rollback 34c3128b0c, move 'scaling' to proper enum, and move image_scaling functions to new cpp/hpp

This commit is contained in:
Dane Springmeyer 2012-07-06 16:45:58 -07:00
parent b365923772
commit 3823890b40
14 changed files with 686 additions and 555 deletions

View file

@ -37,6 +37,7 @@ void export_palette();
void export_image();
void export_image_view();
void export_gamma_method();
void export_scaling_method();
void export_grid();
void export_grid_view();
void export_map();
@ -362,6 +363,7 @@ BOOST_PYTHON_MODULE(_mapnik)
export_image();
export_image_view();
export_gamma_method();
export_scaling_method();
export_grid();
export_grid_view();
export_expression();

View file

@ -25,6 +25,7 @@
// mapnik
#include <mapnik/raster_symbolizer.hpp>
#include <mapnik/image_scaling.hpp>
using mapnik::raster_symbolizer;
@ -39,13 +40,13 @@ struct raster_symbolizer_pickle_suite : boost::python::pickle_suite
*/
static boost::python::tuple
getstate(const raster_symbolizer& r)
getstate(raster_symbolizer const& r)
{
return boost::python::make_tuple(r.get_mode(),r.get_scaling(),r.get_opacity(),r.get_filter_factor(),r.get_mesh_size());
return boost::python::make_tuple(r.get_mode(),r.get_scaling_method(),r.get_opacity(),r.get_filter_factor(),r.get_mesh_size());
}
static void
setstate (raster_symbolizer& r, boost::python::tuple state)
setstate (raster_symbolizer & r, boost::python::tuple state)
{
using namespace boost::python;
if (len(state) != 5)
@ -58,7 +59,7 @@ struct raster_symbolizer_pickle_suite : boost::python::pickle_suite
}
r.set_mode(extract<std::string>(state[0]));
r.set_scaling(extract<std::string>(state[1]));
r.set_scaling_method(extract<mapnik::scaling_method_e>(state[1]));
r.set_opacity(extract<float>(state[2]));
r.set_filter_factor(extract<float>(state[3]));
r.set_mesh_size(extract<unsigned>(state[4]));
@ -91,17 +92,15 @@ void export_raster_symbolizer()
)
.add_property("scaling",
make_function(&raster_symbolizer::get_scaling,return_value_policy<copy_const_reference>()),
&raster_symbolizer::set_scaling,
&raster_symbolizer::get_scaling_method,
&raster_symbolizer::set_scaling_method,
"Get/Set scaling algorithm.\n"
"Possible values are:\n"
"fast, bilinear, and bilinear8\n"
"\n"
"Usage:\n"
"\n"
">>> from mapnik import RasterSymbolizer\n"
">>> r = RasterSymbolizer()\n"
">>> r.scaling = 'bilinear8'\n"
">>> r.scaling = 'mapnik.scaling_method.GAUSSIAN'\n"
)
.add_property("opacity",

View file

@ -0,0 +1,83 @@
/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2011 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_IMAGE_SCALING_HPP
#define MAPNIK_IMAGE_SCALING_HPP
// stl
#include <string>
#include <boost/optional.hpp>
#include <mapnik/config.hpp>
namespace mapnik
{
enum scaling_method_e
{
SCALING_NEAR=0,
SCALING_BILINEAR,
SCALING_BICUBIC,
SCALING_SPLINE16,
SCALING_SPLINE36,
SCALING_HANNING,
SCALING_HAMMING,
SCALING_HERMITE,
SCALING_KAISER,
SCALING_QUADRIC,
SCALING_CATROM,
SCALING_GAUSSIAN,
SCALING_BESSEL,
SCALING_MITCHELL,
SCALING_SINC,
SCALING_LANCZOS,
SCALING_BLACKMAN,
SCALING_BILINEAR8
};
boost::optional<scaling_method_e> scaling_method_from_string(std::string const& name);
boost::optional<std::string> scaling_method_to_string(scaling_method_e scaling_method);
template <typename Image>
void scale_image_agg(Image & target,
Image const& source,
scaling_method_e scaling_method,
double scale_factor,
double x_off_f=0,
double y_off_f=0,
double filter_radius=2,
double ratio=1);
template <typename Image>
void scale_image_bilinear_old(Image & target,
Image const& source,
double x_off_f=0,
double y_off_f=0);
template <typename Image>
void scale_image_bilinear8(Image & target,
Image const& source,
double x_off_f=0,
double y_off_f=0);
}
#endif // MAPNIK_IMAGE_SCALING_HPP

