max_y = y;
sl_this.y = y;
sl_this.num_spans = sl.num_spans();
sl_this.start_span = m_spans.size();
typename Scanline::const_iterator span_iterator = sl.begin();
unsigned num_spans = sl_this.num_spans;
for(;;)
{
span_data sp;
sp.x = span_iterator->x;
sp.len = span_iterator->len;
int len = abs(int(sp.len));
sp.covers_id =
m_covers.add_cells(span_iterator->covers,
unsigned(len));
m_spans.add(sp);
int x1 = sp.x;
int x2 = sp.x + len - 1;
if(x1 < m_min_x) m_min_x = x1;
if(x2 > m_max_x) m_max_x = x2;
if(--num_spans == 0) break;
++span_iterator;
}
m_scanlines.add(sl_this);
}
//---------------------------------------------------------------
// Iterate scanlines interface
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
//---------------------------------------------------------------
bool rewind_scanlines()
{
m_cur_scanline = 0;
return m_scanlines.size() > 0;
}
//---------------------------------------------------------------
template<class Scanline> bool sweep_scanline(Scanline& sl)
{
sl.reset_spans();
for(;;)
{
if(m_cur_scanline >= m_scanlines.size()) return false;
const scanline_data& sl_this = m_scanlines[m_cur_scanline];
unsigned num_spans = sl_this.num_spans;
unsigned span_idx = sl_this.start_span;
do
{
const span_data& sp = m_spans[span_idx++];
const T* covers = covers_by_index(sp.covers_id);
if(sp.len < 0)
{
sl.add_span(sp.x, unsigned(-sp.len), *covers);
}
else
{
sl.add_cells(sp.x, sp.len, covers);
}
}
while(--num_spans);
++m_cur_scanline;
if(sl.num_spans())
{
sl.finalize(sl_this.y);
break;
}
}
return true;
}
//---------------------------------------------------------------
// Specialization for embedded_scanline
bool sweep_scanline(embedded_scanline& sl)
{
do
{
if(m_cur_scanline >= m_scanlines.size()) return false;
sl.init(m_cur_scanline);
++m_cur_scanline;
}
while(sl.num_spans() == 0);
return true;
}
//---------------------------------------------------------------
unsigned byte_size() const
{
unsigned i;
unsigned size = sizeof(int32) * 4; // min_x, min_y, max_x, max_y
for(i = 0; i < m_scanlines.size(); ++i)
{
size += sizeof(int32) * 3; // scanline size in bytes, Y, num_spans
const scanline_data& sl_this = m_scanlines[i];
unsigned num_spans = sl_this.num_spans;
unsigned span_idx = sl_this.start_span;
do
{
const span_data& sp = m_spans[span_idx++];
size += sizeof(int32) * 2; // X, span_len
if(sp.len < 0)
{
size += sizeof(T); // cover
}
else
{
size += sizeof(T) * unsigned(sp.len); // covers
}
}
while(--num_spans);
}
return size;
}
//---------------------------------------------------------------
static void write_int32(int8u* dst, int32 val)
{
dst[0] = ((const int8u*)&val)[0];
dst[1] = ((const int8u*)&val)[1];
dst[2] = ((const int8u*)&val)[2];
dst[3] = ((const int8u*)&val)[3];
}
//---------------------------------------------------------------
void serialize(int8u* data) const
{
unsigned i;
write_int32(data, min_x()); // min_x
data += sizeof(int32);
write_int32(data, min_y()); // min_y
data += sizeof(int32);
write_int32(data, max_x()); // max_x
data += sizeof(int32);
write_int32(data, max_y()); // max_y
data += sizeof(int32);
for(i = 0; i < m_scanlines.size(); ++i)
{
const scanline_data& sl_this = m_scanlines[i];
int8u* size_ptr = data;
data += sizeof(int32); // Reserve space for scanline size in bytes
write_int32(data, sl_this.y); // Y
data += sizeof(int32);
write_int32(data, sl_this.num_spans); // num_spans
data += sizeof(int32);
unsigned num_spans = sl_this.num_spans;
unsigned span_idx = sl_this.start_span;
do
{
const span_data& sp = m_spans[span_idx++];
const T* covers = covers_by_index(sp.covers_id);
write_int32(data, sp.x); // X
data += sizeof(int32);
write_int32(data, sp.len); // span_len
data += sizeof(int32);
if(sp.len < 0)
{
memcpy(data, covers, sizeof(T));
data += sizeof(T);
}
else
{
memcpy(data, covers, unsigned(sp.len) * sizeof(T));
data += sizeof(T) * unsigned(sp.len);
}
}
while(--num_spans);
write_int32(size_ptr, int32(unsigned(data - size_ptr)));
}
}
//---------------------------------------------------------------
const scanline_data& scanline_by_index(unsigned i) const
{
return (i < m_scanlines.size()) ? m_scanlines[i] : m_fake_scanline;
}
//---------------------------------------------------------------
const span_data& span_by_index(unsigned i) const
{
return (i < m_spans.size()) ? m_spans[i] : m_fake_span;
}
//---------------------------------------------------------------
const T* covers_by_index(int i) const
{
return m_covers[i];
}
private:
scanline_cell_storage<T> m_covers;
pod_bvector<span_data, 10> m_spans;
pod_bvector<scanline_data, 8> m_scanlines;
span_data m_fake_span;
scanline_data m_fake_scanline;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
unsigned m_cur_scanline;
};
typedef scanline_storage_aa<int8u> scanline_storage_aa8; //--------scanline_storage_aa8
typedef scanline_storage_aa<int16u> scanline_storage_aa16; //--------scanline_storage_aa16
typedef scanline_storage_aa<int32u> scanline_storage_aa32; //--------scanline_storage_aa32
//------------------------------------------serialized_scanlines_adaptor_aa
template<class T> class serialized_scanlines_adaptor_aa
{
public:
typedef T cover_type;
//---------------------------------------------------------------------
class embedded_scanline
{
public:
typedef T cover_type;
//-----------------------------------------------------------------
class const_iterator
{
public:
struct span
{
int32 x;
int32 len; // If negative, it's a solid span, "covers" is valid
const T* covers;
};
const_iterator() : m_ptr(0) {}
const_iterator(const embedded_scanline& sl) :
m_ptr(sl.m_ptr),
m_dx(sl.m_dx)
{
init_span();
}
const span& operator*() const { return m_span; }
const span* operator->() const { return &m_span; }
void operator ++ ()
{
if(m_span.len < 0)
{
m_ptr += sizeof(T);
}
else
{
m_ptr += m_span.len * sizeof(T);
}
init_span();
}
private:
int read_int32()
{
int32 val;
((int8u*)&val)[0] = *m_ptr++;
((int8u*)&val)[1] = *m_ptr++;
((int8u*)&val)[2] = *m_ptr++;
((int8u*)&val)[3] = *m_ptr++;
return val;
}
void init_span()
{
m_span.x = read_int32() + m_dx;
m_span.len = read_int32();
m_span.covers = m_ptr;
}
const int8u* m_ptr;
span m_span;
int m_dx;
};
friend class const_iterator;
//-----------------------------------------------------------------
embedded_scanline() : m_ptr(0), m_y(0), m_num_spans(0) {}
//-----------------------------------------------------------------
void reset(int, int) {}
unsigned num_spans() const { return m_num_spans; }
int y() const { return m_y; }
const_iterator begin() const { return const_iterator(*this); }
private:
//-----------------------------------------------------------------
int read_int32()
{
int32 val;
((int8u*)&val)[0] = *m_ptr++;
((int8u*)&val)[1] = *m_ptr++;
((int8u*)&val)[2] = *m_ptr++;
((int8u*)&val)[3] = *m_ptr++;
return val;
}
public:
//-----------------------------------------------------------------
void init(const int8u* ptr, int dx, int dy)
{
m_ptr = ptr;
m_y = read_int32() + dy;
m_num_spans = unsigned(read_int32());
m_dx = dx;
}
private:
const int8u* m_ptr;
int m_y;
unsigned m_num_spans;
int m_dx;
};
public:
//--------------------------------------------------------------------
serialized_scanlines_adaptor_aa() :
m_data(0),
m_end(0),
m_ptr(0),
m_dx(0),
m_dy(0),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF)
{}
//--------------------------------------------------------------------
serialized_scanlines_adaptor_aa(const int8u* data, unsigned size,
double dx, double dy) :
m_data(data),
m_end(data + size),
m_ptr(data),
m_dx(iround(dx)),
m_dy(iround(dy)),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF)
{}
//--------------------------------------------------------------------
void init(const int8u* data, unsigned size, double dx, double dy)
{
m_data = data;
m_end = data + size;
m_ptr = data;
m_dx = iround(dx);
m_dy = iround(dy);
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
}
private:
//--------------------------------------------------------------------
int read_int32()
{
int32 val;
((int8u*)&val)[0] = *m_ptr++;
((int8u*)&val)[1] = *m_ptr++;
((int8u*)&val)[2] = *m_ptr++;
((int8u*)&val)[3] = *m_ptr++;
return val;
}
//--------------------------------------------------------------------
unsigned read_int32u()
{
int32u val;
((int8u*)&val)[0] = *m_ptr++;
((int8u*)&val)[1] = *m_ptr++;
((int8u*)&val)[2] = *m_ptr++;
((int8u*)&val)[3] = *m_ptr++;
return val;
}
public:
// Iterate scanlines interface
//--------------------------------------------------------------------
bool rewind_scanlines()
{
m_ptr = m_data;
if(m_ptr < m_end)
{
m_min_x = read_int32() + m_dx;
m_min_y = read_int32() + m_dy;
m_max_x = read_int32() + m_dx;
m_max_y = read_int32() + m_dy;
}
return m_ptr < m_end;
}
//--------------------------------------------------------------------
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
//--------------------------------------------------------------------
template<class Scanline> bool sweep_scanline(Scanline& sl)
{
sl.reset_spans();
for(;;)
{
if(m_ptr >= m_end) return false;
read_int32(); // Skip scanline size in bytes
int y = read_int32() + m_dy;
unsigned num_spans = read_int32();
do
{
int x = read_int32() + m_dx;
int len = read_int32();
if(len < 0)
{
sl.add_span(x, unsigned(-len), *m_ptr);
m_ptr += sizeof(T);
}
else
{
sl.add_cells(x, len, m_ptr);
m_ptr += len * sizeof(T);
}
}
while(--num_spans);
if(sl.num_spans())
{
sl.finalize(y);
break;
}
}
return true;
}
//--------------------------------------------------------------------
// Specialization for embedded_scanline
bool sweep_scanline(embedded_scanline& sl)
{
do
{
if(m_ptr >= m_end) return false;
unsigned byte_size = read_int32u();
sl.init(m_ptr, m_dx, m_dy);
m_ptr += byte_size - sizeof(int32);
}
while(sl.num_spans() == 0);
return true;
}
private:
const int8u* m_data;
const int8u* m_end;
const int8u* m_ptr;
int m_dx;
int m_dy;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
};
typedef serialized_scanlines_adaptor_aa<int8u> serialized_scanlines_adaptor_aa8; //----serialized_scanlines_adaptor_aa8
typedef serialized_scanlines_adaptor_aa<int16u> serialized_scanlines_adaptor_aa16; //----serialized_scanlines_adaptor_aa16
typedef serialized_scanlines_adaptor_aa<int32u> serialized_scanlines_adaptor_aa32; //----serialized_scanlines_adaptor_aa32
}
#endif

