Disabled timer print-outs by default. Use -DMAPNIK_DEBUG to enable.

This commit is contained in:
Artem Pavlenko 2007-02-06 15:53:32 +00:00
parent 1b84f2d454
commit 32ad956e2e

View file

@ -41,197 +41,199 @@
namespace mapnik
{
template <typename Processor>
class feature_style_processor
{
struct symbol_dispatch : public boost::static_visitor<>
{
symbol_dispatch (Processor & output,
Feature const& f,
proj_transform const& prj_trans)
: output_(output),
f_(f),
prj_trans_(prj_trans) {}
template <typename Processor>
class feature_style_processor
{
struct symbol_dispatch : public boost::static_visitor<>
{
symbol_dispatch (Processor & output,
Feature const& f,
proj_transform const& prj_trans)
: output_(output),
f_(f),
prj_trans_(prj_trans) {}
template <typename T>
void operator () (T const& sym) const
{
output_.process(sym,f_,prj_trans_);
}
template <typename T>
void operator () (T const& sym) const
{
output_.process(sym,f_,prj_trans_);
}
Processor & output_;
Feature const& f_;
proj_transform const& prj_trans_;
};
public:
feature_style_processor(Map const& m)
Processor & output_;
Feature const& f_;
proj_transform const& prj_trans_;
};
public:
feature_style_processor(Map const& m)
: m_(m) {}
void apply()
{
boost::progress_timer t(std::clog);
void apply()
{
#ifdef MAPNIK_DEBUG
boost::progress_timer t(std::clog);
#endif
Processor & p = static_cast<Processor&>(*this);
p.start_map_processing(m_);
try
{
projection proj(m_.srs()); // map projection
double scale_denom = scale_denominator(m_,proj.is_geographic());
projection proj(m_.srs()); // map projection
double scale_denom = scale_denominator(m_,proj.is_geographic());
#ifdef MAPNIK_DEBUG
std::clog << "scale denominator = " << scale_denom << "\n";
std::clog << "scale denominator = " << scale_denom << "\n";
#endif
std::vector<Layer>::const_iterator itr = m_.layers().begin();
std::vector<Layer>::const_iterator end = m_.layers().end();
std::vector<Layer>::const_iterator itr = m_.layers().begin();
std::vector<Layer>::const_iterator end = m_.layers().end();
while (itr != end)
{
if (itr->isVisible(scale_denom))
{
apply_to_layer(*itr, p, proj, scale_denom);
}
++itr;
}
while (itr != end)
{
if (itr->isVisible(scale_denom))
{
apply_to_layer(*itr, p, proj, scale_denom);
}
++itr;
}
}
catch (proj_init_error& ex)
{
std::clog << ex.what() << "\n";
std::clog << ex.what() << "\n";
}
p.end_map_processing(m_);
}
private:
void apply_to_layer(Layer const& lay, Processor & p,
projection const& proj0,double scale_denom)
{
}
private:
void apply_to_layer(Layer const& lay, Processor & p,
projection const& proj0,double scale_denom)
{
p.start_layer_processing(lay);
boost::shared_ptr<datasource> ds=lay.datasource();
if (ds)
{
Envelope<double> const& ext=m_.getCurrentExtent();
Envelope<double> const& ext=m_.getCurrentExtent();
projection proj1(lay.srs());
proj_transform prj_trans(proj0,proj1);
projection proj1(lay.srs());
proj_transform prj_trans(proj0,proj1);
double x0 = ext.minx();
double y0 = ext.miny();
double z0 = 0.0;
double x1 = ext.maxx();
double y1 = ext.maxy();
double z1 = 0.0;
prj_trans.forward(x0,y0,z0);
prj_trans.forward(x1,y1,z1);
Envelope<double> bbox(x0,y0,x1,y1);
double x0 = ext.minx();
double y0 = ext.miny();
double z0 = 0.0;
double x1 = ext.maxx();
double y1 = ext.maxy();
double z1 = 0.0;
prj_trans.forward(x0,y0,z0);
prj_trans.forward(x1,y1,z1);
Envelope<double> bbox(x0,y0,x1,y1);
#ifdef MAPNIK_DEBUG
std::clog << bbox << "\n";
std::clog << bbox << "\n";
#endif
std::vector<std::string> const& style_names = lay.styles();
std::vector<std::string>::const_iterator stylesIter = style_names.begin();
std::vector<std::string>::const_iterator stylesEnd = style_names.end();
std::vector<std::string> const& style_names = lay.styles();
std::vector<std::string>::const_iterator stylesIter = style_names.begin();
std::vector<std::string>::const_iterator stylesEnd = style_names.end();
while (stylesIter != stylesEnd)
{
std::set<std::string> names;
attribute_collector<Feature> collector(names);
std::vector<rule_type*> if_rules;
std::vector<rule_type*> else_rules;
while (stylesIter != stylesEnd)
{