View file

@ -61,7 +61,7 @@ public:
MAPNIK_DECL void save_to_cairo_file(mapnik::Map const& map,
std::string const& filename,
std::string const& type,
double scale_factor);
double scale_factor=1.0);
#endif
template <typename T>
@ -185,38 +185,7 @@ void add_border(T & image)
}
}
// IMAGE SCALING
enum scaling_method_e
{
SCALING_NEAR=0,
SCALING_BILINEAR=1,
SCALING_BICUBIC=2,
SCALING_SPLINE16=3,
SCALING_SPLINE36=4,
SCALING_HANNING=5,
SCALING_HAMMING=6,
SCALING_HERMITE=7,
SCALING_KAISER=8,
SCALING_QUADRIC=9,
SCALING_CATROM=10,
SCALING_GAUSSIAN=11,
SCALING_BESSEL=12,
SCALING_MITCHELL=13,
SCALING_SINC=14,
SCALING_LANCZOS=15,
SCALING_BLACKMAN=16
};
scaling_method_e get_scaling_method_by_name (std::string name);
template <typename Image>
void scale_image_agg (Image& target,const Image& source, scaling_method_e scaling_method, double scale_factor, double x_off_f=0, double y_off_f=0, double filter_radius=2, double ratio=1);
template <typename Image>
void scale_image_bilinear_old (Image& target,const Image& source, double x_off_f=0, double y_off_f=0);
template <typename Image>
void scale_image_bilinear8 (Image& target,const Image& source, double x_off_f=0, double y_off_f=0);
/////////// save_to_file ////////////////////////////////////////////////
class image_32;

View file

@ -30,6 +30,7 @@
#include <mapnik/symbolizer.hpp>
#include <mapnik/image_util.hpp>
#include <mapnik/image_compositing.hpp>
#include <mapnik/image_scaling.hpp>
namespace mapnik
{
@ -39,7 +40,7 @@ struct MAPNIK_DECL raster_symbolizer : public symbolizer_base
raster_symbolizer()
: symbolizer_base(),
mode_("normal"),
scaling_("fast"),
scaling_(SCALING_NEAR),
opacity_(1.0),
colorizer_(),
filter_factor_(-1),
@ -47,9 +48,9 @@ struct MAPNIK_DECL raster_symbolizer : public symbolizer_base
raster_symbolizer(const raster_symbolizer &rhs)
: symbolizer_base(rhs),
mode_(rhs.get_mode()),
scaling_(rhs.get_scaling()),
opacity_(rhs.get_opacity()),
mode_(rhs.mode_),
scaling_(rhs.scaling_),
opacity_(rhs.opacity_),
colorizer_(rhs.colorizer_),
filter_factor_(rhs.filter_factor_),
mesh_size_(rhs.mesh_size_) {}
@ -76,11 +77,11 @@ struct MAPNIK_DECL raster_symbolizer : public symbolizer_base
MAPNIK_LOG_ERROR(raster_symbolizer) << "could not convert mode into comp-op";
}
}
std::string const& get_scaling() const
scaling_method_e get_scaling_method() const
{
return scaling_;
}
void set_scaling(std::string const& scaling)
void set_scaling_method(scaling_method_e scaling)
{
scaling_ = scaling;
}
@ -115,13 +116,9 @@ struct MAPNIK_DECL raster_symbolizer : public symbolizer_base
// respect explicitly specified values
return filter_factor_;
} else {
// No filter factor specified, calculate a sensible default value
// based on the scaling algorithm being employed.
scaling_method_e scaling = get_scaling_method_by_name (scaling_);
double ff = 1.0;
switch(scaling)
switch(scaling_)
{
case SCALING_NEAR:
ff = 1.0;
@ -130,6 +127,7 @@ struct MAPNIK_DECL raster_symbolizer : public symbolizer_base
// TODO potentially some of these algorithms would use filter_factor >2.0.
// Contributions welcome from someone who knows more about them.
case SCALING_BILINEAR:
case SCALING_BILINEAR8:
case SCALING_BICUBIC:
case SCALING_SPLINE16:
case SCALING_SPLINE36:
@ -163,7 +161,7 @@ struct MAPNIK_DECL raster_symbolizer : public symbolizer_base
private:
std::string mode_;
std::string scaling_;
scaling_method_e scaling_;
float opacity_;
raster_colorizer_ptr colorizer_;
double filter_factor_;

View file

@ -26,16 +26,17 @@
// mapnik
#include <mapnik/raster.hpp>
#include <mapnik/proj_transform.hpp>
#include <mapnik/image_scaling.hpp>
namespace mapnik {
void reproject_raster(raster &target, raster const& source,
proj_transform const& prj_trans,
double offset_x, double offset_y,
unsigned mesh_size,
double filter_radius,
double scale_factor,
std::string scaling_method_name);
void reproject_and_scale_raster(raster & target,
raster const& source,
proj_transform const& prj_trans,
double offset_x, double offset_y,
unsigned mesh_size,
double filter_radius,
scaling_method_e scaling_method);
}