View file

@ -0,0 +1,586 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SCANLINE_STORAGE_BIN_INCLUDED
#define AGG_SCANLINE_STORAGE_BIN_INCLUDED
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "agg_array.h"
namespace agg
{
//-----------------------------------------------scanline_storage_bin
class scanline_storage_bin
{
public:
//---------------------------------------------------------------
struct span_data
{
int32 x;
int32 len;
};
//---------------------------------------------------------------
struct scanline_data
{
int y;
unsigned num_spans;
unsigned start_span;
};
//---------------------------------------------------------------
class embedded_scanline
{
public:
//-----------------------------------------------------------
class const_iterator
{
public:
const_iterator() : m_storage(0) {}
const_iterator(const embedded_scanline& sl) :
m_storage(sl.m_storage),
m_span_idx(sl.m_scanline.start_span)
{
m_span = m_storage->span_by_index(m_span_idx);
}
const span_data& operator*() const { return m_span; }
const span_data* operator->() const { return &m_span; }
void operator ++ ()
{
++m_span_idx;
m_span = m_storage->span_by_index(m_span_idx);
}
private:
const scanline_storage_bin* m_storage;
unsigned m_span_idx;
span_data m_span;
};
friend class const_iterator;
//-----------------------------------------------------------
embedded_scanline(const scanline_storage_bin& storage) :
m_storage(&storage)
{
setup(0);
}
//-----------------------------------------------------------
void reset(int, int) {}
unsigned num_spans() const { return m_scanline.num_spans; }
int y() const { return m_scanline.y; }
const_iterator begin() const { return const_iterator(*this); }
//-----------------------------------------------------------
void setup(unsigned scanline_idx)
{
m_scanline_idx = scanline_idx;
m_scanline = m_storage->scanline_by_index(m_scanline_idx);
}
private:
const scanline_storage_bin* m_storage;
scanline_data m_scanline;
unsigned m_scanline_idx;
};
//---------------------------------------------------------------
scanline_storage_bin() :
m_spans(256-2), // Block increment size
m_scanlines(),
m_min_x( 0x7FFFFFFF),
m_min_y( 0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF),
m_cur_scanline(0)
{
m_fake_scanline.y = 0;
m_fake_scanline.num_spans = 0;
m_fake_scanline.start_span = 0;
m_fake_span.x = 0;
m_fake_span.len = 0;
}
// Renderer Interface
//---------------------------------------------------------------
void prepare()
{
m_scanlines.remove_all();
m_spans.remove_all();
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
m_cur_scanline = 0;
}
//---------------------------------------------------------------
template<class Scanline> void render(const Scanline& sl)
{
scanline_data sl_this;
int y = sl.y();
if(y < m_min_y) m_min_y = y;
if(y > m_max_y) m_max_y = y;
sl_this.y = y;
sl_this.num_spans = sl.num_spans();
sl_this.start_span = m_spans.size();
typename Scanline::const_iterator span_iterator = sl.begin();
unsigned num_spans = sl_this.num_spans;
for(;;)
{
span_data sp;
sp.x = span_iterator->x;
sp.len = (int32)abs((int)(span_iterator->len));
m_spans.add(sp);
int x1 = sp.x;
int x2 = sp.x + sp.len - 1;
if(x1 < m_min_x) m_min_x = x1;
if(x2 > m_max_x) m_max_x = x2;
if(--num_spans == 0) break;
++span_iterator;
}
m_scanlines.add(sl_this);
}
//---------------------------------------------------------------
// Iterate scanlines interface
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
//---------------------------------------------------------------
bool rewind_scanlines()
{
m_cur_scanline = 0;
return m_scanlines.size() > 0;
}
//---------------------------------------------------------------
template<class Scanline> bool sweep_scanline(Scanline& sl)
{
sl.reset_spans();
for(;;)
{
if(m_cur_scanline >= m_scanlines.size()) return false;
const scanline_data& sl_this = m_scanlines[m_cur_scanline];
unsigned num_spans = sl_this.num_spans;
unsigned span_idx = sl_this.start_span;
do
{
const span_data& sp = m_spans[span_idx++];
sl.add_span(sp.x, sp.len, cover_full);
}
while(--num_spans);
++m_cur_scanline;
if(sl.num_spans())
{
sl.finalize(sl_this.y);
break;
}
}
return true;
}
//---------------------------------------------------------------
// Specialization for embedded_scanline
bool sweep_scanline(embedded_scanline& sl)
{
do
{
if(m_cur_scanline >= m_scanlines.size()) return false;
sl.setup(m_cur_scanline);
++m_cur_scanline;
}
while(sl.num_spans() == 0);
return true;
}
//---------------------------------------------------------------
unsigned byte_size() const
{
unsigned i;
unsigned size = sizeof(int32) * 4; // min_x, min_y, max_x, max_y
for(i = 0; i < m_scanlines.size(); ++i)
{
size += sizeof(int32) * 2 + // Y, num_spans
unsigned(m_scanlines[i].num_spans) * sizeof(int32) * 2; // X, span_len
}
return size;
}
//---------------------------------------------------------------
static void write_int32(int8u* dst, int32 val)
{
dst[0] = ((const int8u*)&val)[0];
dst[1] = ((const int8u*)&val)[1];
dst[2] = ((const int8u*)&val)[2];
dst[3] = ((const int8u*)&val)[3];
}
//---------------------------------------------------------------
void serialize(int8u* data) const
{
unsigned i;
write_int32(data, min_x()); // min_x
data += sizeof(int32);
write_int32(data, min_y()); // min_y
data += sizeof(int32);
write_int32(data, max_x()); // max_x
data += sizeof(int32);
write_int32(data, max_y()); // max_y
data += sizeof(int32);
for(i = 0; i < m_scanlines.size(); ++i)
{
const scanline_data& sl_this = m_scanlines[i];
write_int32(data, sl_this.y); // Y
data += sizeof(int32);
write_int32(data, sl_this.num_spans); // num_spans
data += sizeof(int32);
unsigned num_spans = sl_this.num_spans;
unsigned span_idx = sl_this.start_span;
do
{
const span_data& sp = m_spans[span_idx++];
write_int32(data, sp.x); // X
data += sizeof(int32);
write_int32(data, sp.len); // len
data += sizeof(int32);
}
while(--num_spans);
}
}
//---------------------------------------------------------------
const scanline_data& scanline_by_index(unsigned i) const
{
return (i < m_scanlines.size()) ? m_scanlines[i] : m_fake_scanline;
}
//---------------------------------------------------------------
const span_data& span_by_index(unsigned i) const
{
return (i < m_spans.size()) ? m_spans[i] : m_fake_span;
}
private:
pod_bvector<span_data, 10> m_spans;
pod_bvector<scanline_data, 8> m_scanlines;
span_data m_fake_span;
scanline_data m_fake_scanline;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
unsigned m_cur_scanline;
};
//---------------------------------------serialized_scanlines_adaptor_bin
class serialized_scanlines_adaptor_bin
{
public:
typedef bool cover_type;
//--------------------------------------------------------------------
class embedded_scanline
{
public:
//----------------------------------------------------------------
class const_iterator
{
public:
struct span
{
int32 x;
int32 len;
};
const_iterator() : m_ptr(0) {}
const_iterator(const embedded_scanline& sl) :
m_ptr(sl.m_ptr),
m_dx(sl.m_dx)
{
m_span.x = read_int32() + m_dx;
m_span.len = read_int32();
}
const span& operator*() const { return m_span; }
const span* operator->() const { return &m_span; }
void operator ++ ()
{
m_span.x = read_int32() + m_dx;
m_span.len = read_int32();
}
private:
int read_int32()
{
int32 val;
((int8u*)&val)[0] = *m_ptr++;
((int8u*)&val)[1] = *m_ptr++;
((int8u*)&val)[2] = *m_ptr++;
((int8u*)&val)[3] = *m_ptr++;
return val;
}
const int8u* m_ptr;
span m_span;
int m_dx;
};
friend class const_iterator;
//----------------------------------------------------------------
embedded_scanline() : m_ptr(0), m_y(0), m_num_spans(0) {}
//----------------------------------------------------------------
void reset(int, int) {}
unsigned num_spans() const { return m_num_spans; }
int y() const { return m_y; }
const_iterator begin() const { return const_iterator(*this); }
private:
//----------------------------------------------------------------
int read_int32()
{
int32 val;
((int8u*)&val)[0] = *m_ptr++;
((int8u*)&val)[1] = *m_ptr++;
((int8u*)&val)[2] = *m_ptr++;
((int8u*)&val)[3] = *m_ptr++;
return val;
}
public:
//----------------------------------------------------------------
void init(const int8u* ptr, int dx, int dy)
{
m_ptr = ptr;
m_y = read_int32() + dy;
m_num_spans = unsigned(read_int32());
m_dx = dx;
}
private:
const int8u* m_ptr;
int m_y;
unsigned m_num_spans;
int m_dx;
};
public:
//--------------------------------------------------------------------
serialized_scanlines_adaptor_bin() :
m_data(0),
m_end(0),
m_ptr(0),
m_dx(0),
m_dy(0),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF)
{}
//--------------------------------------------------------------------
serialized_scanlines_adaptor_bin(const int8u* data, unsigned size,
double dx, double dy) :
m_data(data),
m_end(data + size),
m_ptr(data),
m_dx(iround(dx)),
m_dy(iround(dy)),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF)
{}
//--------------------------------------------------------------------
void init(const int8u* data, unsigned size, double dx, double dy)
{
m_data = data;
m_end = data + size;
m_ptr = data;
m_dx = iround(dx);
m_dy = iround(dy);
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
}
private:
//--------------------------------------------------------------------
int read_int32()
{
int32 val;
((int8u*)&val)[0] = *m_ptr++;
((int8u*)&val)[1] = *m_ptr++;
((int8u*)&val)[2] = *m_ptr++;
((int8u*)&val)[3] = *m_ptr++;
return val;
}
public:
// Iterate scanlines interface
//--------------------------------------------------------------------
bool rewind_scanlines()
{
m_ptr = m_data;
if(m_ptr < m_end)
{
m_min_x = read_int32() + m_dx;
m_min_y = read_int32() + m_dy;
m_max_x = read_int32() + m_dx;
m_max_y = read_int32() + m_dy;
}
return m_ptr < m_end;
}
//--------------------------------------------------------------------
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
//--------------------------------------------------------------------
template<class Scanline> bool sweep_scanline(Scanline& sl)
{
sl.reset_spans();
for(;;)
{
if(m_ptr >= m_end) return false;
int y = read_int32() + m_dy;
unsigned num_spans = read_int32();
do
{
int x = read_int32() + m_dx;
int len = read_int32();
if(len < 0) len = -len;
sl.add_span(x, unsigned(len), cover_full);
}
while(--num_spans);
if(sl.num_spans())
{
sl.finalize(y);
break;
}
}
return true;
}
//--------------------------------------------------------------------
// Specialization for embedded_scanline
bool sweep_scanline(embedded_scanline& sl)
{
do
{
if(m_ptr >= m_end) return false;
sl.init(m_ptr, m_dx, m_dy);
// Jump to the next scanline
//--------------------------
read_int32(); // Y
int num_spans = read_int32(); // num_spans
m_ptr += num_spans * sizeof(int32) * 2;
}
while(sl.num_spans() == 0);
return true;
}
private:
const int8u* m_data;
const int8u* m_end;
const int8u* m_ptr;
int m_dx;
int m_dy;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
};
}
#endif

500
deps/agg/include/agg_scanline_u.h vendored Normal file
View file

@ -0,0 +1,500 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates (scanline32_u) has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SCANLINE_U_INCLUDED
#define AGG_SCANLINE_U_INCLUDED
#include "agg_array.h"
namespace agg
{
//=============================================================scanline_u8
//
// Unpacked scanline container class
//
// This class is used to transfer data from a scanline rasterizer
// to the rendering buffer. It's organized very simple. The class stores
// information of horizontal spans to render it into a pixel-map buffer.
// Each span has staring X, length, and an array of bytes that determine the
// cover-values for each pixel.
// Before using this class you should know the minimal and maximal pixel
// coordinates of your scanline. The protocol of using is:
// 1. reset(min_x, max_x)
// 2. add_cell() / add_span() - accumulate scanline.
// When forming one scanline the next X coordinate must be always greater
// than the last stored one, i.e. it works only with ordered coordinates.
// 3. Call finalize(y) and render the scanline.
// 3. Call reset_spans() to prepare for the new scanline.
//
// 4. Rendering:
//
// Scanline provides an iterator class that allows you to extract
// the spans and the cover values for each pixel. Be aware that clipping
// has not been done yet, so you should perform it yourself.
// Use scanline_u8::iterator to render spans:
//-------------------------------------------------------------------------
//
// int y = sl.y(); // Y-coordinate of the scanline
//
// ************************************
// ...Perform vertical clipping here...
// ************************************
//
// scanline_u8::const_iterator span = sl.begin();
//
// unsigned char* row = m_rbuf->row(y); // The the address of the beginning
// // of the current row
//
// unsigned num_spans = sl.num_spans(); // Number of spans. It's guaranteed that
// // num_spans is always greater than 0.
//
// do
// {
// const scanline_u8::cover_type* covers =
// span->covers; // The array of the cover values
//
// int num_pix = span->len; // Number of pixels of the span.
// // Always greater than 0, still it's
// // better to use "int" instead of
// // "unsigned" because it's more
// // convenient for clipping
// int x = span->x;
//
// **************************************
// ...Perform horizontal clipping here...
// ...you have x, covers, and pix_count..
// **************************************
//
// unsigned char* dst = row + x; // Calculate the start address of the row.
// // In this case we assume a simple
// // grayscale image 1-byte per pixel.
// do
// {
// *dst++ = *covers++; // Hypotetical rendering.
// }
// while(--num_pix);
//
// ++span;
// }
// while(--num_spans); // num_spans cannot be 0, so this loop is quite safe
//------------------------------------------------------------------------
//
// The question is: why should we accumulate the whole scanline when we
// could render just separate spans when they're ready?
// That's because using the scanline is generally faster. When is consists
// of more than one span the conditions for the processor cash system
// are better, because switching between two different areas of memory
// (that can be very large) occurs less frequently.
//------------------------------------------------------------------------
class scanline_u8
{
public:
typedef scanline_u8 self_type;
typedef int8u cover_type;
typedef int16 coord_type;
//--------------------------------------------------------------------
struct span
{
coord_type x;
coord_type len;
cover_type* covers;
};
typedef span* iterator;
typedef const span* const_iterator;
//--------------------------------------------------------------------
scanline_u8() :
m_min_x(0),
m_last_x(0x7FFFFFF0),
m_cur_span(0)
{}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 2;
if(max_len > m_spans.size())
{
m_spans.resize(max_len);
m_covers.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_min_x = min_x;
m_cur_span = &m_spans[0];
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned cover)
{
x -= m_min_x;
m_covers[x] = (cover_type)cover;
if(x == m_last_x+1)
{
m_cur_span->len++;
}
else
{
m_cur_span++;
m_cur_span->x = (coord_type)(x + m_min_x);
m_cur_span->len = 1;
m_cur_span->covers = &m_covers[x];
}
m_last_x = x;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const cover_type* covers)
{
x -= m_min_x;
memcpy(&m_covers[x], covers, len * sizeof(cover_type));
if(x == m_last_x+1)
{
m_cur_span->len += (coord_type)len;
}
else
{
m_cur_span++;
m_cur_span->x = (coord_type)(x + m_min_x);
m_cur_span->len = (coord_type)len;
m_cur_span->covers = &m_covers[x];
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned cover)
{
x -= m_min_x;
memset(&m_covers[x], cover, len);
if(x == m_last_x+1)
{
m_cur_span->len += (coord_type)len;
}
else
{
m_cur_span++;
m_cur_span->x = (coord_type)(x + m_min_x);
m_cur_span->len = (coord_type)len;
m_cur_span->covers = &m_covers[x];
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_cur_span = &m_spans[0];
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return unsigned(m_cur_span - &m_spans[0]); }
const_iterator begin() const { return &m_spans[1]; }
iterator begin() { return &m_spans[1]; }
private:
scanline_u8(const self_type&);
const self_type& operator = (const self_type&);
private:
int m_min_x;
int m_last_x;
int m_y;
pod_array<cover_type> m_covers;
pod_array<span> m_spans;
span* m_cur_span;
};
//==========================================================scanline_u8_am
//
// The scanline container with alpha-masking
//
//------------------------------------------------------------------------
template<class AlphaMask>
class scanline_u8_am : public scanline_u8
{
public:
typedef scanline_u8 base_type;
typedef AlphaMask alpha_mask_type;
typedef base_type::cover_type cover_type;
typedef base_type::coord_type coord_type;
scanline_u8_am() : base_type(), m_alpha_mask(0) {}
scanline_u8_am(const AlphaMask& am) : base_type(), m_alpha_mask(&am) {}
//--------------------------------------------------------------------
void finalize(int span_y)
{
base_type::finalize(span_y);
if(m_alpha_mask)
{
typename base_type::iterator span = base_type::begin();
unsigned count = base_type::num_spans();
do
{
m_alpha_mask->combine_hspan(span->x,
base_type::y(),
span->covers,
span->len);
++span;
}
while(--count);
}
}
private:
const AlphaMask* m_alpha_mask;
};
//===========================================================scanline32_u8
class scanline32_u8
{
public:
typedef scanline32_u8 self_type;
typedef int8u cover_type;
typedef int32 coord_type;
//--------------------------------------------------------------------
struct span
{
span() {}
span(coord_type x_, coord_type len_, cover_type* covers_) :
x(x_), len(len_), covers(covers_) {}
coord_type x;
coord_type len;
cover_type* covers;
};
typedef pod_bvector<span, 4> span_array_type;
//--------------------------------------------------------------------
class const_iterator
{
public:
const_iterator(const span_array_type& spans) :
m_spans(spans),
m_span_idx(0)
{}
const span& operator*() const { return m_spans[m_span_idx]; }
const span* operator->() const { return &m_spans[m_span_idx]; }
void operator ++ () { ++m_span_idx; }
private:
const span_array_type& m_spans;
unsigned m_span_idx;
};
//--------------------------------------------------------------------
class iterator
{
public:
iterator(span_array_type& spans) :
m_spans(spans),
m_span_idx(0)
{}
span& operator*() { return m_spans[m_span_idx]; }
span* operator->() { return &m_spans[m_span_idx]; }
void operator ++ () { ++m_span_idx; }
private:
span_array_type& m_spans;
unsigned m_span_idx;
};
//--------------------------------------------------------------------
scanline32_u8() :
m_min_x(0),
m_last_x(0x7FFFFFF0),
m_covers()
{}
//--------------------------------------------------------------------
void reset(int min_x, int max_x)
{
unsigned max_len = max_x - min_x + 2;
if(max_len > m_covers.size())
{
m_covers.resize(max_len);
}
m_last_x = 0x7FFFFFF0;
m_min_x = min_x;
m_spans.remove_all();
}
//--------------------------------------------------------------------
void add_cell(int x, unsigned cover)
{
x -= m_min_x;
m_covers[x] = cover_type(cover);
if(x == m_last_x+1)
{
m_spans.last().len++;
}
else
{
m_spans.add(span(coord_type(x + m_min_x), 1, &m_covers[x]));
}
m_last_x = x;
}
//--------------------------------------------------------------------
void add_cells(int x, unsigned len, const cover_type* covers)
{
x -= m_min_x;
memcpy(&m_covers[x], covers, len * sizeof(cover_type));
if(x == m_last_x+1)
{
m_spans.last().len += coord_type(len);
}
else
{
m_spans.add(span(coord_type(x + m_min_x),
coord_type(len),
&m_covers[x]));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void add_span(int x, unsigned len, unsigned cover)
{
x -= m_min_x;
memset(&m_covers[x], cover, len);
if(x == m_last_x+1)
{
m_spans.last().len += coord_type(len);
}
else
{
m_spans.add(span(coord_type(x + m_min_x),
coord_type(len),
&m_covers[x]));
}
m_last_x = x + len - 1;
}
//--------------------------------------------------------------------
void finalize(int y)
{
m_y = y;
}
//--------------------------------------------------------------------
void reset_spans()
{
m_last_x = 0x7FFFFFF0;
m_spans.remove_all();
}
//--------------------------------------------------------------------
int y() const { return m_y; }
unsigned num_spans() const { return m_spans.size(); }
const_iterator begin() const { return const_iterator(m_spans); }
iterator begin() { return iterator(m_spans); }
private:
scanline32_u8(const self_type&);
const self_type& operator = (const self_type&);
private:
int m_min_x;
int m_last_x;
int m_y;
pod_array<cover_type> m_covers;
span_array_type m_spans;
};
//========================================================scanline32_u8_am
//
// The scanline container with alpha-masking
//
//------------------------------------------------------------------------
template<class AlphaMask>
class scanline32_u8_am : public scanline32_u8
{
public:
typedef scanline32_u8 base_type;
typedef AlphaMask alpha_mask_type;
typedef base_type::cover_type cover_type;
typedef base_type::coord_type coord_type;
scanline32_u8_am() : base_type(), m_alpha_mask(0) {}
scanline32_u8_am(const AlphaMask& am) : base_type(), m_alpha_mask(&am) {}
//--------------------------------------------------------------------
void finalize(int span_y)
{
base_type::finalize(span_y);
if(m_alpha_mask)
{
typename base_type::iterator span = base_type::begin();
unsigned count = base_type::num_spans();
do
{
m_alpha_mask->combine_hspan(span->x,
base_type::y(),
span->covers,
span->len);
++span;
}
while(--count);
}
}
private:
const AlphaMask* m_alpha_mask;
};
}
#endif

