+ add boost/geometry/extensions/index/rtree

(TODO: remove when it's part of boost release)
This commit is contained in:
Artem Pavlenko 2012-05-11 15:59:35 +01:00
parent b42e4988ec
commit 457afbdbc4
4 changed files with 1588 additions and 0 deletions

View file

@ -0,0 +1,68 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Boost.SpatialIndex - geometry helper functions
//
// Copyright 2008 Federico J. Fernandez.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_GGL_INDEX_RTREE_HELPERS_HPP
#define BOOST_GEOMETRY_GGL_INDEX_RTREE_HELPERS_HPP
#include <boost/geometry/algorithms/area.hpp>
#include <boost/geometry/algorithms/disjoint.hpp>
#include <boost/geometry/core/point_type.hpp>
namespace boost { namespace geometry { namespace index {
/**
* \brief Given two boxes, returns the minimal box that contains them
*/
// TODO: use geometry::expand
template <typename Box>
inline Box enlarge_box(Box const& b1, Box const& b2)
{
// TODO: mloskot - Refactor to readable form. Fix VC++8.0 min/max warnings:
// warning C4002: too many actual parameters for macro 'min
typedef typename geometry::point_type<Box>::type point_type;
point_type pmin(
geometry::get<min_corner, 0>(b1) < geometry::get<min_corner, 0>(b2)
? geometry::get<min_corner, 0>(b1) : geometry::get<min_corner, 0>(b2),
geometry::get<min_corner, 1>(b1) < geometry::get<min_corner, 1>(b2)
? geometry::get<min_corner, 1>(b1) : geometry::get<min_corner, 1>(b2));
point_type pmax(
geometry::get<max_corner, 0>(b1) > geometry::get<max_corner, 0>(b2)
? geometry::get<max_corner, 0>(b1) : geometry::get<max_corner, 0>(b2),
geometry::get<max_corner, 1>(b1) > geometry::get<max_corner, 1>(b2)
? geometry::get<max_corner, 1>(b1) : geometry::get<max_corner, 1>(b2));
return Box(pmin, pmax);
}
/**
* \brief Compute the area of the union of b1 and b2
*/
template <typename Box>
inline typename default_area_result<Box>::type compute_union_area(Box const& b1, Box const& b2)
{
Box enlarged_box = enlarge_box(b1, b2);
return geometry::area(enlarged_box);
}
/**
* \brief Checks if boxes intersects
*/
// TODO: move to geometry::intersects
template <typename Box>
inline bool is_overlapping(Box const& b1, Box const& b2)
{
return ! geometry::disjoint(b1, b2);
}
}}} // namespace boost::geometry::index
#endif // BOOST_GEOMETRY_GGL_INDEX_RTREE_HELPERS_HPP