View file

@ -22,6 +22,7 @@
// mapnik
#include <mapnik/agg_renderer.hpp>
#include <mapnik/image_scaling.hpp>
#include <mapnik/image_compositing.hpp>
#include <mapnik/graphics.hpp>
#include <mapnik/agg_rasterizer.hpp>
@ -44,7 +45,7 @@ void agg_renderer<T>::process(raster_symbolizer const& sym,
mapnik::feature_impl & feature,
proj_transform const& prj_trans)
{
raster_ptr const& source=feature.get_raster();
raster_ptr const& source = feature.get_raster();
if (source)
{
// If there's a colorizer defined, use it to color the raster in-place
@ -54,28 +55,44 @@ void agg_renderer<T>::process(raster_symbolizer const& sym,
box2d<double> target_ext = box2d<double>(source->ext_);
prj_trans.backward(target_ext, PROJ_ENVELOPE_POINTS);
box2d<double> ext=t_.forward(target_ext);
int start_x = (int)ext.minx();
int start_y = (int)ext.miny();
int end_x = (int)ceil(ext.maxx());
int end_y = (int)ceil(ext.maxy());
box2d<double> ext = t_.forward(target_ext);
int start_x = static_cast<int>(ext.minx());
int start_y = static_cast<int>(ext.miny());
int end_x = static_cast<int>(ceil(ext.maxx()));
int end_y = static_cast<int>(ceil(ext.maxy()));
int raster_width = end_x - start_x;
int raster_height = end_y - start_y;
double err_offs_x = ext.minx() - start_x;
double err_offs_y = ext.miny() - start_y;
if (raster_width > 0 && raster_height > 0)
{
image_data_32 target_data(raster_width,raster_height);
raster target(target_ext, target_data);
reproject_raster(target, *source, prj_trans, err_offs_x, err_offs_y,
sym.get_mesh_size(),
sym.calculate_filter_factor(),
scale_factor_,
sym.get_scaling());
scaling_method_e scaling_method = sym.get_scaling_method();
double filter_radius = sym.calculate_filter_factor();
double offset_x = ext.minx() - start_x;
double offset_y = ext.miny() - start_y;
if (!prj_trans.equal())
{
reproject_and_scale_raster(target, *source, prj_trans,
offset_x, offset_y,
sym.get_mesh_size(),
filter_radius,
scaling_method);
}
else
{
if (scaling_method == SCALING_BILINEAR8){
scale_image_bilinear8<image_data_32>(target.data_,source->data_, offset_x, offset_y);
} else {
double scaling_ratio = ext.width() / source->data_.width();
scale_image_agg<image_data_32>(target.data_,
source->data_,
scaling_method,
scaling_ratio,
offset_x,
offset_y,
filter_radius);
}
}
composite(current_buffer_->data(), target.data_, sym.comp_op(), sym.get_opacity(), start_x, start_y, true);
}
}

View file

@ -103,6 +103,7 @@ source = Split(
color.cpp
conversions.cpp
image_compositing.cpp
image_scaling.cpp
box2d.cpp
building_symbolizer.cpp
datasource_cache.cpp

View file

@ -1344,32 +1344,46 @@ void cairo_renderer_base::process(raster_symbolizer const& sym,
box2d<double> target_ext = box2d<double>(source->ext_);
prj_trans.backward(target_ext, PROJ_ENVELOPE_POINTS);
box2d<double> ext=t_.forward(target_ext);
int start_x = (int)ext.minx();
int start_y = (int)ext.miny();
int end_x = (int)ceil(ext.maxx());
int end_y = (int)ceil(ext.maxy());
box2d<double> ext = t_.forward(target_ext);
int start_x = static_cast<int>(ext.minx());
int start_y = static_cast<int>(ext.miny());
int end_x = static_cast<int>(ceil(ext.maxx()));
int end_y = static_cast<int>(ceil(ext.maxy()));
int raster_width = end_x - start_x;
int raster_height = end_y - start_y;
double err_offs_x = ext.minx() - start_x;
double err_offs_y = ext.miny() - start_y;
if (raster_width > 0 && raster_height > 0)
{
double scale_factor = ext.width() / source->data_.width();
image_data_32 target_data(raster_width,raster_height);
raster target(target_ext, target_data);
reproject_raster(target, *source, prj_trans, err_offs_x, err_offs_y,
sym.get_mesh_size(),
sym.calculate_filter_factor(),
scale_factor,
sym.get_scaling());
scaling_method_e scaling_method = sym.get_scaling_method();
double filter_radius = sym.calculate_filter_factor();
double offset_x = ext.minx() - start_x;
double offset_y = ext.miny() - start_y;
if (!prj_trans.equal())
{
reproject_and_scale_raster(target, *source, prj_trans,
offset_x, offset_y,
sym.get_mesh_size(),
filter_radius,
scaling_method);
}
else
{
if (scaling_method == SCALING_BILINEAR8){
scale_image_bilinear8<image_data_32>(target.data_,source->data_, offset_x, offset_y);
} else {
double scaling_ratio = ext.width() / source->data_.width();
scale_image_agg<image_data_32>(target.data_,
source->data_,
scaling_method,
scaling_ratio,
offset_x,
offset_y,
filter_radius);
}
}
cairo_context context(context_);
context.set_operator(sym.comp_op());
//TODO -- support for advanced image merging
context.add_image(start_x, start_y, target.data_, sym.get_opacity());
}
}