66
deps/agg/include/agg_shorten_path.h vendored Normal file
View file

@ -0,0 +1,66 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SHORTEN_PATH_INCLUDED
#define AGG_SHORTEN_PATH_INCLUDED
#include "agg_basics.h"
#include "agg_vertex_sequence.h"
namespace agg
{
//===========================================================shorten_path
template<class VertexSequence>
void shorten_path(VertexSequence& vs, double s, unsigned closed = 0)
{
typedef typename VertexSequence::value_type vertex_type;
if(s > 0.0 && vs.size() > 1)
{
double d;
int n = int(vs.size() - 2);
while(n)
{
d = vs[n].dist;
if(d > s) break;
vs.remove_last();
s -= d;
--n;
}
if(vs.size() < 2)
{
vs.remove_all();
}
else
{
n = vs.size() - 1;
vertex_type& prev = vs[n-1];
vertex_type& last = vs[n];
d = (prev.dist - s) / prev.dist;
double x = prev.x + (last.x - prev.x) * d;
double y = prev.y + (last.y - prev.y) * d;
last.x = x;
last.y = y;
if(!prev(last)) vs.remove_last();
vs.close(closed != 0);
}
}
}
}
#endif

147
deps/agg/include/agg_simul_eq.h vendored Normal file
View file

@ -0,0 +1,147 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Solving simultaneous equations
//
//----------------------------------------------------------------------------
#ifndef AGG_SIMUL_EQ_INCLUDED
#define AGG_SIMUL_EQ_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
//=============================================================swap_arrays
template<class T> void swap_arrays(T* a1, T* a2, unsigned n)
{
unsigned i;
for(i = 0; i < n; i++)
{
T tmp = *a1;
*a1++ = *a2;
*a2++ = tmp;
}
}
//============================================================matrix_pivot
template<unsigned Rows, unsigned Cols>
struct matrix_pivot
{
static int pivot(double m[Rows][Cols], unsigned row)
{
int k = int(row);
double max_val, tmp;
max_val = -1.0;
unsigned i;
for(i = row; i < Rows; i++)
{
if((tmp = fabs(m[i][row])) > max_val && tmp != 0.0)
{
max_val = tmp;
k = i;
}
}
if(m[k][row] == 0.0)
{
return -1;
}
if(k != int(row))
{
swap_arrays(m[k], m[row], Cols);
return k;
}
return 0;
}
};
//===============================================================simul_eq
template<unsigned Size, unsigned RightCols>
struct simul_eq
{
static bool solve(const double left[Size][Size],
const double right[Size][RightCols],
double result[Size][RightCols])
{
unsigned i, j, k;
double a1;
double tmp[Size][Size + RightCols];
for(i = 0; i < Size; i++)
{
for(j = 0; j < Size; j++)
{
tmp[i][j] = left[i][j];
}
for(j = 0; j < RightCols; j++)
{
tmp[i][Size + j] = right[i][j];
}
}
for(k = 0; k < Size; k++)
{
if(matrix_pivot<Size, Size + RightCols>::pivot(tmp, k) < 0)
{
return false; // Singularity....
}
a1 = tmp[k][k];
for(j = k; j < Size + RightCols; j++)
{
tmp[k][j] /= a1;
}
for(i = k + 1; i < Size; i++)
{
a1 = tmp[i][k];
for (j = k; j < Size + RightCols; j++)
{
tmp[i][j] -= a1 * tmp[k][j];
}
}
}
for(k = 0; k < RightCols; k++)
{
int m;
for(m = int(Size - 1); m >= 0; m--)
{
result[m][k] = tmp[m][Size + k];
for(j = m + 1; j < Size; j++)
{
result[m][k] -= tmp[m][j] * result[j][k];
}
}
}
return true;
}
};
}
#endif

54
deps/agg/include/agg_span_allocator.h vendored Normal file
View file

@ -0,0 +1,54 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_ALLOCATOR_INCLUDED
#define AGG_SPAN_ALLOCATOR_INCLUDED
#include "agg_array.h"
namespace agg
{
//----------------------------------------------------------span_allocator
template<class ColorT> class span_allocator
{
public:
typedef ColorT color_type;
//--------------------------------------------------------------------
AGG_INLINE color_type* allocate(unsigned span_len)
{
if(span_len > m_span.size())
{
// To reduce the number of reallocs we align the
// span_len to 256 color elements.
// Well, I just like this number and it looks reasonable.
//-----------------------
m_span.resize(((span_len + 255) >> 8) << 8);
}
return &m_span[0];
}
AGG_INLINE color_type* span() { return &m_span[0]; }
AGG_INLINE unsigned max_span_len() const { return m_span.size(); }
private:
pod_array<color_type> m_span;
};
}
#endif

56
deps/agg/include/agg_span_converter.h vendored Normal file
View file

@ -0,0 +1,56 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_CONVERTER_INCLUDED
#define AGG_SPAN_CONVERTER_INCLUDED
#include "agg_basics.h"
namespace agg
{
//----------------------------------------------------------span_converter
template<class SpanGenerator, class SpanConverter> class span_converter
{
public:
typedef typename SpanGenerator::color_type color_type;
span_converter(SpanGenerator& span_gen, SpanConverter& span_cnv) :
m_span_gen(&span_gen), m_span_cnv(&span_cnv) {}
void attach_generator(SpanGenerator& span_gen) { m_span_gen = &span_gen; }
void attach_converter(SpanConverter& span_cnv) { m_span_cnv = &span_cnv; }
//--------------------------------------------------------------------
void prepare()
{
m_span_gen->prepare();
m_span_cnv->prepare();
}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
m_span_gen->generate(span, x, y, len);
m_span_cnv->generate(span, x, y, len);
}
private:
SpanGenerator* m_span_gen;
SpanConverter* m_span_cnv;
};
}
#endif

172
deps/agg/include/agg_span_gouraud.h vendored Normal file
View file

@ -0,0 +1,172 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_GOURAUD_INCLUDED
#define AGG_SPAN_GOURAUD_INCLUDED
#include "agg_basics.h"
#include "agg_math.h"
namespace agg
{
//============================================================span_gouraud
template<class ColorT> class span_gouraud
{
public:
typedef ColorT color_type;
struct coord_type
{
double x;
double y;
color_type color;
};
//--------------------------------------------------------------------
span_gouraud() :
m_vertex(0)
{
m_cmd[0] = path_cmd_stop;
}
//--------------------------------------------------------------------
span_gouraud(const color_type& c1,
const color_type& c2,
const color_type& c3,
double x1, double y1,
double x2, double y2,
double x3, double y3,
double d) :
m_vertex(0)
{
colors(c1, c2, c3);
triangle(x1, y1, x2, y2, x3, y3, d);
}
//--------------------------------------------------------------------
void colors(ColorT c1, ColorT c2, ColorT c3)
{
m_coord[0].color = c1;
m_coord[1].color = c2;
m_coord[2].color = c3;
}
//--------------------------------------------------------------------
// Sets the triangle and dilates it if needed.
// The trick here is to calculate beveled joins in the vertices of the
// triangle and render it as a 6-vertex polygon.
// It's necessary to achieve numerical stability.
// However, the coordinates to interpolate colors are calculated
// as miter joins (calc_intersection).
void triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double d)
{
m_coord[0].x = m_x[0] = x1;
m_coord[0].y = m_y[0] = y1;
m_coord[1].x = m_x[1] = x2;
m_coord[1].y = m_y[1] = y2;
m_coord[2].x = m_x[2] = x3;
m_coord[2].y = m_y[2] = y3;
m_cmd[0] = path_cmd_move_to;
m_cmd[1] = path_cmd_line_to;
m_cmd[2] = path_cmd_line_to;
m_cmd[3] = path_cmd_stop;
if(d != 0.0)
{
dilate_triangle(m_coord[0].x, m_coord[0].y,
m_coord[1].x, m_coord[1].y,
m_coord[2].x, m_coord[2].y,
m_x, m_y, d);
calc_intersection(m_x[4], m_y[4], m_x[5], m_y[5],
m_x[0], m_y[0], m_x[1], m_y[1],
&m_coord[0].x, &m_coord[0].y);
calc_intersection(m_x[0], m_y[0], m_x[1], m_y[1],
m_x[2], m_y[2], m_x[3], m_y[3],
&m_coord[1].x, &m_coord[1].y);
calc_intersection(m_x[2], m_y[2], m_x[3], m_y[3],
m_x[4], m_y[4], m_x[5], m_y[5],
&m_coord[2].x, &m_coord[2].y);
m_cmd[3] = path_cmd_line_to;
m_cmd[4] = path_cmd_line_to;
m_cmd[5] = path_cmd_line_to;
m_cmd[6] = path_cmd_stop;
}
}
//--------------------------------------------------------------------
// Vertex Source Interface to feed the coordinates to the rasterizer
void rewind(unsigned)
{
m_vertex = 0;
}
//--------------------------------------------------------------------
unsigned vertex(double* x, double* y)
{
*x = m_x[m_vertex];
*y = m_y[m_vertex];
return m_cmd[m_vertex++];
}
protected:
//--------------------------------------------------------------------
void arrange_vertices(coord_type* coord) const
{
coord[0] = m_coord[0];
coord[1] = m_coord[1];
coord[2] = m_coord[2];
if(m_coord[0].y > m_coord[2].y)
{
coord[0] = m_coord[2];
coord[2] = m_coord[0];
}
coord_type tmp;
if(coord[0].y > coord[1].y)
{
tmp = coord[1];
coord[1] = coord[0];
coord[0] = tmp;
}
if(coord[1].y > coord[2].y)
{
tmp = coord[2];
coord[2] = coord[1];
coord[1] = tmp;
}
}
private:
//--------------------------------------------------------------------
coord_type m_coord[3];
double m_x[8];
double m_y[8];
unsigned m_cmd[8];
unsigned m_vertex;
};
}
#endif

241
deps/agg/include/agg_span_gouraud_gray.h vendored Normal file
View file

@ -0,0 +1,241 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_GOURAUD_GRAY_INCLUDED
#define AGG_SPAN_GOURAUD_GRAY_INCLUDED
#include "agg_basics.h"
#include "agg_color_gray.h"
#include "agg_dda_line.h"
#include "agg_span_gouraud.h"
namespace agg
{
//=======================================================span_gouraud_gray
template<class ColorT> class span_gouraud_gray : public span_gouraud<ColorT>
{
public:
typedef ColorT color_type;
typedef typename color_type::value_type value_type;
typedef span_gouraud<color_type> base_type;
typedef typename base_type::coord_type coord_type;
enum subpixel_scale_e
{
subpixel_shift = 4,
subpixel_scale = 1 << subpixel_shift
};
private:
//--------------------------------------------------------------------
struct gray_calc
{
void init(const coord_type& c1, const coord_type& c2)
{
m_x1 = c1.x - 0.5;
m_y1 = c1.y - 0.5;
m_dx = c2.x - c1.x;
double dy = c2.y - c1.y;
m_1dy = (fabs(dy) < 1e-10) ? 1e10 : 1.0 / dy;
m_v1 = c1.color.v;
m_a1 = c1.color.a;
m_dv = c2.color.v - m_v1;
m_da = c2.color.a - m_a1;
}
void calc(double y)
{
double k = (y - m_y1) * m_1dy;
if(k < 0.0) k = 0.0;
if(k > 1.0) k = 1.0;
m_v = m_v1 + iround(m_dv * k);
m_a = m_a1 + iround(m_da * k);
m_x = iround((m_x1 + m_dx * k) * subpixel_scale);
}
double m_x1;
double m_y1;
double m_dx;
double m_1dy;
int m_v1;
int m_a1;
int m_dv;
int m_da;
int m_v;
int m_a;
int m_x;
};
public:
//--------------------------------------------------------------------
span_gouraud_gray() {}
span_gouraud_gray(const color_type& c1,
const color_type& c2,
const color_type& c3,
double x1, double y1,
double x2, double y2,
double x3, double y3,
double d = 0) :
base_type(c1, c2, c3, x1, y1, x2, y2, x3, y3, d)
{}
//--------------------------------------------------------------------
void prepare()
{
coord_type coord[3];
base_type::arrange_vertices(coord);
m_y2 = int(coord[1].y);
m_swap = cross_product(coord[0].x, coord[0].y,
coord[2].x, coord[2].y,
coord[1].x, coord[1].y) < 0.0;
m_c1.init(coord[0], coord[2]);
m_c2.init(coord[0], coord[1]);
m_c3.init(coord[1], coord[2]);
}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
m_c1.calc(y);
const gray_calc* pc1 = &m_c1;
const gray_calc* pc2 = &m_c2;
if(y < m_y2)
{
// Bottom part of the triangle (first subtriangle)
//-------------------------
m_c2.calc(y + m_c2.m_1dy);
}
else
{
// Upper part (second subtriangle)
//-------------------------
m_c3.calc(y - m_c3.m_1dy);
pc2 = &m_c3;
}
if(m_swap)
{
// It means that the triangle is oriented clockwise,
// so that we need to swap the controlling structures
//-------------------------
const gray_calc* t = pc2;
pc2 = pc1;
pc1 = t;
}
// Get the horizontal length with subpixel accuracy
// and protect it from division by zero
//-------------------------
int nlen = abs(pc2->m_x - pc1->m_x);
if(nlen <= 0) nlen = 1;
dda_line_interpolator<14> v(pc1->m_v, pc2->m_v, nlen);
dda_line_interpolator<14> a(pc1->m_a, pc2->m_a, nlen);
// Calculate the starting point of the gradient with subpixel
// accuracy and correct (roll back) the interpolators.
// This operation will also clip the beginning of the span
// if necessary.
//-------------------------
int start = pc1->m_x - (x << subpixel_shift);
v -= start;
a -= start;
nlen += start;
int vv, va;
enum lim_e { lim = color_type::base_mask };
// Beginning part of the span. Since we rolled back the
// interpolators, the color values may have overflow.
// So that, we render the beginning part with checking
// for overflow. It lasts until "start" is positive;
// typically it's 1-2 pixels, but may be more in some cases.
//-------------------------
while(len && start > 0)
{
vv = v.y();
va = a.y();
if(vv < 0) vv = 0; if(vv > lim) vv = lim;
if(va < 0) va = 0; if(va > lim) va = lim;
span->v = (value_type)vv;
span->a = (value_type)va;
v += subpixel_scale;
a += subpixel_scale;
nlen -= subpixel_scale;
start -= subpixel_scale;
++span;
--len;
}
// Middle part, no checking for overflow.
// Actual spans can be longer than the calculated length
// because of anti-aliasing, thus, the interpolators can
// overflow. But while "nlen" is positive we are safe.
//-------------------------
while(len && nlen > 0)
{
span->v = (value_type)v.y();
span->a = (value_type)a.y();
v += subpixel_scale;
a += subpixel_scale;
nlen -= subpixel_scale;
++span;
--len;
}
// Ending part; checking for overflow.
// Typically it's 1-2 pixels, but may be more in some cases.
//-------------------------
while(len)
{
vv = v.y();
va = a.y();
if(vv < 0) vv = 0; if(vv > lim) vv = lim;
if(va < 0) va = 0; if(va > lim) va = lim;
span->v = (value_type)vv;
span->a = (value_type)va;
v += subpixel_scale;
a += subpixel_scale;
++span;
--len;
}
}
private:
bool m_swap;
int m_y2;
gray_calc m_c1;
gray_calc m_c2;
gray_calc m_c3;
};
}
#endif