std::set<std::string> names;
attribute_collector<Feature> collector(names);
std::vector<rule_type*> if_rules;
std::vector<rule_type*> else_rules;
bool active_rules=false;
bool active_rules=false;
feature_type_style const& style=m_.find_style(*stylesIter++);
feature_type_style const& style=m_.find_style(*stylesIter++);
query q(bbox); //BBOX query
query q(bbox); //BBOX query
const std::vector<rule_type>& rules=style.get_rules();
std::vector<rule_type>::const_iterator ruleIter=rules.begin();
std::vector<rule_type>::const_iterator ruleEnd=rules.end();
const std::vector<rule_type>& rules=style.get_rules();
std::vector<rule_type>::const_iterator ruleIter=rules.begin();
std::vector<rule_type>::const_iterator ruleEnd=rules.end();
while (ruleIter!=ruleEnd)
{
if (ruleIter->active(scale_denom))
while (ruleIter!=ruleEnd)
{
if (ruleIter->active(scale_denom))
{
active_rules=true;
ruleIter->accept(collector);
if (ruleIter->has_else_filter())
{
active_rules=true;
ruleIter->accept(collector);
if (ruleIter->has_else_filter())
{
else_rules.push_back(const_cast<rule_type*>(&(*ruleIter)));
}
else
{
if_rules.push_back(const_cast<rule_type*>(&(*ruleIter)));
}
else_rules.push_back(const_cast<rule_type*>(&(*ruleIter)));
}
++ruleIter;
}
std::set<std::string>::const_iterator namesIter=names.begin();
std::set<std::string>::const_iterator namesEnd =names.end();
else
{
if_rules.push_back(const_cast<rule_type*>(&(*ruleIter)));
}
}
++ruleIter;
}
std::set<std::string>::const_iterator namesIter=names.begin();
std::set<std::string>::const_iterator namesEnd =names.end();
// push all property names
while (namesIter!=namesEnd)
{
q.add_property_name(*namesIter);
++namesIter;
}
if (active_rules)
{
featureset_ptr fs=ds->features(q);
if (fs)
{
feature_ptr feature;
while ((feature = fs->next()))
{
bool do_else=true;
std::vector<rule_type*>::const_iterator itr=if_rules.begin();
std::vector<rule_type*>::const_iterator end=if_rules.end();
while (itr != end)
{
filter_ptr const& filter=(*itr)->get_filter();
if (filter->pass(*feature))
{
do_else=false;
const symbolizers& symbols = (*itr)->get_symbolizers();
symbolizers::const_iterator symIter=symbols.begin();
symbolizers::const_iterator symEnd =symbols.end();
while (symIter != symEnd)
{
boost::apply_visitor
(symbol_dispatch(p,*feature,prj_trans),*symIter++);
}
}
++itr;
}
if (do_else)
{
//else filter
std::vector<rule_type*>::const_iterator itr=
else_rules.begin();
std::vector<rule_type*>::const_iterator end=
else_rules.end();
while (itr != end)
{
const symbolizers& symbols = (*itr)->get_symbolizers();
symbolizers::const_iterator symIter= symbols.begin();
symbolizers::const_iterator symEnd = symbols.end();
// push all property names
while (namesIter!=namesEnd)
{
q.add_property_name(*namesIter);
++namesIter;
}
if (active_rules)
{
featureset_ptr fs=ds->features(q);
if (fs)
{
feature_ptr feature;
while ((feature = fs->next()))
{
bool do_else=true;
std::vector<rule_type*>::const_iterator itr=if_rules.begin();
std::vector<rule_type*>::const_iterator end=if_rules.end();
while (itr != end)
{
filter_ptr const& filter=(*itr)->get_filter();
if (filter->pass(*feature))
{
do_else=false;
const symbolizers& symbols = (*itr)->get_symbolizers();
symbolizers::const_iterator symIter=symbols.begin();
symbolizers::const_iterator symEnd =symbols.end();
while (symIter != symEnd)
{
boost::apply_visitor
(symbol_dispatch(p,*feature,prj_trans),*symIter++);
}
}
++itr;
}
if (do_else)
{
//else filter
std::vector<rule_type*>::const_iterator itr=
else_rules.begin();
std::vector<rule_type*>::const_iterator end=
else_rules.end();
while (itr != end)
{
const symbolizers& symbols = (*itr)->get_symbolizers();
symbolizers::const_iterator symIter= symbols.begin();
symbolizers::const_iterator symEnd = symbols.end();
while (symIter!=symEnd)
{
boost::apply_visitor
(symbol_dispatch(p,*feature,prj_trans),
*symIter++);
}
++itr;
}
}
}
while (symIter!=symEnd)
{
boost::apply_visitor
(symbol_dispatch(p,*feature,prj_trans),
*symIter++);
}
++itr;
}
}
}
}
}
}
}
}
}
p.end_layer_processing(lay);
}
Map const& m_;
};
}
Map const& m_;
};
}
#endif //FEATURE_STYLE_PROCESSOR_HPP