359
src/image_scaling.cpp Normal file
View file

@ -0,0 +1,359 @@
/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2011 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
// mapnik
#include <mapnik/image_data.hpp>
#include <mapnik/image_scaling.hpp>
#include <mapnik/span_image_filter.hpp>
// boost
#include <boost/assign/list_of.hpp>
#include <boost/bimap.hpp>
// agg
#include "agg_image_accessors.h"
#include "agg_pixfmt_rgba.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_renderer_scanline.h"
#include "agg_rendering_buffer.h"
#include "agg_scanline_u.h"
#include "agg_span_allocator.h"
#include "agg_span_image_filter_rgba.h"
#include "agg_span_interpolator_linear.h"
#include "agg_trans_affine.h"
#include "agg_image_filters.h"
namespace mapnik
{
typedef boost::bimap<scaling_method_e, std::string> scaling_method_lookup_type;
static const scaling_method_lookup_type scaling_lookup = boost::assign::list_of<scaling_method_lookup_type::relation>
(SCALING_NEAR,"near")
(SCALING_BILINEAR,"bilinear")
(SCALING_BICUBIC,"bicubic")
(SCALING_SPLINE16,"spline16")
(SCALING_SPLINE36,"spline36")
(SCALING_HANNING,"hanning")
(SCALING_HAMMING,"hamming")
(SCALING_HERMITE,"hermite")
(SCALING_KAISER,"kaiser")
(SCALING_QUADRIC,"quadric")
(SCALING_CATROM,"catrom")
(SCALING_GAUSSIAN,"gaussian")
(SCALING_BESSEL,"bessel")
(SCALING_MITCHELL,"mitchell")
(SCALING_SINC,"sinc")
(SCALING_LANCZOS,"lanczos")
(SCALING_BLACKMAN,"blackman")
(SCALING_BILINEAR8,"bilinear8")
;
boost::optional<scaling_method_e> scaling_method_from_string(std::string const& name)
{
boost::optional<scaling_method_e> mode;
scaling_method_lookup_type::right_const_iterator right_iter = scaling_lookup.right.find(name);
if (right_iter != scaling_lookup.right.end())
{
mode.reset(right_iter->second);
}
return mode;
}
boost::optional<std::string> scaling_method_to_string(scaling_method_e scaling_method)
{
boost::optional<std::string> mode;
scaling_method_lookup_type::left_const_iterator left_iter = scaling_lookup.left.find(scaling_method);
if (left_iter != scaling_lookup.left.end())
{
mode.reset(left_iter->second);
}
return mode;
}
// this has been replaced by agg impl - see https://trac.mapnik.org/ticket/656
template <typename Image>
void scale_image_bilinear_old (Image & target,Image const& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned out=0;
unsigned t = 0;
for(int i=0; i<4; i++){
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
// channel up
out |= r << t;
t += 8;
a >>= 8;
b >>= 8;
c >>= 8;
d >>= 8;
}
target(x,y)=out;
}
}
}
template <typename Image>
void scale_image_bilinear8 (Image & target,Image const& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
target(x,y)=(0xff<<24) | (r<<16) | (r<<8) | r;
}
}
}
template <typename Image>
void scale_image_agg(Image & target,
Image const& source,
scaling_method_e scaling_method,
double image_ratio,
double x_off_f,
double y_off_f,
double filter_radius,
double ratio)
{
typedef agg::pixfmt_rgba32 pixfmt;
typedef agg::pixfmt_rgba32_pre pixfmt_pre;
typedef agg::renderer_base<pixfmt_pre> renderer_base;
// define some stuff we'll use soon
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
agg::span_allocator<agg::rgba8> sa;
agg::image_filter_lut filter;
// initialize source AGG buffer
agg::rendering_buffer rbuf_src((unsigned char*)source.getBytes(), source.width(), source.height(), source.width() * 4);
pixfmt pixf_src(rbuf_src);
typedef agg::image_accessor_clone<pixfmt> img_src_type;
img_src_type img_src(pixf_src);
// initialise destination AGG buffer (with transparency)
agg::rendering_buffer rbuf_dst((unsigned char*)target.getBytes(), target.width(), target.height(), target.width() * 4);
pixfmt_pre pixf_dst(rbuf_dst);
renderer_base rb_dst(pixf_dst);
rb_dst.clear(agg::rgba(0, 0, 0, 0));
// create a scaling matrix
agg::trans_affine img_mtx;
img_mtx /= agg::trans_affine_scaling(image_ratio * ratio, image_ratio * ratio);
// create a linear interpolator for our scaling matrix
typedef agg::span_interpolator_linear<> interpolator_type;
interpolator_type interpolator(img_mtx);
// draw an anticlockwise polygon to render our image into
double scaled_width = source.width() * image_ratio;
double scaled_height = source.height() * image_ratio;
ras.reset();
ras.move_to_d(x_off_f, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f + scaled_height);
ras.line_to_d(x_off_f, y_off_f + scaled_height);
switch(scaling_method)
{
case SCALING_NEAR:
{
typedef agg::span_image_filter_rgba_nn<img_src_type, interpolator_type> span_gen_type;
span_gen_type sg(img_src, interpolator);
agg::render_scanlines_aa(ras, sl, rb_dst, sa, sg);
return;
}
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_radius), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_radius), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_radius), true); break;
}
typedef mapnik::span_image_resample_rgba_affine<img_src_type> span_gen_type;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(ras, sl, rb_dst, sa, sg);
}
template void scale_image_agg<image_data_32> (image_data_32& target,const image_data_32& source, scaling_method_e scaling_method, double scale_factor, double x_off_f, double y_off_f, double filter_radius, double ratio);
template void scale_image_bilinear_old<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
template void scale_image_bilinear8<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
}