277
deps/agg/include/agg_span_gouraud_rgba.h vendored Normal file
View file

@ -0,0 +1,277 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_GOURAUD_RGBA_INCLUDED
#define AGG_SPAN_GOURAUD_RGBA_INCLUDED
#include "agg_basics.h"
#include "agg_color_rgba.h"
#include "agg_dda_line.h"
#include "agg_span_gouraud.h"
namespace agg
{
//=======================================================span_gouraud_rgba
template<class ColorT> class span_gouraud_rgba : public span_gouraud<ColorT>
{
public:
typedef ColorT color_type;
typedef typename ColorT::value_type value_type;
typedef span_gouraud<color_type> base_type;
typedef typename base_type::coord_type coord_type;
enum subpixel_scale_e
{
subpixel_shift = 4,
subpixel_scale = 1 << subpixel_shift
};
private:
//--------------------------------------------------------------------
struct rgba_calc
{
void init(const coord_type& c1, const coord_type& c2)
{
m_x1 = c1.x - 0.5;
m_y1 = c1.y - 0.5;
m_dx = c2.x - c1.x;
double dy = c2.y - c1.y;
m_1dy = (dy < 1e-5) ? 1e5 : 1.0 / dy;
m_r1 = c1.color.r;
m_g1 = c1.color.g;
m_b1 = c1.color.b;
m_a1 = c1.color.a;
m_dr = c2.color.r - m_r1;
m_dg = c2.color.g - m_g1;
m_db = c2.color.b - m_b1;
m_da = c2.color.a - m_a1;
}
void calc(double y)
{
double k = (y - m_y1) * m_1dy;
if(k < 0.0) k = 0.0;
if(k > 1.0) k = 1.0;
m_r = m_r1 + iround(m_dr * k);
m_g = m_g1 + iround(m_dg * k);
m_b = m_b1 + iround(m_db * k);
m_a = m_a1 + iround(m_da * k);
m_x = iround((m_x1 + m_dx * k) * subpixel_scale);
}
double m_x1;
double m_y1;
double m_dx;
double m_1dy;
int m_r1;
int m_g1;
int m_b1;
int m_a1;
int m_dr;
int m_dg;
int m_db;
int m_da;
int m_r;
int m_g;
int m_b;
int m_a;
int m_x;
};
public:
//--------------------------------------------------------------------
span_gouraud_rgba() {}
span_gouraud_rgba(const color_type& c1,
const color_type& c2,
const color_type& c3,
double x1, double y1,
double x2, double y2,
double x3, double y3,
double d = 0) :
base_type(c1, c2, c3, x1, y1, x2, y2, x3, y3, d)
{}
//--------------------------------------------------------------------
void prepare()
{
coord_type coord[3];
base_type::arrange_vertices(coord);
m_y2 = int(coord[1].y);
m_swap = cross_product(coord[0].x, coord[0].y,
coord[2].x, coord[2].y,
coord[1].x, coord[1].y) < 0.0;
m_rgba1.init(coord[0], coord[2]);
m_rgba2.init(coord[0], coord[1]);
m_rgba3.init(coord[1], coord[2]);
}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
m_rgba1.calc(y);//(m_rgba1.m_1dy > 2) ? m_rgba1.m_y1 : y);
const rgba_calc* pc1 = &m_rgba1;
const rgba_calc* pc2 = &m_rgba2;
if(y <= m_y2)
{
// Bottom part of the triangle (first subtriangle)
//-------------------------
m_rgba2.calc(y + m_rgba2.m_1dy);
}
else
{
// Upper part (second subtriangle)
m_rgba3.calc(y - m_rgba3.m_1dy);
//-------------------------
pc2 = &m_rgba3;
}
if(m_swap)
{
// It means that the triangle is oriented clockwise,
// so that we need to swap the controlling structures
//-------------------------
const rgba_calc* t = pc2;
pc2 = pc1;
pc1 = t;
}
// Get the horizontal length with subpixel accuracy
// and protect it from division by zero
//-------------------------
int nlen = abs(pc2->m_x - pc1->m_x);
if(nlen <= 0) nlen = 1;
dda_line_interpolator<14> r(pc1->m_r, pc2->m_r, nlen);
dda_line_interpolator<14> g(pc1->m_g, pc2->m_g, nlen);
dda_line_interpolator<14> b(pc1->m_b, pc2->m_b, nlen);
dda_line_interpolator<14> a(pc1->m_a, pc2->m_a, nlen);
// Calculate the starting point of the gradient with subpixel
// accuracy and correct (roll back) the interpolators.
// This operation will also clip the beginning of the span
// if necessary.
//-------------------------
int start = pc1->m_x - (x << subpixel_shift);
r -= start;
g -= start;
b -= start;
a -= start;
nlen += start;
int vr, vg, vb, va;
enum lim_e { lim = color_type::base_mask };
// Beginning part of the span. Since we rolled back the
// interpolators, the color values may have overflow.
// So that, we render the beginning part with checking
// for overflow. It lasts until "start" is positive;
// typically it's 1-2 pixels, but may be more in some cases.
//-------------------------
while(len && start > 0)
{
vr = r.y();
vg = g.y();
vb = b.y();
va = a.y();
if(vr < 0) vr = 0; if(vr > lim) vr = lim;
if(vg < 0) vg = 0; if(vg > lim) vg = lim;
if(vb < 0) vb = 0; if(vb > lim) vb = lim;
if(va < 0) va = 0; if(va > lim) va = lim;
span->r = (value_type)vr;
span->g = (value_type)vg;
span->b = (value_type)vb;
span->a = (value_type)va;
r += subpixel_scale;
g += subpixel_scale;
b += subpixel_scale;
a += subpixel_scale;
nlen -= subpixel_scale;
start -= subpixel_scale;
++span;
--len;
}
// Middle part, no checking for overflow.
// Actual spans can be longer than the calculated length
// because of anti-aliasing, thus, the interpolators can
// overflow. But while "nlen" is positive we are safe.
//-------------------------
while(len && nlen > 0)
{
span->r = (value_type)r.y();
span->g = (value_type)g.y();
span->b = (value_type)b.y();
span->a = (value_type)a.y();
r += subpixel_scale;
g += subpixel_scale;
b += subpixel_scale;
a += subpixel_scale;
nlen -= subpixel_scale;
++span;
--len;
}
// Ending part; checking for overflow.
// Typically it's 1-2 pixels, but may be more in some cases.
//-------------------------
while(len)
{
vr = r.y();
vg = g.y();
vb = b.y();
va = a.y();
if(vr < 0) vr = 0; if(vr > lim) vr = lim;
if(vg < 0) vg = 0; if(vg > lim) vg = lim;
if(vb < 0) vb = 0; if(vb > lim) vb = lim;
if(va < 0) va = 0; if(va > lim) va = lim;
span->r = (value_type)vr;
span->g = (value_type)vg;
span->b = (value_type)vb;
span->a = (value_type)va;
r += subpixel_scale;
g += subpixel_scale;
b += subpixel_scale;
a += subpixel_scale;
++span;
--len;
}
}
private:
bool m_swap;
int m_y2;
rgba_calc m_rgba1;
rgba_calc m_rgba2;
rgba_calc m_rgba3;
};
}
#endif

364
deps/agg/include/agg_span_gradient.h vendored Normal file
View file

@ -0,0 +1,364 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_GRADIENT_INCLUDED
#define AGG_SPAN_GRADIENT_INCLUDED
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "agg_basics.h"
#include "agg_math.h"
#include "agg_array.h"
namespace agg
{
enum gradient_subpixel_scale_e
{
gradient_subpixel_shift = 4, //-----gradient_subpixel_shift
gradient_subpixel_scale = 1 << gradient_subpixel_shift, //-----gradient_subpixel_scale
gradient_subpixel_mask = gradient_subpixel_scale - 1 //-----gradient_subpixel_mask
};
//==========================================================span_gradient
template<class ColorT,
class Interpolator,
class GradientF,
class ColorF>
class span_gradient
{
public:
typedef Interpolator interpolator_type;
typedef ColorT color_type;
enum downscale_shift_e
{
downscale_shift = interpolator_type::subpixel_shift -
gradient_subpixel_shift
};
//--------------------------------------------------------------------
span_gradient() {}
//--------------------------------------------------------------------
span_gradient(interpolator_type& inter,
const GradientF& gradient_function,
const ColorF& color_function,
double d1, double d2) :
m_interpolator(&inter),
m_gradient_function(&gradient_function),
m_color_function(&color_function),
m_d1(iround(d1 * gradient_subpixel_scale)),
m_d2(iround(d2 * gradient_subpixel_scale))
{}
//--------------------------------------------------------------------
interpolator_type& interpolator() { return *m_interpolator; }
const GradientF& gradient_function() const { return *m_gradient_function; }
const ColorF& color_function() const { return *m_color_function; }
double d1() const { return double(m_d1) / gradient_subpixel_scale; }
double d2() const { return double(m_d2) / gradient_subpixel_scale; }
//--------------------------------------------------------------------
void interpolator(interpolator_type& i) { m_interpolator = &i; }
void gradient_function(const GradientF& gf) { m_gradient_function = &gf; }
void color_function(const ColorF& cf) { m_color_function = &cf; }
void d1(double v) { m_d1 = iround(v * gradient_subpixel_scale); }
void d2(double v) { m_d2 = iround(v * gradient_subpixel_scale); }
//--------------------------------------------------------------------
void prepare() {}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
int dd = m_d2 - m_d1;
if(dd < 1) dd = 1;
m_interpolator->begin(x+0.5, y+0.5, len);
do
{
m_interpolator->coordinates(&x, &y);
int d = m_gradient_function->calculate(x >> downscale_shift,
y >> downscale_shift, m_d2);
d = ((d - m_d1) * (int)m_color_function->size()) / dd;
if(d < 0) d = 0;
if(d >= (int)m_color_function->size()) d = m_color_function->size() - 1;
*span++ = (*m_color_function)[d];
++(*m_interpolator);
}
while(--len);
}
private:
interpolator_type* m_interpolator;
const GradientF* m_gradient_function;
const ColorF* m_color_function;
int m_d1;
int m_d2;
};
//=====================================================gradient_linear_color
template<class ColorT>
struct gradient_linear_color
{
typedef ColorT color_type;
gradient_linear_color() {}
gradient_linear_color(const color_type& c1, const color_type& c2,
unsigned size = 256) :
m_c1(c1), m_c2(c2), m_size(size) {}
unsigned size() const { return m_size; }
color_type operator [] (unsigned v) const
{
return m_c1.gradient(m_c2, double(v) / double(m_size - 1));
}
void colors(const color_type& c1, const color_type& c2, unsigned size = 256)
{
m_c1 = c1;
m_c2 = c2;
m_size = size;
}
color_type m_c1;
color_type m_c2;
unsigned m_size;
};
//==========================================================gradient_circle
class gradient_circle
{
// Actually the same as radial. Just for compatibility
public:
static AGG_INLINE int calculate(int x, int y, int)
{
return int(fast_sqrt(x*x + y*y));
}
};
//==========================================================gradient_radial
class gradient_radial
{
public:
static AGG_INLINE int calculate(int x, int y, int)
{
return int(fast_sqrt(x*x + y*y));
}
};
//========================================================gradient_radial_d
class gradient_radial_d
{
public:
static AGG_INLINE int calculate(int x, int y, int)
{
return uround(sqrt(double(x)*double(x) + double(y)*double(y)));
}
};
//====================================================gradient_radial_focus
class gradient_radial_focus
{
public:
//---------------------------------------------------------------------
gradient_radial_focus() :
m_r(100 * gradient_subpixel_scale),
m_fx(0),
m_fy(0)
{
update_values();
}
//---------------------------------------------------------------------
gradient_radial_focus(double r, double fx, double fy) :
m_r (iround(r * gradient_subpixel_scale)),
m_fx(iround(fx * gradient_subpixel_scale)),
m_fy(iround(fy * gradient_subpixel_scale))
{
update_values();
}
//---------------------------------------------------------------------
void init(double r, double fx, double fy)
{
m_r = iround(r * gradient_subpixel_scale);
m_fx = iround(fx * gradient_subpixel_scale);
m_fy = iround(fy * gradient_subpixel_scale);
update_values();
}
//---------------------------------------------------------------------
double radius() const { return double(m_r) / gradient_subpixel_scale; }
double focus_x() const { return double(m_fx) / gradient_subpixel_scale; }
double focus_y() const { return double(m_fy) / gradient_subpixel_scale; }
//---------------------------------------------------------------------
int calculate(int x, int y, int) const
{
double dx = x - m_fx;
double dy = y - m_fy;
double d2 = dx * m_fy - dy * m_fx;
double d3 = m_r2 * (dx * dx + dy * dy) - d2 * d2;
return iround((dx * m_fx + dy * m_fy + sqrt(fabs(d3))) * m_mul);
}
private:
//---------------------------------------------------------------------
void update_values()
{
// Calculate the invariant values. In case the focal center
// lies exactly on the gradient circle the divisor degenerates
// into zero. In this case we just move the focal center by
// one subpixel unit possibly in the direction to the origin (0,0)
// and calculate the values again.
//-------------------------
m_r2 = double(m_r) * double(m_r);
m_fx2 = double(m_fx) * double(m_fx);
m_fy2 = double(m_fy) * double(m_fy);
double d = (m_r2 - (m_fx2 + m_fy2));
if(d == 0)
{
if(m_fx) { if(m_fx < 0) ++m_fx; else --m_fx; }
if(m_fy) { if(m_fy < 0) ++m_fy; else --m_fy; }
m_fx2 = double(m_fx) * double(m_fx);
m_fy2 = double(m_fy) * double(m_fy);
d = (m_r2 - (m_fx2 + m_fy2));
}
m_mul = m_r / d;
}
int m_r;
int m_fx;
int m_fy;
double m_r2;
double m_fx2;
double m_fy2;
double m_mul;
};
//==============================================================gradient_x
class gradient_x
{
public:
static int calculate(int x, int, int) { return x; }
};
//==============================================================gradient_y
class gradient_y
{
public:
static int calculate(int, int y, int) { return y; }
};
//========================================================gradient_diamond
class gradient_diamond
{
public:
static AGG_INLINE int calculate(int x, int y, int)
{
int ax = abs(x);
int ay = abs(y);
return ax > ay ? ax : ay;
}
};
//=============================================================gradient_xy
class gradient_xy
{
public:
static AGG_INLINE int calculate(int x, int y, int d)
{
return abs(x) * abs(y) / d;
}
};
//========================================================gradient_sqrt_xy
class gradient_sqrt_xy
{
public:
static AGG_INLINE int calculate(int x, int y, int)
{
return fast_sqrt(abs(x) * abs(y));
}
};
//==========================================================gradient_conic
class gradient_conic
{
public:
static AGG_INLINE int calculate(int x, int y, int d)
{
return uround(fabs(atan2(double(y), double(x))) * double(d) / pi);
}
};
//=================================================gradient_repeat_adaptor
template<class GradientF> class gradient_repeat_adaptor
{
public:
gradient_repeat_adaptor(const GradientF& gradient) :
m_gradient(&gradient) {}
AGG_INLINE int calculate(int x, int y, int d) const
{
int ret = m_gradient->calculate(x, y, d) % d;
if(ret < 0) ret += d;
return ret;
}
private:
const GradientF* m_gradient;
};
//================================================gradient_reflect_adaptor
template<class GradientF> class gradient_reflect_adaptor
{
public:
gradient_reflect_adaptor(const GradientF& gradient) :
m_gradient(&gradient) {}
AGG_INLINE int calculate(int x, int y, int d) const
{
int d2 = d << 1;
int ret = m_gradient->calculate(x, y, d) % d2;
if(ret < 0) ret += d2;
if(ret >= d) ret = d2 - ret;
return ret;
}
private:
const GradientF* m_gradient;
};
}
#endif

View file

@ -0,0 +1,126 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_GRADIENT_ALPHA_INCLUDED
#define AGG_SPAN_GRADIENT_ALPHA_INCLUDED
#include "agg_span_gradient.h"
namespace agg
{
//======================================================span_gradient_alpha
template<class ColorT,
class Interpolator,
class GradientF,
class AlphaF>
class span_gradient_alpha
{
public:
typedef Interpolator interpolator_type;
typedef ColorT color_type;
typedef typename color_type::value_type alpha_type;
enum downscale_shift_e
{
downscale_shift = interpolator_type::subpixel_shift - gradient_subpixel_shift
};
//--------------------------------------------------------------------
span_gradient_alpha() {}
//--------------------------------------------------------------------
span_gradient_alpha(interpolator_type& inter,
const GradientF& gradient_function,
const AlphaF& alpha_function,
double d1, double d2) :
m_interpolator(&inter),
m_gradient_function(&gradient_function),
m_alpha_function(&alpha_function),
m_d1(iround(d1 * gradient_subpixel_scale)),
m_d2(iround(d2 * gradient_subpixel_scale))
{}
//--------------------------------------------------------------------
interpolator_type& interpolator() { return *m_interpolator; }
const GradientF& gradient_function() const { return *m_gradient_function; }
const AlphaF& alpha_function() const { return *m_alpha_function; }
double d1() const { return double(m_d1) / gradient_subpixel_scale; }
double d2() const { return double(m_d2) / gradient_subpixel_scale; }
//--------------------------------------------------------------------
void interpolator(interpolator_type& i) { m_interpolator = &i; }
void gradient_function(const GradientF& gf) { m_gradient_function = &gf; }
void alpha_function(const AlphaF& af) { m_alpha_function = &af; }
void d1(double v) { m_d1 = iround(v * gradient_subpixel_scale); }
void d2(double v) { m_d2 = iround(v * gradient_subpixel_scale); }
//--------------------------------------------------------------------
void prepare() {}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
int dd = m_d2 - m_d1;
if(dd < 1) dd = 1;
m_interpolator->begin(x+0.5, y+0.5, len);
do
{
m_interpolator->coordinates(&x, &y);
int d = m_gradient_function->calculate(x >> downscale_shift,
y >> downscale_shift, m_d2);
d = ((d - m_d1) * (int)m_alpha_function->size()) / dd;
if(d < 0) d = 0;
if(d >= (int)m_alpha_function->size()) d = m_alpha_function->size() - 1;
span->a = (*m_alpha_function)[d];
++span;
++(*m_interpolator);
}
while(--len);
}
private:
interpolator_type* m_interpolator;
const GradientF* m_gradient_function;
const AlphaF* m_alpha_function;
int m_d1;
int m_d2;
};
//=======================================================gradient_alpha_x
template<class ColorT> struct gradient_alpha_x
{
typedef typename ColorT::value_type alpha_type;
alpha_type operator [] (alpha_type x) const { return x; }
};
//====================================================gradient_alpha_x_u8
struct gradient_alpha_x_u8
{
typedef int8u alpha_type;
alpha_type operator [] (alpha_type x) const { return x; }
};
//==========================================gradient_alpha_one_munus_x_u8
struct gradient_alpha_one_munus_x_u8
{
typedef int8u alpha_type;
alpha_type operator [] (alpha_type x) const { return 255-x; }
};
}
#endif

246
deps/agg/include/agg_span_image_filter.h vendored Normal file
View file

@ -0,0 +1,246 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Image transformations with filtering. Span generator base class
//
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_IMAGE_FILTER_INCLUDED
#define AGG_SPAN_IMAGE_FILTER_INCLUDED
#include "agg_basics.h"
#include "agg_image_filters.h"
#include "agg_span_interpolator_linear.h"
namespace agg
{
//-------------------------------------------------------span_image_filter
template<class Source, class Interpolator> class span_image_filter
{
public:
typedef Source source_type;
typedef Interpolator interpolator_type;
//--------------------------------------------------------------------
span_image_filter() {}
span_image_filter(source_type& src,
interpolator_type& interpolator,
const image_filter_lut* filter) :
m_src(&src),
m_interpolator(&interpolator),
m_filter(filter),
m_dx_dbl(0.5),
m_dy_dbl(0.5),
m_dx_int(image_subpixel_scale / 2),
m_dy_int(image_subpixel_scale / 2)
{}
void attach(source_type& v) { m_src = &v; }
//--------------------------------------------------------------------
source_type& source() { return *m_src; }
const source_type& source() const { return *m_src; }
const image_filter_lut& filter() const { return *m_filter; }
int filter_dx_int() const { return m_dx_int; }
int filter_dy_int() const { return m_dy_int; }
double filter_dx_dbl() const { return m_dx_dbl; }
double filter_dy_dbl() const { return m_dy_dbl; }
//--------------------------------------------------------------------
void interpolator(interpolator_type& v) { m_interpolator = &v; }
void filter(const image_filter_lut& v) { m_filter = &v; }
void filter_offset(double dx, double dy)
{
m_dx_dbl = dx;
m_dy_dbl = dy;
m_dx_int = iround(dx * image_subpixel_scale);
m_dy_int = iround(dy * image_subpixel_scale);
}
void filter_offset(double d) { filter_offset(d, d); }
//--------------------------------------------------------------------
interpolator_type& interpolator() { return *m_interpolator; }
//--------------------------------------------------------------------
void prepare() {}
//--------------------------------------------------------------------
private:
source_type* m_src;
interpolator_type* m_interpolator;
const image_filter_lut* m_filter;
double m_dx_dbl;
double m_dy_dbl;
unsigned m_dx_int;
unsigned m_dy_int;
};
//==============================================span_image_resample_affine
template<class Source>
class span_image_resample_affine :
public span_image_filter<Source, span_interpolator_linear<trans_affine> >
{
public:
typedef Source source_type;
typedef span_interpolator_linear<trans_affine> interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
//--------------------------------------------------------------------
span_image_resample_affine() :
m_scale_limit(200.0),
m_blur_x(1.0),
m_blur_y(1.0)
{}
//--------------------------------------------------------------------
span_image_resample_affine(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter),
m_scale_limit(200.0),
m_blur_x(1.0),
m_blur_y(1.0)
{}
//--------------------------------------------------------------------
int scale_limit() const { return uround(m_scale_limit); }
void scale_limit(int v) { m_scale_limit = v; }
//--------------------------------------------------------------------
double blur_x() const { return m_blur_x; }
double blur_y() const { return m_blur_y; }
void blur_x(double v) { m_blur_x = v; }
void blur_y(double v) { m_blur_y = v; }
void blur(double v) { m_blur_x = m_blur_y = v; }
//--------------------------------------------------------------------
void prepare()
{
double scale_x;
double scale_y;
base_type::interpolator().transformer().scaling_abs(&scale_x, &scale_y);
if(scale_x * scale_y > m_scale_limit)
{
scale_x = scale_x * m_scale_limit / (scale_x * scale_y);
scale_y = scale_y * m_scale_limit / (scale_x * scale_y);
}
if(scale_x < 1) scale_x = 1;
if(scale_y < 1) scale_y = 1;
if(scale_x > m_scale_limit) scale_x = m_scale_limit;
if(scale_y > m_scale_limit) scale_y = m_scale_limit;
scale_x *= m_blur_x;
scale_y *= m_blur_y;
if(scale_x < 1) scale_x = 1;
if(scale_y < 1) scale_y = 1;
m_rx = uround( scale_x * double(image_subpixel_scale));
m_rx_inv = uround(1.0/scale_x * double(image_subpixel_scale));
m_ry = uround( scale_y * double(image_subpixel_scale));
m_ry_inv = uround(1.0/scale_y * double(image_subpixel_scale));
}
protected:
int m_rx;
int m_ry;
int m_rx_inv;
int m_ry_inv;
private:
double m_scale_limit;
double m_blur_x;
double m_blur_y;
};
//=====================================================span_image_resample
template<class Source, class Interpolator>
class span_image_resample :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
//--------------------------------------------------------------------
span_image_resample() :
m_scale_limit(20),
m_blur_x(image_subpixel_scale),
m_blur_y(image_subpixel_scale)
{}
//--------------------------------------------------------------------
span_image_resample(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter),
m_scale_limit(20),
m_blur_x(image_subpixel_scale),
m_blur_y(image_subpixel_scale)
{}
//--------------------------------------------------------------------
int scale_limit() const { return m_scale_limit; }
void scale_limit(int v) { m_scale_limit = v; }
//--------------------------------------------------------------------
double blur_x() const { return double(m_blur_x) / double(image_subpixel_scale); }
double blur_y() const { return double(m_blur_y) / double(image_subpixel_scale); }
void blur_x(double v) { m_blur_x = uround(v * double(image_subpixel_scale)); }
void blur_y(double v) { m_blur_y = uround(v * double(image_subpixel_scale)); }
void blur(double v) { m_blur_x =
m_blur_y = uround(v * double(image_subpixel_scale)); }
protected:
AGG_INLINE void adjust_scale(int* rx, int* ry)
{
if(*rx < image_subpixel_scale) *rx = image_subpixel_scale;
if(*ry < image_subpixel_scale) *ry = image_subpixel_scale;
if(*rx > image_subpixel_scale * m_scale_limit)
{
*rx = image_subpixel_scale * m_scale_limit;
}
if(*ry > image_subpixel_scale * m_scale_limit)
{
*ry = image_subpixel_scale * m_scale_limit;
}
*rx = (*rx * m_blur_x) >> image_subpixel_shift;
*ry = (*ry * m_blur_y) >> image_subpixel_shift;
if(*rx < image_subpixel_scale) *rx = image_subpixel_scale;
if(*ry < image_subpixel_scale) *ry = image_subpixel_scale;
}
int m_scale_limit;
int m_blur_x;
int m_blur_y;
};
}
#endif

View file

@ -0,0 +1,748 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_IMAGE_FILTER_GRAY_INCLUDED
#define AGG_SPAN_IMAGE_FILTER_GRAY_INCLUDED
#include "agg_basics.h"
#include "agg_color_gray.h"
#include "agg_span_image_filter.h"
namespace agg
{
//==============================================span_image_filter_gray_nn
template<class Source, class Interpolator>
class span_image_filter_gray_nn :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_gray_nn() {}
span_image_filter_gray_nn(source_type& src,
interpolator_type& inter) :
base_type(src, inter, 0)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
do
{
base_type::interpolator().coordinates(&x, &y);
span->v = *(const value_type*)
base_type::source().span(x >> image_subpixel_shift,
y >> image_subpixel_shift,
1);
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//=========================================span_image_filter_gray_bilinear
template<class Source, class Interpolator>
class span_image_filter_gray_bilinear :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_gray_bilinear() {}
span_image_filter_gray_bilinear(source_type& src,
interpolator_type& inter) :
base_type(src, inter, 0)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg;
const value_type *fg_ptr;
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
fg = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)base_type::source().span(x_lr, y_lr, 2);
fg += *fg_ptr * (image_subpixel_scale - x_hr) * (image_subpixel_scale - y_hr);
fg_ptr = (const value_type*)base_type::source().next_x();
fg += *fg_ptr * x_hr * (image_subpixel_scale - y_hr);
fg_ptr = (const value_type*)base_type::source().next_y();
fg += *fg_ptr * (image_subpixel_scale - x_hr) * y_hr;
fg_ptr = (const value_type*)base_type::source().next_x();
fg += *fg_ptr * x_hr * y_hr;
span->v = value_type(fg >> (image_subpixel_shift * 2));
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//====================================span_image_filter_gray_bilinear_clip
template<class Source, class Interpolator>
class span_image_filter_gray_bilinear_clip :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_gray_bilinear_clip() {}
span_image_filter_gray_bilinear_clip(source_type& src,
const color_type& back_color,
interpolator_type& inter) :
base_type(src, inter, 0),
m_back_color(back_color)
{}
const color_type& background_color() const { return m_back_color; }
void background_color(const color_type& v) { m_back_color = v; }
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg;
calc_type src_alpha;
value_type back_v = m_back_color.v;
value_type back_a = m_back_color.a;
const value_type *fg_ptr;
int maxx = base_type::source().width() - 1;
int maxy = base_type::source().height() - 1;
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr < maxx && y_lr < maxy)
{
fg = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)base_type::source().row_ptr(y_lr) + x_lr;
fg += *fg_ptr++ * (image_subpixel_scale - x_hr) * (image_subpixel_scale - y_hr);
fg += *fg_ptr++ * (image_subpixel_scale - y_hr) * x_hr;
++y_lr;
fg_ptr = (const value_type*)base_type::source().row_ptr(y_lr) + x_lr;
fg += *fg_ptr++ * (image_subpixel_scale - x_hr) * y_hr;
fg += *fg_ptr++ * x_hr * y_hr;
fg >>= image_subpixel_shift * 2;
src_alpha = base_mask;
}
else
{
unsigned weight;
if(x_lr < -1 || y_lr < -1 ||
x_lr > maxx || y_lr > maxy)
{
fg = back_v;
src_alpha = back_a;
}
else
{
fg =
src_alpha = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
weight = (image_subpixel_scale - x_hr) *
(image_subpixel_scale - y_hr);
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg += weight *
*((const value_type*)base_type::source().row_ptr(y_lr) + x_lr);
src_alpha += weight * base_mask;
}
else
{
fg += back_v * weight;
src_alpha += back_a * weight;
}
x_lr++;
weight = x_hr * (image_subpixel_scale - y_hr);
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg += weight *
*((const value_type*)base_type::source().row_ptr(y_lr) + x_lr);
src_alpha += weight * base_mask;
}
else
{
fg += back_v * weight;
src_alpha += back_a * weight;
}
x_lr--;
y_lr++;
weight = (image_subpixel_scale - x_hr) * y_hr;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg += weight *
*((const value_type*)base_type::source().row_ptr(y_lr) + x_lr);
src_alpha += weight * base_mask;
}
else
{
fg += back_v * weight;
src_alpha += back_a * weight;
}
x_lr++;
weight = x_hr * y_hr;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg += weight *
*((const value_type*)base_type::source().row_ptr(y_lr) + x_lr);
src_alpha += weight * base_mask;
}
else
{
fg += back_v * weight;
src_alpha += back_a * weight;
}
fg >>= image_subpixel_shift * 2;
src_alpha >>= image_subpixel_shift * 2;
}
}
span->v = (value_type)fg;
span->a = (value_type)src_alpha;
++span;
++base_type::interpolator();
} while(--len);
}
private:
color_type m_back_color;
};
//==============================================span_image_filter_gray_2x2
template<class Source, class Interpolator>
class span_image_filter_gray_2x2 :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_gray_2x2() {}
span_image_filter_gray_2x2(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg;
const value_type *fg_ptr;
const int16* weight_array = base_type::filter().weight_array() +
((base_type::filter().diameter()/2 - 1) <<
image_subpixel_shift);
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
unsigned weight;
fg = image_filter_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)base_type::source().span(x_lr, y_lr, 2);
weight = (weight_array[x_hr + image_subpixel_scale] *
weight_array[y_hr + image_subpixel_scale] +
image_filter_scale / 2) >>
image_filter_shift;
fg += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = (weight_array[x_hr] *
weight_array[y_hr + image_subpixel_scale] +
image_filter_scale / 2) >>
image_filter_shift;
fg += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_y();
weight = (weight_array[x_hr + image_subpixel_scale] *
weight_array[y_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = (weight_array[x_hr] *
weight_array[y_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg += weight * *fg_ptr;
fg >>= image_filter_shift;
if(fg > base_mask) fg = base_mask;
span->v = (value_type)fg;
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//==================================================span_image_filter_gray
template<class Source, class Interpolator>
class span_image_filter_gray :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_gray() {}
span_image_filter_gray(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
int fg;
const value_type *fg_ptr;
unsigned diameter = base_type::filter().diameter();
int start = base_type::filter().start();
const int16* weight_array = base_type::filter().weight_array();
int x_count;
int weight_y;
do
{
base_type::interpolator().coordinates(&x, &y);
x -= base_type::filter_dx_int();
y -= base_type::filter_dy_int();
int x_hr = x;
int y_hr = y;
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
fg = image_filter_scale / 2;
int x_fract = x_hr & image_subpixel_mask;
unsigned y_count = diameter;
y_hr = image_subpixel_mask - (y_hr & image_subpixel_mask);
fg_ptr = (const value_type*)base_type::source().span(x_lr + start,
y_lr + start,
diameter);
for(;;)
{
x_count = diameter;
weight_y = weight_array[y_hr];
x_hr = image_subpixel_mask - x_fract;
for(;;)
{
fg += *fg_ptr *
((weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
image_filter_shift);
if(--x_count == 0) break;
x_hr += image_subpixel_scale;
fg_ptr = (const value_type*)base_type::source().next_x();
}
if(--y_count == 0) break;
y_hr += image_subpixel_scale;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg >>= image_filter_shift;
if(fg < 0) fg = 0;
if(fg > base_mask) fg = base_mask;
span->v = (value_type)fg;
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//=========================================span_image_resample_gray_affine
template<class Source>
class span_image_resample_gray_affine :
public span_image_resample_affine<Source>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef span_image_resample_affine<source_type> base_type;
typedef typename base_type::interpolator_type interpolator_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::long_type long_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask,
downscale_shift = image_filter_shift
};
//--------------------------------------------------------------------
span_image_resample_gray_affine() {}
span_image_resample_gray_affine(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
long_type fg;
int diameter = base_type::filter().diameter();
int filter_scale = diameter << image_subpixel_shift;
int radius_x = (diameter * base_type::m_rx) >> 1;
int radius_y = (diameter * base_type::m_ry) >> 1;
int len_x_lr =
(diameter * base_type::m_rx + image_subpixel_mask) >>
image_subpixel_shift;
const int16* weight_array = base_type::filter().weight_array();
do
{
base_type::interpolator().coordinates(&x, &y);
x += base_type::filter_dx_int() - radius_x;
y += base_type::filter_dy_int() - radius_y;
fg = image_filter_scale / 2;
int y_lr = y >> image_subpixel_shift;
int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) *
base_type::m_ry_inv) >>
image_subpixel_shift;
int total_weight = 0;
int x_lr = x >> image_subpixel_shift;
int x_hr = ((image_subpixel_mask - (x & image_subpixel_mask)) *
base_type::m_rx_inv) >>
image_subpixel_shift;
int x_hr2 = x_hr;
const value_type* fg_ptr =
(const value_type*)base_type::source().span(x_lr, y_lr, len_x_lr);
for(;;)
{
int weight_y = weight_array[y_hr];
x_hr = x_hr2;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
downscale_shift;
fg += *fg_ptr * weight;
total_weight += weight;
x_hr += base_type::m_rx_inv;
if(x_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_x();
}
y_hr += base_type::m_ry_inv;
if(y_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg /= total_weight;
if(fg < 0) fg = 0;
if(fg > base_mask) fg = base_mask;
span->v = (value_type)fg;
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//================================================span_image_resample_gray
template<class Source, class Interpolator>
class span_image_resample_gray :
public span_image_resample<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef Interpolator interpolator_type;
typedef span_image_resample<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::long_type long_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask,
downscale_shift = image_filter_shift
};
//--------------------------------------------------------------------
span_image_resample_gray() {}
span_image_resample_gray(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
long_type fg;
int diameter = base_type::filter().diameter();
int filter_scale = diameter << image_subpixel_shift;
const int16* weight_array = base_type::filter().weight_array();
do
{
int rx;
int ry;
int rx_inv = image_subpixel_scale;
int ry_inv = image_subpixel_scale;
base_type::interpolator().coordinates(&x, &y);
base_type::interpolator().local_scale(&rx, &ry);
base_type::adjust_scale(&rx, &ry);
rx_inv = image_subpixel_scale * image_subpixel_scale / rx;
ry_inv = image_subpixel_scale * image_subpixel_scale / ry;
int radius_x = (diameter * rx) >> 1;
int radius_y = (diameter * ry) >> 1;
int len_x_lr =
(diameter * rx + image_subpixel_mask) >>
image_subpixel_shift;
x += base_type::filter_dx_int() - radius_x;
y += base_type::filter_dy_int() - radius_y;
fg = image_filter_scale / 2;
int y_lr = y >> image_subpixel_shift;
int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) *
ry_inv) >>
image_subpixel_shift;
int total_weight = 0;
int x_lr = x >> image_subpixel_shift;
int x_hr = ((image_subpixel_mask - (x & image_subpixel_mask)) *
rx_inv) >>
image_subpixel_shift;
int x_hr2 = x_hr;
const value_type* fg_ptr =
(const value_type*)base_type::source().span(x_lr, y_lr, len_x_lr);
for(;;)
{
int weight_y = weight_array[y_hr];
x_hr = x_hr2;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
downscale_shift;
fg += *fg_ptr * weight;
total_weight += weight;
x_hr += rx_inv;
if(x_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_x();
}
y_hr += ry_inv;
if(y_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg /= total_weight;
if(fg < 0) fg = 0;
if(fg > base_mask) fg = base_mask;
span->v = (value_type)fg;
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
}
#endif