View file

@ -35,7 +35,6 @@ extern "C"
#include <mapnik/palette.hpp>
#include <mapnik/map.hpp>
#include <mapnik/util/conversions.hpp>
#include <mapnik/span_image_filter.hpp>
// jpeg
#if defined(HAVE_JPEG)
#include <mapnik/jpeg_io.hpp>
@ -56,20 +55,6 @@ extern "C"
#include <fstream>
#include <sstream>
// agg
#include "agg_image_accessors.h"
#include "agg_pixfmt_rgba.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_renderer_scanline.h"
#include "agg_rendering_buffer.h"
#include "agg_scanline_u.h"
//#include "agg_scanline_p.h"
#include "agg_span_allocator.h"
#include "agg_span_image_filter_rgba.h"
#include "agg_span_interpolator_linear.h"
#include "agg_trans_affine.h"
#include "agg_image_filters.h"
namespace mapnik
{
@ -477,306 +462,6 @@ template std::string save_to_string<image_view<image_data_32> > (image_view<imag
std::string const&,
rgba_palette const& palette);
// Image scaling functions
scaling_method_e get_scaling_method_by_name (std::string name)
{
// TODO - make into proper ENUMS
if (name == "fast" || name == "near")
return SCALING_NEAR;
else if (name == "bilinear")
return SCALING_BILINEAR;
else if (name == "cubic" || name == "bicubic")
return SCALING_BICUBIC;
else if (name == "spline16")
return SCALING_SPLINE16;
else if (name == "spline36")
return SCALING_SPLINE36;
else if (name == "hanning")
return SCALING_HANNING;
else if (name == "hamming")
return SCALING_HAMMING;
else if (name == "hermite")
return SCALING_HERMITE;
else if (name == "kaiser")
return SCALING_KAISER;
else if (name == "quadric")
return SCALING_QUADRIC;
else if (name == "catrom")
return SCALING_CATROM;
else if (name == "gaussian")
return SCALING_GAUSSIAN;
else if (name == "bessel")
return SCALING_BESSEL;
else if (name == "mitchell")
return SCALING_MITCHELL;
else if (name == "sinc")
return SCALING_SINC;
else if (name == "lanczos")
return SCALING_LANCZOS;
else if (name == "blackman")
return SCALING_BLACKMAN;
else
return SCALING_NEAR;
}
// this has been replaced by agg impl - see https://trac.mapnik.org/ticket/656
template <typename Image>
void scale_image_bilinear_old (Image& target,const Image& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned out=0;
unsigned t = 0;
for(int i=0; i<4; i++){
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
// channel up
out |= r << t;
t += 8;
a >>= 8;
b >>= 8;
c >>= 8;
d >>= 8;
}
target(x,y)=out;
}
}
}
template <typename Image>
void scale_image_bilinear8 (Image& target,const Image& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
target(x,y)=(0xff<<24) | (r<<16) | (r<<8) | r;
}
}
}
template <typename Image>
void scale_image_agg (Image& target,const Image& source, scaling_method_e scaling_method, double scale_factor, double x_off_f, double y_off_f, double filter_radius, double ratio)
{
typedef agg::pixfmt_rgba32 pixfmt;
typedef agg::pixfmt_rgba32_pre pixfmt_pre;
typedef agg::renderer_base<pixfmt_pre> renderer_base;
// define some stuff we'll use soon
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
agg::span_allocator<agg::rgba8> sa;
agg::image_filter_lut filter;
// initialize source AGG buffer
agg::rendering_buffer rbuf_src((unsigned char*)source.getBytes(), source.width(), source.height(), source.width() * 4);
pixfmt pixf_src(rbuf_src);
typedef agg::image_accessor_clone<pixfmt> img_src_type;
img_src_type img_src(pixf_src);
// initialise destination AGG buffer (with transparency)
agg::rendering_buffer rbuf_dst((unsigned char*)target.getBytes(), target.width(), target.height(), target.width() * 4);
pixfmt_pre pixf_dst(rbuf_dst);
renderer_base rb_dst(pixf_dst);
rb_dst.clear(agg::rgba(0, 0, 0, 0));
// create a scaling matrix
agg::trans_affine img_mtx;
img_mtx /= agg::trans_affine_scaling(scale_factor * ratio, scale_factor * ratio);
// create a linear interpolator for our scaling matrix
typedef agg::span_interpolator_linear<> interpolator_type;
interpolator_type interpolator(img_mtx);
// draw an anticlockwise polygon to render our image into
double scaled_width = source.width() * scale_factor;
double scaled_height = source.height() * scale_factor;
ras.reset();
ras.move_to_d(x_off_f, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f + scaled_height);
ras.line_to_d(x_off_f, y_off_f + scaled_height);
switch(scaling_method)
{
case SCALING_NEAR:
{
typedef agg::span_image_filter_rgba_nn<img_src_type, interpolator_type> span_gen_type;
span_gen_type sg(img_src, interpolator);
agg::render_scanlines_aa(ras, sl, rb_dst, sa, sg);
return;
}
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_radius), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_radius), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_radius), true); break;
}
typedef mapnik::span_image_resample_rgba_affine<img_src_type> span_gen_type;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(ras, sl, rb_dst, sa, sg);
}
void save_to_file(image_32 const& image,std::string const& file)
{
save_to_file<image_data_32>(image.data(), file);
@ -810,10 +495,4 @@ std::string save_to_string(image_32 const& image,
return save_to_string<image_data_32>(image.data(), type, palette);
}
template void scale_image_agg<image_data_32> (image_data_32& target,const image_data_32& source, scaling_method_e scaling_method, double scale_factor, double x_off_f, double y_off_f, double filter_radius, double ratio);
template void scale_image_bilinear_old<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
template void scale_image_bilinear8<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
}