View file

@ -0,0 +1,892 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_IMAGE_FILTER_RGB_INCLUDED
#define AGG_SPAN_IMAGE_FILTER_RGB_INCLUDED
#include "agg_basics.h"
#include "agg_color_rgba.h"
#include "agg_span_image_filter.h"
namespace agg
{
//===============================================span_image_filter_rgb_nn
template<class Source, class Interpolator>
class span_image_filter_rgb_nn :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgb_nn() {}
span_image_filter_rgb_nn(source_type& src,
interpolator_type& inter) :
base_type(src, inter, 0)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
do
{
base_type::interpolator().coordinates(&x, &y);
const value_type* fg_ptr = (const value_type*)
base_type::source().span(x >> image_subpixel_shift,
y >> image_subpixel_shift,
1);
span->r = fg_ptr[order_type::R];
span->g = fg_ptr[order_type::G];
span->b = fg_ptr[order_type::B];
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//==========================================span_image_filter_rgb_bilinear
template<class Source, class Interpolator>
class span_image_filter_rgb_bilinear :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgb_bilinear() {}
span_image_filter_rgb_bilinear(source_type& src,
interpolator_type& inter) :
base_type(src, inter, 0)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg[3];
const value_type *fg_ptr;
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
unsigned weight;
fg[0] =
fg[1] =
fg[2] = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)base_type::source().span(x_lr, y_lr, 2);
weight = (image_subpixel_scale - x_hr) *
(image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = x_hr * (image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_y();
weight = (image_subpixel_scale - x_hr) * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = x_hr * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
span->r = value_type(fg[order_type::R] >> (image_subpixel_shift * 2));
span->g = value_type(fg[order_type::G] >> (image_subpixel_shift * 2));
span->b = value_type(fg[order_type::B] >> (image_subpixel_shift * 2));
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//=====================================span_image_filter_rgb_bilinear_clip
template<class Source, class Interpolator>
class span_image_filter_rgb_bilinear_clip :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgb_bilinear_clip() {}
span_image_filter_rgb_bilinear_clip(source_type& src,
const color_type& back_color,
interpolator_type& inter) :
base_type(src, inter, 0),
m_back_color(back_color)
{}
const color_type& background_color() const { return m_back_color; }
void background_color(const color_type& v) { m_back_color = v; }
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg[3];
calc_type src_alpha;
value_type back_r = m_back_color.r;
value_type back_g = m_back_color.g;
value_type back_b = m_back_color.b;
value_type back_a = m_back_color.a;
const value_type *fg_ptr;
int maxx = base_type::source().width() - 1;
int maxy = base_type::source().height() - 1;
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
unsigned weight;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr < maxx && y_lr < maxy)
{
fg[0] =
fg[1] =
fg[2] = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + x_lr + x_lr + x_lr;
weight = (image_subpixel_scale - x_hr) *
(image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
weight = x_hr * (image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
++y_lr;
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + x_lr + x_lr + x_lr;
weight = (image_subpixel_scale - x_hr) * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
weight = x_hr * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[0] >>= image_subpixel_shift * 2;
fg[1] >>= image_subpixel_shift * 2;
fg[2] >>= image_subpixel_shift * 2;
src_alpha = base_mask;
}
else
{
if(x_lr < -1 || y_lr < -1 ||
x_lr > maxx || y_lr > maxy)
{
fg[order_type::R] = back_r;
fg[order_type::G] = back_g;
fg[order_type::B] = back_b;
src_alpha = back_a;
}
else
{
fg[0] =
fg[1] =
fg[2] =
src_alpha = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
weight = (image_subpixel_scale - x_hr) *
(image_subpixel_scale - y_hr);
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + x_lr + x_lr + x_lr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
src_alpha += weight * base_mask;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
src_alpha += back_a * weight;
}
x_lr++;
weight = x_hr * (image_subpixel_scale - y_hr);
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + x_lr + x_lr + x_lr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
src_alpha += weight * base_mask;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
src_alpha += back_a * weight;
}
x_lr--;
y_lr++;
weight = (image_subpixel_scale - x_hr) * y_hr;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + x_lr + x_lr + x_lr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
src_alpha += weight * base_mask;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
src_alpha += back_a * weight;
}
x_lr++;
weight = x_hr * y_hr;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + x_lr + x_lr + x_lr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
src_alpha += weight * base_mask;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
src_alpha += back_a * weight;
}
fg[0] >>= image_subpixel_shift * 2;
fg[1] >>= image_subpixel_shift * 2;
fg[2] >>= image_subpixel_shift * 2;
src_alpha >>= image_subpixel_shift * 2;
}
}
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = (value_type)src_alpha;
++span;
++base_type::interpolator();
} while(--len);
}
private:
color_type m_back_color;
};
//===============================================span_image_filter_rgb_2x2
template<class Source, class Interpolator>
class span_image_filter_rgb_2x2 :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgb_2x2() {}
span_image_filter_rgb_2x2(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg[3];
const value_type *fg_ptr;
const int16* weight_array = base_type::filter().weight_array() +
((base_type::filter().diameter()/2 - 1) <<
image_subpixel_shift);
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
unsigned weight;
fg[0] = fg[1] = fg[2] = image_filter_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)base_type::source().span(x_lr, y_lr, 2);
weight = (weight_array[x_hr + image_subpixel_scale] *
weight_array[y_hr + image_subpixel_scale] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = (weight_array[x_hr] *
weight_array[y_hr + image_subpixel_scale] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_y();
weight = (weight_array[x_hr + image_subpixel_scale] *
weight_array[y_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = (weight_array[x_hr] *
weight_array[y_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
fg[0] >>= image_filter_shift;
fg[1] >>= image_filter_shift;
fg[2] >>= image_filter_shift;
if(fg[order_type::R] > base_mask) fg[order_type::R] = base_mask;
if(fg[order_type::G] > base_mask) fg[order_type::G] = base_mask;
if(fg[order_type::B] > base_mask) fg[order_type::B] = base_mask;
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//===================================================span_image_filter_rgb
template<class Source, class Interpolator>
class span_image_filter_rgb :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgb() {}
span_image_filter_rgb(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
int fg[3];
const value_type *fg_ptr;
unsigned diameter = base_type::filter().diameter();
int start = base_type::filter().start();
const int16* weight_array = base_type::filter().weight_array();
int x_count;
int weight_y;
do
{
base_type::interpolator().coordinates(&x, &y);
x -= base_type::filter_dx_int();
y -= base_type::filter_dy_int();
int x_hr = x;
int y_hr = y;
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
fg[0] = fg[1] = fg[2] = image_filter_scale / 2;
int x_fract = x_hr & image_subpixel_mask;
unsigned y_count = diameter;
y_hr = image_subpixel_mask - (y_hr & image_subpixel_mask);
fg_ptr = (const value_type*)base_type::source().span(x_lr + start,
y_lr + start,
diameter);
for(;;)
{
x_count = diameter;
weight_y = weight_array[y_hr];
x_hr = image_subpixel_mask - x_fract;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr;
if(--x_count == 0) break;
x_hr += image_subpixel_scale;
fg_ptr = (const value_type*)base_type::source().next_x();
}
if(--y_count == 0) break;
y_hr += image_subpixel_scale;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg[0] >>= image_filter_shift;
fg[1] >>= image_filter_shift;
fg[2] >>= image_filter_shift;
if(fg[0] < 0) fg[0] = 0;
if(fg[1] < 0) fg[1] = 0;
if(fg[2] < 0) fg[2] = 0;
if(fg[order_type::R] > base_mask) fg[order_type::R] = base_mask;
if(fg[order_type::G] > base_mask) fg[order_type::G] = base_mask;
if(fg[order_type::B] > base_mask) fg[order_type::B] = base_mask;
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//==========================================span_image_resample_rgb_affine
template<class Source>
class span_image_resample_rgb_affine :
public span_image_resample_affine<Source>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef span_image_resample_affine<source_type> base_type;
typedef typename base_type::interpolator_type interpolator_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::long_type long_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask,
downscale_shift = image_filter_shift
};
//--------------------------------------------------------------------
span_image_resample_rgb_affine() {}
span_image_resample_rgb_affine(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
long_type fg[3];
int diameter = base_type::filter().diameter();
int filter_scale = diameter << image_subpixel_shift;
int radius_x = (diameter * base_type::m_rx) >> 1;
int radius_y = (diameter * base_type::m_ry) >> 1;
int len_x_lr =
(diameter * base_type::m_rx + image_subpixel_mask) >>
image_subpixel_shift;
const int16* weight_array = base_type::filter().weight_array();
do
{
base_type::interpolator().coordinates(&x, &y);
x += base_type::filter_dx_int() - radius_x;
y += base_type::filter_dy_int() - radius_y;
fg[0] = fg[1] = fg[2] = image_filter_scale / 2;
int y_lr = y >> image_subpixel_shift;
int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) *
base_type::m_ry_inv) >>
image_subpixel_shift;
int total_weight = 0;
int x_lr = x >> image_subpixel_shift;
int x_hr = ((image_subpixel_mask - (x & image_subpixel_mask)) *
base_type::m_rx_inv) >>
image_subpixel_shift;
int x_hr2 = x_hr;
const value_type* fg_ptr =
(const value_type*)base_type::source().span(x_lr, y_lr, len_x_lr);
for(;;)
{
int weight_y = weight_array[y_hr];
x_hr = x_hr2;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
downscale_shift;
fg[0] += *fg_ptr++ * weight;
fg[1] += *fg_ptr++ * weight;
fg[2] += *fg_ptr * weight;
total_weight += weight;
x_hr += base_type::m_rx_inv;
if(x_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_x();
}
y_hr += base_type::m_ry_inv;
if(y_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg[0] /= total_weight;
fg[1] /= total_weight;
fg[2] /= total_weight;
if(fg[0] < 0) fg[0] = 0;
if(fg[1] < 0) fg[1] = 0;
if(fg[2] < 0) fg[2] = 0;
if(fg[order_type::R] > base_mask) fg[order_type::R] = base_mask;
if(fg[order_type::G] > base_mask) fg[order_type::G] = base_mask;
if(fg[order_type::B] > base_mask) fg[order_type::B] = base_mask;
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
//=================================================span_image_resample_rgb
template<class Source, class Interpolator>
class span_image_resample_rgb :
public span_image_resample<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_resample<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::long_type long_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask,
downscale_shift = image_filter_shift
};
//--------------------------------------------------------------------
span_image_resample_rgb() {}
span_image_resample_rgb(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
long_type fg[3];
int diameter = base_type::filter().diameter();
int filter_scale = diameter << image_subpixel_shift;
const int16* weight_array = base_type::filter().weight_array();
do
{
int rx;
int ry;
int rx_inv = image_subpixel_scale;
int ry_inv = image_subpixel_scale;
base_type::interpolator().coordinates(&x, &y);
base_type::interpolator().local_scale(&rx, &ry);
base_type::adjust_scale(&rx, &ry);
rx_inv = image_subpixel_scale * image_subpixel_scale / rx;
ry_inv = image_subpixel_scale * image_subpixel_scale / ry;
int radius_x = (diameter * rx) >> 1;
int radius_y = (diameter * ry) >> 1;
int len_x_lr =
(diameter * rx + image_subpixel_mask) >>
image_subpixel_shift;
x += base_type::filter_dx_int() - radius_x;
y += base_type::filter_dy_int() - radius_y;
fg[0] = fg[1] = fg[2] = image_filter_scale / 2;
int y_lr = y >> image_subpixel_shift;
int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) *
ry_inv) >>
image_subpixel_shift;
int total_weight = 0;
int x_lr = x >> image_subpixel_shift;
int x_hr = ((image_subpixel_mask - (x & image_subpixel_mask)) *
rx_inv) >>
image_subpixel_shift;
int x_hr2 = x_hr;
const value_type* fg_ptr =
(const value_type*)base_type::source().span(x_lr, y_lr, len_x_lr);
for(;;)
{
int weight_y = weight_array[y_hr];
x_hr = x_hr2;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
downscale_shift;
fg[0] += *fg_ptr++ * weight;
fg[1] += *fg_ptr++ * weight;
fg[2] += *fg_ptr * weight;
total_weight += weight;
x_hr += rx_inv;
if(x_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_x();
}
y_hr += ry_inv;
if(y_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg[0] /= total_weight;
fg[1] /= total_weight;
fg[2] /= total_weight;
if(fg[0] < 0) fg[0] = 0;
if(fg[1] < 0) fg[1] = 0;
if(fg[2] < 0) fg[2] = 0;
if(fg[order_type::R] > base_mask) fg[order_type::R] = base_mask;
if(fg[order_type::G] > base_mask) fg[order_type::G] = base_mask;
if(fg[order_type::B] > base_mask) fg[order_type::B] = base_mask;
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = base_mask;
++span;
++base_type::interpolator();
} while(--len);
}
};
}
#endif