View file

@ -28,6 +28,7 @@
#include <mapnik/xml_tree.hpp>
#include <mapnik/version.hpp>
#include <mapnik/image_compositing.hpp>
#include <mapnik/image_scaling.hpp>
#include <mapnik/color.hpp>
#include <mapnik/color_factory.hpp>
#include <mapnik/symbolizer.hpp>
@ -1468,7 +1469,27 @@ void map_parser::parse_raster_symbolizer(rule & rule, xml_node const & sym)
// scaling
optional<std::string> scaling = sym.get_opt_attr<std::string>("scaling");
if (scaling) raster_sym.set_scaling(*scaling);
if (scaling)
{
std::string scaling_method = *scaling;
if (scaling_method == "fast")
{
MAPNIK_LOG_ERROR(raster_symbolizer) << "'scaling' value of 'fast' is deprecated and will be removed in Mapnik 3.x, use 'near' with Mapnik >= 2.1.x";
raster_sym.set_scaling_method(SCALING_NEAR);
}
else
{
boost::optional<scaling_method_e> method = scaling_method_from_string(scaling_method);
if (method)
{
raster_sym.set_scaling_method(*method);
}
else
{
throw config_error("failed to parse 'scaling': '" + *scaling + "'");
}
}
}
// opacity
optional<double> opacity = sym.get_opt_attr<double>("opacity");

View file

@ -32,6 +32,7 @@
#include <mapnik/text_placements/list.hpp>
#include <mapnik/text_placements/dummy.hpp>
#include <mapnik/image_compositing.hpp>
#include <mapnik/image_scaling.hpp>
// boost
#include <boost/algorithm/string.hpp>
@ -158,9 +159,9 @@ public:
ptree::value_type("RasterSymbolizer", ptree()))->second;
raster_symbolizer dfl;
if ( sym.get_scaling() != dfl.get_scaling() || explicit_defaults_ )
if ( sym.get_scaling_method() != dfl.get_scaling_method() || explicit_defaults_ )
{
set_attr( sym_node, "scaling", sym.get_scaling() );
set_attr( sym_node, "scaling", *scaling_method_to_string(sym.get_scaling_method()) );
}
if ( sym.get_opacity() != dfl.get_opacity() || explicit_defaults_ )