View file

@ -0,0 +1,937 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_IMAGE_FILTER_RGBA_INCLUDED
#define AGG_SPAN_IMAGE_FILTER_RGBA_INCLUDED
#include "agg_basics.h"
#include "agg_color_rgba.h"
#include "agg_span_image_filter.h"
namespace agg
{
//==============================================span_image_filter_rgba_nn
template<class Source, class Interpolator>
class span_image_filter_rgba_nn :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgba_nn() {}
span_image_filter_rgba_nn(source_type& src,
interpolator_type& inter) :
base_type(src, inter, 0)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
do
{
base_type::interpolator().coordinates(&x, &y);
const value_type* fg_ptr = (const value_type*)
base_type::source().span(x >> image_subpixel_shift,
y >> image_subpixel_shift,
1);
span->r = fg_ptr[order_type::R];
span->g = fg_ptr[order_type::G];
span->b = fg_ptr[order_type::B];
span->a = fg_ptr[order_type::A];
++span;
++base_type::interpolator();
} while(--len);
}
};
//=========================================span_image_filter_rgba_bilinear
template<class Source, class Interpolator>
class span_image_filter_rgba_bilinear :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgba_bilinear() {}
span_image_filter_rgba_bilinear(source_type& src,
interpolator_type& inter) :
base_type(src, inter, 0)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg[4];
const value_type *fg_ptr;
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
unsigned weight;
fg[0] =
fg[1] =
fg[2] =
fg[3] = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)base_type::source().span(x_lr, y_lr, 2);
weight = (image_subpixel_scale - x_hr) *
(image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = x_hr * (image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_y();
weight = (image_subpixel_scale - x_hr) * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = x_hr * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
span->r = value_type(fg[order_type::R] >> (image_subpixel_shift * 2));
span->g = value_type(fg[order_type::G] >> (image_subpixel_shift * 2));
span->b = value_type(fg[order_type::B] >> (image_subpixel_shift * 2));
span->a = value_type(fg[order_type::A] >> (image_subpixel_shift * 2));
++span;
++base_type::interpolator();
} while(--len);
}
};
//====================================span_image_filter_rgba_bilinear_clip
template<class Source, class Interpolator>
class span_image_filter_rgba_bilinear_clip :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgba_bilinear_clip() {}
span_image_filter_rgba_bilinear_clip(source_type& src,
const color_type& back_color,
interpolator_type& inter) :
base_type(src, inter, 0),
m_back_color(back_color)
{}
const color_type& background_color() const { return m_back_color; }
void background_color(const color_type& v) { m_back_color = v; }
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg[4];
value_type back_r = m_back_color.r;
value_type back_g = m_back_color.g;
value_type back_b = m_back_color.b;
value_type back_a = m_back_color.a;
const value_type *fg_ptr;
int maxx = base_type::source().width() - 1;
int maxy = base_type::source().height() - 1;
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
unsigned weight;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr < maxx && y_lr < maxy)
{
fg[0] =
fg[1] =
fg[2] =
fg[3] = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + (x_lr << 2);
weight = (image_subpixel_scale - x_hr) *
(image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
weight = x_hr * (image_subpixel_scale - y_hr);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
++y_lr;
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + (x_lr << 2);
weight = (image_subpixel_scale - x_hr) * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
weight = x_hr * y_hr;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
fg[0] >>= image_subpixel_shift * 2;
fg[1] >>= image_subpixel_shift * 2;
fg[2] >>= image_subpixel_shift * 2;
fg[3] >>= image_subpixel_shift * 2;
}
else
{
if(x_lr < -1 || y_lr < -1 ||
x_lr > maxx || y_lr > maxy)
{
fg[order_type::R] = back_r;
fg[order_type::G] = back_g;
fg[order_type::B] = back_b;
fg[order_type::A] = back_a;
}
else
{
fg[0] =
fg[1] =
fg[2] =
fg[3] = image_subpixel_scale * image_subpixel_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
weight = (image_subpixel_scale - x_hr) *
(image_subpixel_scale - y_hr);
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + (x_lr << 2);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
fg[order_type::A] += back_a * weight;
}
x_lr++;
weight = x_hr * (image_subpixel_scale - y_hr);
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + (x_lr << 2);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
fg[order_type::A] += back_a * weight;
}
x_lr--;
y_lr++;
weight = (image_subpixel_scale - x_hr) * y_hr;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + (x_lr << 2);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
fg[order_type::A] += back_a * weight;
}
x_lr++;
weight = x_hr * y_hr;
if(x_lr >= 0 && y_lr >= 0 &&
x_lr <= maxx && y_lr <= maxy)
{
fg_ptr = (const value_type*)
base_type::source().row_ptr(y_lr) + (x_lr << 2);
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr++;
}
else
{
fg[order_type::R] += back_r * weight;
fg[order_type::G] += back_g * weight;
fg[order_type::B] += back_b * weight;
fg[order_type::A] += back_a * weight;
}
fg[0] >>= image_subpixel_shift * 2;
fg[1] >>= image_subpixel_shift * 2;
fg[2] >>= image_subpixel_shift * 2;
fg[3] >>= image_subpixel_shift * 2;
}
}
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = (value_type)fg[order_type::A];
++span;
++base_type::interpolator();
} while(--len);
}
private:
color_type m_back_color;
};
//==============================================span_image_filter_rgba_2x2
template<class Source, class Interpolator>
class span_image_filter_rgba_2x2 :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgba_2x2() {}
span_image_filter_rgba_2x2(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
calc_type fg[4];
const value_type *fg_ptr;
const int16* weight_array = base_type::filter().weight_array() +
((base_type::filter().diameter()/2 - 1) <<
image_subpixel_shift);
do
{
int x_hr;
int y_hr;
base_type::interpolator().coordinates(&x_hr, &y_hr);
x_hr -= base_type::filter_dx_int();
y_hr -= base_type::filter_dy_int();
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
unsigned weight;
fg[0] = fg[1] = fg[2] = fg[3] = image_filter_scale / 2;
x_hr &= image_subpixel_mask;
y_hr &= image_subpixel_mask;
fg_ptr = (const value_type*)base_type::source().span(x_lr, y_lr, 2);
weight = (weight_array[x_hr + image_subpixel_scale] *
weight_array[y_hr + image_subpixel_scale] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = (weight_array[x_hr] *
weight_array[y_hr + image_subpixel_scale] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_y();
weight = (weight_array[x_hr + image_subpixel_scale] *
weight_array[y_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
fg_ptr = (const value_type*)base_type::source().next_x();
weight = (weight_array[x_hr] *
weight_array[y_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
fg[0] >>= image_filter_shift;
fg[1] >>= image_filter_shift;
fg[2] >>= image_filter_shift;
fg[3] >>= image_filter_shift;
if(fg[order_type::A] > base_mask) fg[order_type::A] = base_mask;
if(fg[order_type::R] > fg[order_type::A]) fg[order_type::R] = fg[order_type::A];
if(fg[order_type::G] > fg[order_type::A]) fg[order_type::G] = fg[order_type::A];
if(fg[order_type::B] > fg[order_type::A]) fg[order_type::B] = fg[order_type::A];
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = (value_type)fg[order_type::A];
++span;
++base_type::interpolator();
} while(--len);
}
};
//==================================================span_image_filter_rgba
template<class Source, class Interpolator>
class span_image_filter_rgba :
public span_image_filter<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_filter<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::calc_type calc_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask
};
//--------------------------------------------------------------------
span_image_filter_rgba() {}
span_image_filter_rgba(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, &filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
int fg[4];
const value_type *fg_ptr;
unsigned diameter = base_type::filter().diameter();
int start = base_type::filter().start();
const int16* weight_array = base_type::filter().weight_array();
int x_count;
int weight_y;
do
{
base_type::interpolator().coordinates(&x, &y);
x -= base_type::filter_dx_int();
y -= base_type::filter_dy_int();
int x_hr = x;
int y_hr = y;
int x_lr = x_hr >> image_subpixel_shift;
int y_lr = y_hr >> image_subpixel_shift;
fg[0] = fg[1] = fg[2] = fg[3] = image_filter_scale / 2;
int x_fract = x_hr & image_subpixel_mask;
unsigned y_count = diameter;
y_hr = image_subpixel_mask - (y_hr & image_subpixel_mask);
fg_ptr = (const value_type*)base_type::source().span(x_lr + start,
y_lr + start,
diameter);
for(;;)
{
x_count = diameter;
weight_y = weight_array[y_hr];
x_hr = image_subpixel_mask - x_fract;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
image_filter_shift;
fg[0] += weight * *fg_ptr++;
fg[1] += weight * *fg_ptr++;
fg[2] += weight * *fg_ptr++;
fg[3] += weight * *fg_ptr;
if(--x_count == 0) break;
x_hr += image_subpixel_scale;
fg_ptr = (const value_type*)base_type::source().next_x();
}
if(--y_count == 0) break;
y_hr += image_subpixel_scale;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg[0] >>= image_filter_shift;
fg[1] >>= image_filter_shift;
fg[2] >>= image_filter_shift;
fg[3] >>= image_filter_shift;
if(fg[0] < 0) fg[0] = 0;
if(fg[1] < 0) fg[1] = 0;
if(fg[2] < 0) fg[2] = 0;
if(fg[3] < 0) fg[3] = 0;
if(fg[order_type::A] > base_mask) fg[order_type::A] = base_mask;
if(fg[order_type::R] > fg[order_type::A]) fg[order_type::R] = fg[order_type::A];
if(fg[order_type::G] > fg[order_type::A]) fg[order_type::G] = fg[order_type::A];
if(fg[order_type::B] > fg[order_type::A]) fg[order_type::B] = fg[order_type::A];
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = (value_type)fg[order_type::A];
++span;
++base_type::interpolator();
} while(--len);
}
};
//========================================span_image_resample_rgba_affine
template<class Source>
class span_image_resample_rgba_affine :
public span_image_resample_affine<Source>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef span_image_resample_affine<source_type> base_type;
typedef typename base_type::interpolator_type interpolator_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::long_type long_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask,
downscale_shift = image_filter_shift
};
//--------------------------------------------------------------------
span_image_resample_rgba_affine() {}
span_image_resample_rgba_affine(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
long_type fg[4];
int diameter = base_type::filter().diameter();
int filter_scale = diameter << image_subpixel_shift;
int radius_x = (diameter * base_type::m_rx) >> 1;
int radius_y = (diameter * base_type::m_ry) >> 1;
int len_x_lr =
(diameter * base_type::m_rx + image_subpixel_mask) >>
image_subpixel_shift;
const int16* weight_array = base_type::filter().weight_array();
do
{
base_type::interpolator().coordinates(&x, &y);
x += base_type::filter_dx_int() - radius_x;
y += base_type::filter_dy_int() - radius_y;
fg[0] = fg[1] = fg[2] = fg[3] = image_filter_scale / 2;
int y_lr = y >> image_subpixel_shift;
int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) *
base_type::m_ry_inv) >>
image_subpixel_shift;
int total_weight = 0;
int total_weight_alpha = 0;
int x_lr = x >> image_subpixel_shift;
int x_hr = ((image_subpixel_mask - (x & image_subpixel_mask)) *
base_type::m_rx_inv) >>
image_subpixel_shift;
int x_hr2 = x_hr;
const value_type* fg_ptr =
(const value_type*)base_type::source().span(x_lr, y_lr, len_x_lr);
for(;;)
{
int weight_y = weight_array[y_hr];
x_hr = x_hr2;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
downscale_shift;
int weight_alpha = (weight_y * weight_array[x_hr] / base_mask * fg_ptr[3] +
image_filter_scale / 2) >>
downscale_shift;
fg[0] += *fg_ptr++ * weight_alpha;
fg[1] += *fg_ptr++ * weight_alpha;
fg[2] += *fg_ptr++ * weight_alpha;
fg[3] += *fg_ptr++ * weight;
total_weight += weight;
total_weight_alpha += weight_alpha;
x_hr += base_type::m_rx_inv;
if(x_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_x();
}
y_hr += base_type::m_ry_inv;
if(y_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_y();
}
if (total_weight && total_weight_alpha)
{
fg[3] /= total_weight;
fg[0] = fg[0] / total_weight_alpha * fg[3] / base_mask;
fg[1] = fg[1] / total_weight_alpha * fg[3] / base_mask;
fg[2] = fg[2] / total_weight_alpha * fg[3] / base_mask;
if(fg[0] < 0) fg[0] = 0;
if(fg[1] < 0) fg[1] = 0;
if(fg[2] < 0) fg[2] = 0;
if(fg[3] < 0) fg[3] = 0;
}
else
{
fg[0] = 0;
fg[1] = 0;
fg[2] = 0;
fg[3] = 0;
}
if(fg[order_type::A] > base_mask) fg[order_type::A] = base_mask;
if(fg[order_type::R] > fg[order_type::A]) fg[order_type::R] = fg[order_type::A];
if(fg[order_type::G] > fg[order_type::A]) fg[order_type::G] = fg[order_type::A];
if(fg[order_type::B] > fg[order_type::A]) fg[order_type::B] = fg[order_type::A];
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = (value_type)fg[order_type::A];
++span;
++base_type::interpolator();
} while(--len);
}
};
//==============================================span_image_resample_rgba
template<class Source, class Interpolator>
class span_image_resample_rgba :
public span_image_resample<Source, Interpolator>
{
public:
typedef Source source_type;
typedef typename source_type::color_type color_type;
typedef typename source_type::order_type order_type;
typedef Interpolator interpolator_type;
typedef span_image_resample<source_type, interpolator_type> base_type;
typedef typename color_type::value_type value_type;
typedef typename color_type::long_type long_type;
enum base_scale_e
{
base_shift = color_type::base_shift,
base_mask = color_type::base_mask,
downscale_shift = image_filter_shift
};
//--------------------------------------------------------------------
span_image_resample_rgba() {}
span_image_resample_rgba(source_type& src,
interpolator_type& inter,
const image_filter_lut& filter) :
base_type(src, inter, filter)
{}
//--------------------------------------------------------------------
void generate(color_type* span, int x, int y, unsigned len)
{
base_type::interpolator().begin(x + base_type::filter_dx_dbl(),
y + base_type::filter_dy_dbl(), len);
long_type fg[4];
int diameter = base_type::filter().diameter();
int filter_scale = diameter << image_subpixel_shift;
const int16* weight_array = base_type::filter().weight_array();
do
{
int rx;
int ry;
int rx_inv = image_subpixel_scale;
int ry_inv = image_subpixel_scale;
base_type::interpolator().coordinates(&x, &y);
base_type::interpolator().local_scale(&rx, &ry);
base_type::adjust_scale(&rx, &ry);
rx_inv = image_subpixel_scale * image_subpixel_scale / rx;
ry_inv = image_subpixel_scale * image_subpixel_scale / ry;
int radius_x = (diameter * rx) >> 1;
int radius_y = (diameter * ry) >> 1;
int len_x_lr =
(diameter * rx + image_subpixel_mask) >>
image_subpixel_shift;
x += base_type::filter_dx_int() - radius_x;
y += base_type::filter_dy_int() - radius_y;
fg[0] = fg[1] = fg[2] = fg[3] = image_filter_scale / 2;
int y_lr = y >> image_subpixel_shift;
int y_hr = ((image_subpixel_mask - (y & image_subpixel_mask)) *
ry_inv) >>
image_subpixel_shift;
int total_weight = 0;
int x_lr = x >> image_subpixel_shift;
int x_hr = ((image_subpixel_mask - (x & image_subpixel_mask)) *
rx_inv) >>
image_subpixel_shift;
int x_hr2 = x_hr;
const value_type* fg_ptr =
(const value_type*)base_type::source().span(x_lr, y_lr, len_x_lr);
for(;;)
{
int weight_y = weight_array[y_hr];
x_hr = x_hr2;
for(;;)
{
int weight = (weight_y * weight_array[x_hr] +
image_filter_scale / 2) >>
downscale_shift;
fg[0] += *fg_ptr++ * weight;
fg[1] += *fg_ptr++ * weight;
fg[2] += *fg_ptr++ * weight;
fg[3] += *fg_ptr++ * weight;
total_weight += weight;
x_hr += rx_inv;
if(x_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_x();
}
y_hr += ry_inv;
if(y_hr >= filter_scale) break;
fg_ptr = (const value_type*)base_type::source().next_y();
}
fg[0] /= total_weight;
fg[1] /= total_weight;
fg[2] /= total_weight;
fg[3] /= total_weight;
if(fg[0] < 0) fg[0] = 0;
if(fg[1] < 0) fg[1] = 0;
if(fg[2] < 0) fg[2] = 0;
if(fg[3] < 0) fg[3] = 0;
if(fg[order_type::A] > base_mask) fg[order_type::A] = base_mask;
if(fg[order_type::R] > fg[order_type::R]) fg[order_type::R] = fg[order_type::R];
if(fg[order_type::G] > fg[order_type::G]) fg[order_type::G] = fg[order_type::G];
if(fg[order_type::B] > fg[order_type::B]) fg[order_type::B] = fg[order_type::B];
span->r = (value_type)fg[order_type::R];
span->g = (value_type)fg[order_type::G];
span->b = (value_type)fg[order_type::B];
span->a = (value_type)fg[order_type::A];
++span;
++base_type::interpolator();
} while(--len);
}
};
}
#endif

View file

@ -0,0 +1,77 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_INTERPOLATOR_ADAPTOR_INCLUDED
#define AGG_SPAN_INTERPOLATOR_ADAPTOR_INCLUDED
#include "agg_basics.h"
namespace agg
{
//===============================================span_interpolator_adaptor
template<class Interpolator, class Distortion>
class span_interpolator_adaptor : public Interpolator
{
public:
typedef Interpolator base_type;
typedef typename base_type::trans_type trans_type;
typedef Distortion distortion_type;
//--------------------------------------------------------------------
span_interpolator_adaptor() {}
span_interpolator_adaptor(const trans_type& trans,
const distortion_type& dist) :
base_type(trans),
m_distortion(&dist)
{
}
//--------------------------------------------------------------------
span_interpolator_adaptor(const trans_type& trans,
const distortion_type& dist,
double x, double y, unsigned len) :
base_type(trans, x, y, len),
m_distortion(&dist)
{
}
//--------------------------------------------------------------------
const distortion_type& distortion() const
{
return *m_distortion;
}
//--------------------------------------------------------------------
void distortion(const distortion_type& dist)
{
m_distortion = dist;
}
//--------------------------------------------------------------------
void coordinates(int* x, int* y) const
{
base_type::coordinates(x, y);
m_distortion->calculate(x, y);
}
private:
//--------------------------------------------------------------------
const distortion_type* m_distortion;
};
}
#endif

View file

@ -0,0 +1,232 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_INTERPOLATOR_LINEAR_INCLUDED
#define AGG_SPAN_INTERPOLATOR_LINEAR_INCLUDED
#include "agg_basics.h"
#include "agg_dda_line.h"
#include "agg_trans_affine.h"
namespace agg
{
//================================================span_interpolator_linear
template<class Transformer = trans_affine, unsigned SubpixelShift = 8>
class span_interpolator_linear
{
public:
typedef Transformer trans_type;
enum subpixel_scale_e
{
subpixel_shift = SubpixelShift,
subpixel_scale = 1 << subpixel_shift
};
//--------------------------------------------------------------------
span_interpolator_linear() {}
span_interpolator_linear(const trans_type& trans) : m_trans(&trans) {}
span_interpolator_linear(const trans_type& trans,
double x, double y, unsigned len) :
m_trans(&trans)
{
begin(x, y, len);
}
//----------------------------------------------------------------
const trans_type& transformer() const { return *m_trans; }
void transformer(const trans_type& trans) { m_trans = &trans; }
//----------------------------------------------------------------
void begin(double x, double y, unsigned len)
{
double tx;
double ty;
tx = x;
ty = y;
m_trans->transform(&tx, &ty);
int x1 = iround(tx * subpixel_scale);
int y1 = iround(ty * subpixel_scale);
tx = x + len;
ty = y;
m_trans->transform(&tx, &ty);
int x2 = iround(tx * subpixel_scale);
int y2 = iround(ty * subpixel_scale);
m_li_x = dda2_line_interpolator(x1, x2, len);
m_li_y = dda2_line_interpolator(y1, y2, len);
}
//----------------------------------------------------------------
void resynchronize(double xe, double ye, unsigned len)
{
m_trans->transform(&xe, &ye);
m_li_x = dda2_line_interpolator(m_li_x.y(), iround(xe * subpixel_scale), len);
m_li_y = dda2_line_interpolator(m_li_y.y(), iround(ye * subpixel_scale), len);
}
//----------------------------------------------------------------
void operator++()
{
++m_li_x;
++m_li_y;
}
//----------------------------------------------------------------
void coordinates(int* x, int* y) const
{
*x = m_li_x.y();
*y = m_li_y.y();
}
private:
const trans_type* m_trans;
dda2_line_interpolator m_li_x;
dda2_line_interpolator m_li_y;
};
//=====================================span_interpolator_linear_subdiv
template<class Transformer = trans_affine, unsigned SubpixelShift = 8>
class span_interpolator_linear_subdiv
{
public:
typedef Transformer trans_type;
enum subpixel_scale_e
{
subpixel_shift = SubpixelShift,
subpixel_scale = 1 << subpixel_shift
};
//----------------------------------------------------------------
span_interpolator_linear_subdiv() :
m_subdiv_shift(4),
m_subdiv_size(1 << m_subdiv_shift),
m_subdiv_mask(m_subdiv_size - 1) {}
span_interpolator_linear_subdiv(const trans_type& trans,
unsigned subdiv_shift = 4) :
m_subdiv_shift(subdiv_shift),
m_subdiv_size(1 << m_subdiv_shift),
m_subdiv_mask(m_subdiv_size - 1),
m_trans(&trans) {}
span_interpolator_linear_subdiv(const trans_type& trans,
double x, double y, unsigned len,
unsigned subdiv_shift = 4) :
m_subdiv_shift(subdiv_shift),
m_subdiv_size(1 << m_subdiv_shift),
m_subdiv_mask(m_subdiv_size - 1),
m_trans(&trans)
{
begin(x, y, len);
}
//----------------------------------------------------------------
const trans_type& transformer() const { return *m_trans; }
void transformer(const trans_type& trans) { m_trans = &trans; }
//----------------------------------------------------------------
unsigned subdiv_shift() const { return m_subdiv_shift; }
void subdiv_shift(unsigned shift)
{
m_subdiv_shift = shift;
m_subdiv_size = 1 << m_subdiv_shift;
m_subdiv_mask = m_subdiv_size - 1;
}
//----------------------------------------------------------------
void begin(double x, double y, unsigned len)
{
double tx;
double ty;
m_pos = 1;
m_src_x = iround(x * subpixel_scale) + subpixel_scale;
m_src_y = y;
m_len = len;
if(len > m_subdiv_size) len = m_subdiv_size;
tx = x;
ty = y;
m_trans->transform(&tx, &ty);
int x1 = iround(tx * subpixel_scale);
int y1 = iround(ty * subpixel_scale);
tx = x + len;
ty = y;
m_trans->transform(&tx, &ty);
m_li_x = dda2_line_interpolator(x1, iround(tx * subpixel_scale), len);
m_li_y = dda2_line_interpolator(y1, iround(ty * subpixel_scale), len);
}
//----------------------------------------------------------------
void operator++()
{
++m_li_x;
++m_li_y;
if(m_pos >= m_subdiv_size)
{
unsigned len = m_len;
if(len > m_subdiv_size) len = m_subdiv_size;
double tx = double(m_src_x) / double(subpixel_scale) + len;
double ty = m_src_y;
m_trans->transform(&tx, &ty);
m_li_x = dda2_line_interpolator(m_li_x.y(), iround(tx * subpixel_scale), len);
m_li_y = dda2_line_interpolator(m_li_y.y(), iround(ty * subpixel_scale), len);
m_pos = 0;
}
m_src_x += subpixel_scale;
++m_pos;
--m_len;
}
//----------------------------------------------------------------
void coordinates(int* x, int* y) const
{
*x = m_li_x.y();
*y = m_li_y.y();
}
private:
unsigned m_subdiv_shift;
unsigned m_subdiv_size;
unsigned m_subdiv_mask;
const trans_type* m_trans;
dda2_line_interpolator m_li_x;
dda2_line_interpolator m_li_y;
int m_src_x;
double m_src_y;
unsigned m_pos;
unsigned m_len;
};
}
#endif

View file

@ -0,0 +1,462 @@
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_SPAN_INTERPOLATOR_PERSP_INCLUDED
#define AGG_SPAN_INTERPOLATOR_PERSP_INCLUDED
#include "agg_trans_perspective.h"
#include "agg_dda_line.h"
namespace agg
{
//===========================================span_interpolator_persp_exact
template<unsigned SubpixelShift = 8>
class span_interpolator_persp_exact
{
public:
typedef trans_perspective trans_type;
typedef trans_perspective::iterator_x iterator_type;
enum subpixel_scale_e
{
subpixel_shift = SubpixelShift,
subpixel_scale = 1 << subpixel_shift
};
//--------------------------------------------------------------------
span_interpolator_persp_exact() {}
//--------------------------------------------------------------------
// Arbitrary quadrangle transformations
span_interpolator_persp_exact(const double* src, const double* dst)
{
quad_to_quad(src, dst);
}
//--------------------------------------------------------------------
// Direct transformations
span_interpolator_persp_exact(double x1, double y1,
double x2, double y2,
const double* quad)
{
rect_to_quad(x1, y1, x2, y2, quad);
}
//--------------------------------------------------------------------
// Reverse transformations
span_interpolator_persp_exact(const double* quad,
double x1, double y1,
double x2, double y2)
{
quad_to_rect(quad, x1, y1, x2, y2);
}
//--------------------------------------------------------------------
// Set the transformations using two arbitrary quadrangles.
void quad_to_quad(const double* src, const double* dst)
{
m_trans_dir.quad_to_quad(src, dst);
m_trans_inv.quad_to_quad(dst, src);
}
//--------------------------------------------------------------------
// Set the direct transformations, i.e., rectangle -> quadrangle
void rect_to_quad(double x1, double y1, double x2, double y2,
const double* quad)
{
double src[8];
src[0] = src[6] = x1;
src[2] = src[4] = x2;
src[1] = src[3] = y1;
src[5] = src[7] = y2;
quad_to_quad(src, quad);
}
//--------------------------------------------------------------------
// Set the reverse transformations, i.e., quadrangle -> rectangle
void quad_to_rect(const double* quad,
double x1, double y1, double x2, double y2)
{
double dst[8];
dst[0] = dst[6] = x1;
dst[2] = dst[4] = x2;
dst[1] = dst[3] = y1;
dst[5] = dst[7] = y2;
quad_to_quad(quad, dst);
}
//--------------------------------------------------------------------
// Check if the equations were solved successfully
bool is_valid() const { return m_trans_dir.is_valid(); }
//----------------------------------------------------------------
void begin(double x, double y, unsigned len)
{
m_iterator = m_trans_dir.begin(x, y, 1.0);
double xt = m_iterator.x;
double yt = m_iterator.y;
double dx;
double dy;
const double delta = 1/double(subpixel_scale);
dx = xt + delta;
dy = yt;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sx1 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
dx = xt;
dy = yt + delta;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sy1 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
x += len;
xt = x;
yt = y;
m_trans_dir.transform(&xt, &yt);
dx = xt + delta;
dy = yt;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sx2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
dx = xt;
dy = yt + delta;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sy2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
m_scale_x = dda2_line_interpolator(sx1, sx2, len);
m_scale_y = dda2_line_interpolator(sy1, sy2, len);
}
//----------------------------------------------------------------
void resynchronize(double xe, double ye, unsigned len)
{
// Assume x1,y1 are equal to the ones at the previous end point
int sx1 = m_scale_x.y();
int sy1 = m_scale_y.y();
// Calculate transformed coordinates at x2,y2
double xt = xe;
double yt = ye;
m_trans_dir.transform(&xt, &yt);
const double delta = 1/double(subpixel_scale);
double dx;
double dy;
// Calculate scale by X at x2,y2
dx = xt + delta;
dy = yt;
m_trans_inv.transform(&dx, &dy);
dx -= xe;
dy -= ye;
int sx2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Calculate scale by Y at x2,y2
dx = xt;
dy = yt + delta;
m_trans_inv.transform(&dx, &dy);
dx -= xe;
dy -= ye;
int sy2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Initialize the interpolators
m_scale_x = dda2_line_interpolator(sx1, sx2, len);
m_scale_y = dda2_line_interpolator(sy1, sy2, len);
}
//----------------------------------------------------------------
void operator++()
{
++m_iterator;
++m_scale_x;
++m_scale_y;
}
//----------------------------------------------------------------
void coordinates(int* x, int* y) const
{
*x = iround(m_iterator.x * subpixel_scale);
*y = iround(m_iterator.y * subpixel_scale);
}
//----------------------------------------------------------------
void local_scale(int* x, int* y)
{
*x = m_scale_x.y();
*y = m_scale_y.y();
}
//----------------------------------------------------------------
void transform(double* x, double* y) const
{
m_trans_dir.transform(x, y);
}
private:
trans_type m_trans_dir;
trans_type m_trans_inv;
iterator_type m_iterator;
dda2_line_interpolator m_scale_x;
dda2_line_interpolator m_scale_y;
};
//============================================span_interpolator_persp_lerp
template<unsigned SubpixelShift = 8>
class span_interpolator_persp_lerp
{
public:
typedef trans_perspective trans_type;
enum subpixel_scale_e
{
subpixel_shift = SubpixelShift,
subpixel_scale = 1 << subpixel_shift
};
//--------------------------------------------------------------------
span_interpolator_persp_lerp() {}
//--------------------------------------------------------------------
// Arbitrary quadrangle transformations
span_interpolator_persp_lerp(const double* src, const double* dst)
{
quad_to_quad(src, dst);
}
//--------------------------------------------------------------------
// Direct transformations
span_interpolator_persp_lerp(double x1, double y1,
double x2, double y2,
const double* quad)
{
rect_to_quad(x1, y1, x2, y2, quad);
}
//--------------------------------------------------------------------
// Reverse transformations
span_interpolator_persp_lerp(const double* quad,
double x1, double y1,
double x2, double y2)
{
quad_to_rect(quad, x1, y1, x2, y2);
}
//--------------------------------------------------------------------
// Set the transformations using two arbitrary quadrangles.
void quad_to_quad(const double* src, const double* dst)
{
m_trans_dir.quad_to_quad(src, dst);
m_trans_inv.quad_to_quad(dst, src);
}
//--------------------------------------------------------------------
// Set the direct transformations, i.e., rectangle -> quadrangle
void rect_to_quad(double x1, double y1, double x2, double y2,
const double* quad)
{
double src[8];
src[0] = src[6] = x1;
src[2] = src[4] = x2;
src[1] = src[3] = y1;
src[5] = src[7] = y2;
quad_to_quad(src, quad);
}
//--------------------------------------------------------------------
// Set the reverse transformations, i.e., quadrangle -> rectangle
void quad_to_rect(const double* quad,
double x1, double y1, double x2, double y2)
{
double dst[8];
dst[0] = dst[6] = x1;
dst[2] = dst[4] = x2;
dst[1] = dst[3] = y1;
dst[5] = dst[7] = y2;
quad_to_quad(quad, dst);
}
//--------------------------------------------------------------------
// Check if the equations were solved successfully
bool is_valid() const { return m_trans_dir.is_valid(); }
//----------------------------------------------------------------
void begin(double x, double y, unsigned len)
{
// Calculate transformed coordinates at x1,y1
double xt = x;
double yt = y;
m_trans_dir.transform(&xt, &yt);
int x1 = iround(xt * subpixel_scale);
int y1 = iround(yt * subpixel_scale);
double dx;
double dy;
const double delta = 1/double(subpixel_scale);
// Calculate scale by X at x1,y1
dx = xt + delta;
dy = yt;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sx1 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Calculate scale by Y at x1,y1
dx = xt;
dy = yt + delta;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sy1 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Calculate transformed coordinates at x2,y2
x += len;
xt = x;
yt = y;
m_trans_dir.transform(&xt, &yt);
int x2 = iround(xt * subpixel_scale);
int y2 = iround(yt * subpixel_scale);
// Calculate scale by X at x2,y2
dx = xt + delta;
dy = yt;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sx2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Calculate scale by Y at x2,y2
dx = xt;
dy = yt + delta;
m_trans_inv.transform(&dx, &dy);
dx -= x;
dy -= y;
int sy2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Initialize the interpolators
m_coord_x = dda2_line_interpolator(x1, x2, len);
m_coord_y = dda2_line_interpolator(y1, y2, len);
m_scale_x = dda2_line_interpolator(sx1, sx2, len);
m_scale_y = dda2_line_interpolator(sy1, sy2, len);
}
//----------------------------------------------------------------
void resynchronize(double xe, double ye, unsigned len)
{
// Assume x1,y1 are equal to the ones at the previous end point
int x1 = m_coord_x.y();
int y1 = m_coord_y.y();
int sx1 = m_scale_x.y();
int sy1 = m_scale_y.y();
// Calculate transformed coordinates at x2,y2
double xt = xe;
double yt = ye;
m_trans_dir.transform(&xt, &yt);
int x2 = iround(xt * subpixel_scale);
int y2 = iround(yt * subpixel_scale);
const double delta = 1/double(subpixel_scale);
double dx;
double dy;
// Calculate scale by X at x2,y2
dx = xt + delta;
dy = yt;
m_trans_inv.transform(&dx, &dy);
dx -= xe;
dy -= ye;
int sx2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Calculate scale by Y at x2,y2
dx = xt;
dy = yt + delta;
m_trans_inv.transform(&dx, &dy);
dx -= xe;
dy -= ye;
int sy2 = uround(subpixel_scale/sqrt(dx*dx + dy*dy)) >> subpixel_shift;
// Initialize the interpolators
m_coord_x = dda2_line_interpolator(x1, x2, len);
m_coord_y = dda2_line_interpolator(y1, y2, len);
m_scale_x = dda2_line_interpolator(sx1, sx2, len);
m_scale_y = dda2_line_interpolator(sy1, sy2, len);
}
//----------------------------------------------------------------
void operator++()
{
++m_coord_x;
++m_coord_y;
++m_scale_x;
++m_scale_y;
}
//----------------------------------------------------------------
void coordinates(int* x, int* y) const
{
*x = m_coord_x.y();
*y = m_coord_y.y();
}
//----------------------------------------------------------------
void local_scale(int* x, int* y)
{
*x = m_scale_x.y();
*y = m_scale_y.y();
}
//----------------------------------------------------------------
void transform(double* x, double* y) const
{
m_trans_dir.transform(x, y);
}
private:
trans_type m_trans_dir;
trans_type m_trans_inv;
dda2_line_interpolator m_coord_x;
dda2_line_interpolator m_coord_y;
dda2_line_interpolator m_scale_x;
dda2_line_interpolator m_scale_y;
};
}
#endif

Some files were not shown because too many files have changed in this diff Show more