View file

@ -46,162 +46,149 @@
namespace mapnik {
void reproject_raster(raster &target, raster const& source,
void reproject_and_scale_raster(raster & target, raster const& source,
proj_transform const& prj_trans,
double offset_x, double offset_y,
unsigned mesh_size,
double filter_radius,
double scale_factor,
std::string scaling_method_name)
scaling_method_e scaling_method)
{
if (prj_trans.equal()) {
CoordTransform ts(source.data_.width(), source.data_.height(),
source.ext_);
CoordTransform tt(target.data_.width(), target.data_.height(),
target.ext_, offset_x, offset_y);
unsigned i, j;
unsigned mesh_nx = ceil(source.data_.width()/double(mesh_size)+1);
unsigned mesh_ny = ceil(source.data_.height()/double(mesh_size)+1);
if (scaling_method_name == "bilinear8"){
scale_image_bilinear8<image_data_32>(target.data_,source.data_,
offset_x, offset_y);
} else {
scaling_method_e scaling_method = get_scaling_method_by_name(scaling_method_name);
scale_image_agg<image_data_32>(target.data_,source.data_, (scaling_method_e)scaling_method, scale_factor, offset_x, offset_y, filter_radius);
ImageData<double> xs(mesh_nx, mesh_ny);
ImageData<double> ys(mesh_nx, mesh_ny);
// Precalculate reprojected mesh
for(j=0; j<mesh_ny; j++) {
for (i=0; i<mesh_nx; i++) {
xs(i,j) = i*mesh_size;
ys(i,j) = j*mesh_size;
ts.backward(&xs(i,j), &ys(i,j));
}
} else {
CoordTransform ts(source.data_.width(), source.data_.height(),
source.ext_);
CoordTransform tt(target.data_.width(), target.data_.height(),
target.ext_, offset_x, offset_y);
unsigned i, j;
unsigned mesh_nx = ceil(source.data_.width()/double(mesh_size)+1);
unsigned mesh_ny = ceil(source.data_.height()/double(mesh_size)+1);
}
prj_trans.backward(xs.getData(), ys.getData(), NULL, mesh_nx*mesh_ny);
ImageData<double> xs(mesh_nx, mesh_ny);
ImageData<double> ys(mesh_nx, mesh_ny);
// Initialize AGG objects
typedef agg::pixfmt_rgba32 pixfmt;
typedef pixfmt::color_type color_type;
typedef agg::renderer_base<pixfmt> renderer_base;
typedef agg::pixfmt_rgba32_pre pixfmt_pre;
typedef agg::renderer_base<pixfmt_pre> renderer_base_pre;
// Precalculate reprojected mesh
for(j=0; j<mesh_ny; j++) {
for (i=0; i<mesh_nx; i++) {
xs(i,j) = i*mesh_size;
ys(i,j) = j*mesh_size;
ts.backward(&xs(i,j), &ys(i,j));
}
}
prj_trans.backward(xs.getData(), ys.getData(), NULL, mesh_nx*mesh_ny);
agg::rasterizer_scanline_aa<> rasterizer;
agg::scanline_u8 scanline;
agg::rendering_buffer buf((unsigned char*)target.data_.getData(),
target.data_.width(),
target.data_.height(),
target.data_.width()*4);
pixfmt_pre pixf_pre(buf);
renderer_base_pre rb_pre(pixf_pre);
rasterizer.clip_box(0, 0, target.data_.width(), target.data_.height());
agg::rendering_buffer buf_tile(
(unsigned char*)source.data_.getData(),
source.data_.width(),
source.data_.height(),
source.data_.width() * 4);
// Initialize AGG objects
typedef agg::pixfmt_rgba32 pixfmt;
typedef pixfmt::color_type color_type;
typedef agg::renderer_base<pixfmt> renderer_base;
typedef agg::pixfmt_rgba32_pre pixfmt_pre;
typedef agg::renderer_base<pixfmt_pre> renderer_base_pre;
pixfmt pixf_tile(buf_tile);
agg::rasterizer_scanline_aa<> rasterizer;
agg::scanline_u8 scanline;
agg::rendering_buffer buf((unsigned char*)target.data_.getData(),
target.data_.width(),
target.data_.height(),
target.data_.width()*4);
pixfmt_pre pixf_pre(buf);
renderer_base_pre rb_pre(pixf_pre);
rasterizer.clip_box(0, 0, target.data_.width(), target.data_.height());
agg::rendering_buffer buf_tile(
(unsigned char*)source.data_.getData(),
source.data_.width(),
source.data_.height(),
source.data_.width() * 4);
typedef agg::image_accessor_clone<pixfmt> img_accessor_type;
img_accessor_type ia(pixf_tile);
pixfmt pixf_tile(buf_tile);
agg::span_allocator<color_type> sa;
typedef agg::image_accessor_clone<pixfmt> img_accessor_type;
img_accessor_type ia(pixf_tile);
// Initialize filter
agg::image_filter_lut filter;
switch(scaling_method)
{
case SCALING_NEAR: break;
case SCALING_BILINEAR8: // TODO - impl this or remove?
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_radius), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_radius), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_radius), true); break;
}
agg::span_allocator<color_type> sa;
// Project mesh cells into target interpolating raster inside each one
for(j=0; j<mesh_ny-1; j++) {
for (i=0; i<mesh_nx-1; i++) {
double polygon[8] = {xs(i,j), ys(i,j),
xs(i+1,j), ys(i+1,j),
xs(i+1,j+1), ys(i+1,j+1),
xs(i,j+1), ys(i,j+1)};
tt.forward(polygon+0, polygon+1);
tt.forward(polygon+2, polygon+3);
tt.forward(polygon+4, polygon+5);
tt.forward(polygon+6, polygon+7);
// Initialize filter
agg::image_filter_lut filter;
scaling_method_e scaling_method = get_scaling_method_by_name(
scaling_method_name);
switch(scaling_method)
{
case SCALING_NEAR: break;
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_radius), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_radius), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_radius), true); break;
}
rasterizer.reset();
rasterizer.move_to_d(polygon[0]-1, polygon[1]-1);
rasterizer.line_to_d(polygon[2]+1, polygon[3]-1);
rasterizer.line_to_d(polygon[4]+1, polygon[5]+1);
rasterizer.line_to_d(polygon[6]-1, polygon[7]+1);
// Project mesh cells into target interpolating raster inside each one
for(j=0; j<mesh_ny-1; j++) {
for (i=0; i<mesh_nx-1; i++) {
double polygon[8] = {xs(i,j), ys(i,j),
xs(i+1,j), ys(i+1,j),
xs(i+1,j+1), ys(i+1,j+1),
xs(i,j+1), ys(i,j+1)};
tt.forward(polygon+0, polygon+1);
tt.forward(polygon+2, polygon+3);
tt.forward(polygon+4, polygon+5);
tt.forward(polygon+6, polygon+7);
unsigned x0 = i * mesh_size;
unsigned y0 = j * mesh_size;
unsigned x1 = (i+1) * mesh_size;
unsigned y1 = (j+1) * mesh_size;
rasterizer.reset();
rasterizer.move_to_d(polygon[0]-1, polygon[1]-1);
rasterizer.line_to_d(polygon[2]+1, polygon[3]-1);
rasterizer.line_to_d(polygon[4]+1, polygon[5]+1);
rasterizer.line_to_d(polygon[6]-1, polygon[7]+1);
agg::trans_affine tr(polygon, x0, y0, x1, y1);
if (tr.is_valid())
{
typedef agg::span_interpolator_linear<agg::trans_affine>
interpolator_type;
interpolator_type interpolator(tr);
unsigned x0 = i * mesh_size;
unsigned y0 = j * mesh_size;
unsigned x1 = (i+1) * mesh_size;
unsigned y1 = (j+1) * mesh_size;
agg::trans_affine tr(polygon, x0, y0, x1, y1);
if (tr.is_valid())
{
typedef agg::span_interpolator_linear<agg::trans_affine>
interpolator_type;
interpolator_type interpolator(tr);
if (scaling_method == SCALING_NEAR) {
typedef agg::span_image_filter_rgba_nn
<img_accessor_type, interpolator_type>
span_gen_type;
span_gen_type sg(ia, interpolator);
agg::render_scanlines_aa(rasterizer, scanline, rb_pre,
sa, sg);
} else {
typedef mapnik::span_image_resample_rgba_affine
<img_accessor_type> span_gen_type;
span_gen_type sg(ia, interpolator, filter);
agg::render_scanlines_aa(rasterizer, scanline, rb_pre,
sa, sg);
}
if (scaling_method == SCALING_NEAR) {
typedef agg::span_image_filter_rgba_nn
<img_accessor_type, interpolator_type>
span_gen_type;
span_gen_type sg(ia, interpolator);
agg::render_scanlines_aa(rasterizer, scanline, rb_pre,
sa, sg);
} else {
typedef mapnik::span_image_resample_rgba_affine
<img_accessor_type> span_gen_type;
span_gen_type sg(ia, interpolator, filter);
agg::render_scanlines_aa(rasterizer, scanline, rb_pre,
sa, sg);
}
}
}
}
}