View file

@ -0,0 +1,774 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Boost.SpatialIndex - rtree implementation
//
// Copyright 2008 Federico J. Fernandez.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_HPP
#define BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_HPP
#include <cstddef>
#include <iostream> // TODO: Remove if print() is removed
#include <stdexcept>
#include <utility>
#include <vector>
#include <boost/concept_check.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/geometry/algorithms/area.hpp>
#include <boost/geometry/extensions/index/rtree/rtree_node.hpp>
#include <boost/geometry/extensions/index/rtree/rtree_leaf.hpp>
namespace boost { namespace geometry { namespace index
{
template <typename Box, typename Value >
class rtree
{
public:
typedef boost::shared_ptr<rtree_node<Box, Value> > node_pointer;
typedef boost::shared_ptr<rtree_leaf<Box, Value> > leaf_pointer;
/**
* \brief Creates a rtree with 'maximum' elements per node and 'minimum'.
*/
rtree(unsigned int const& maximum, unsigned int const& minimum)
: m_count(0)
, m_min_elems_per_node(minimum)
, m_max_elems_per_node(maximum)
, m_root(new rtree_node<Box, Value>(node_pointer(), 1))
{
}
/**
* \brief Creates a rtree with maximum elements per node
* and minimum (box is ignored).
*/
rtree(Box const& box, unsigned int const& maximum, unsigned int const& minimum)
: m_count(0)
, m_min_elems_per_node(minimum)
, m_max_elems_per_node(maximum)
, m_root(new rtree_node<Box, Value>(node_pointer(), 1))
{
boost::ignore_unused_variable_warning(box);
}
/**
* \brief destructor (virtual because we have virtual functions)
*/
virtual ~rtree() {}
/**
* \brief Remove elements inside the 'box'
*/
inline void remove(Box const& box)
{
try
{
node_pointer leaf(choose_exact_leaf(box));
typename rtree_leaf<Box, Value>::leaf_map q_leaves;
leaf->remove(box);
if (leaf->elements() < m_min_elems_per_node && elements() > m_min_elems_per_node)
{
q_leaves = leaf->get_leaves();
// we remove the leaf_node in the parent node because now it's empty
leaf->get_parent()->remove(leaf->get_parent()->get_box(leaf));
}
typename rtree_node<Box, Value>::node_map q_nodes;
condense_tree(leaf, q_nodes);
std::vector<std::pair<Box, Value> > s;
for (typename rtree_node<Box, Value>::node_map::const_iterator it = q_nodes.begin();
it != q_nodes.end(); ++it)
{
typename rtree_leaf<Box, Value>::leaf_map leaves = it->second->get_leaves();
// reinserting leaves from nodes
for (typename rtree_leaf<Box, Value>::leaf_map::const_iterator itl = leaves.begin();
itl != leaves.end(); ++itl)
{
s.push_back(*itl);
}
}
for (typename std::vector<std::pair<Box, Value> >::const_iterator it = s.begin(); it != s.end(); ++it)
{
m_count--;
insert(it->first, it->second);
}
// if the root has only one child and the child is not a leaf,
// make it the root
if (m_root->elements() == 1)
{
if (!m_root->first_element()->is_leaf())
{
m_root = m_root->first_element();
}
}
// reinserting leaves
for (typename rtree_leaf<Box, Value>::leaf_map::const_iterator it = q_leaves.begin();
it != q_leaves.end(); ++it)
{
m_count--;
insert(it->first, it->second);
}
m_count--;
}
catch(std::logic_error & e)
{
// TODO: mloskot - replace with Boost.Geometry exception
// not found
std::cerr << e.what() << std::endl;
return;
}
}
/**
* \brief Remove element inside the box with value
*/
void remove(Box const& box, Value const& value)
{
try
{
node_pointer leaf;
// find possible leaves
typedef typename std::vector<node_pointer > node_type;
node_type nodes;
m_root->find_leaves(box, nodes);
// refine the result
for (typename node_type::const_iterator it = nodes.begin(); it != nodes.end(); ++it)
{
leaf = *it;
try
{
leaf->remove(value);
break;
} catch (...)
{
leaf = node_pointer();
}
}
if (!leaf)
return;
typename rtree_leaf < Box, Value >::leaf_map q_leaves;
if (leaf->elements() < m_min_elems_per_node && elements() > m_min_elems_per_node)
{
q_leaves = leaf->get_leaves();
// we remove the leaf_node in the parent node because now it's empty
leaf->get_parent()->remove(leaf->get_parent()->get_box(leaf));
}
typename rtree_node<Box, Value>::node_map q_nodes;
condense_tree(leaf, q_nodes);
std::vector<std::pair<Box, Value> > s;
for (typename rtree_node<Box, Value>::node_map::const_iterator it = q_nodes.begin();
it != q_nodes.end(); ++it)
{
typename rtree_leaf<Box, Value>::leaf_map leaves = it->second->get_leaves();
// reinserting leaves from nodes
for (typename rtree_leaf<Box, Value>::leaf_map::const_iterator itl = leaves.begin();
itl != leaves.end(); ++itl)
{
s.push_back(*itl);
}
}
for (typename std::vector<std::pair<Box, Value> >::const_iterator it = s.begin(); it != s.end(); ++it)
{
m_count--;
insert(it->first, it->second);
}
// if the root has only one child and the child is not a leaf,
// make it the root
if (m_root->elements() == 1)
{
if (!m_root->first_element()->is_leaf())
{
m_root = m_root->first_element();
}
}
// reinserting leaves
for (typename rtree_leaf<Box, Value>::leaf_map::const_iterator it = q_leaves.begin();
it != q_leaves.end(); ++it)
{
m_count--;
insert(it->first, it->second);
}
m_count--;
}
catch(std::logic_error & e)
{
// TODO: mloskot - ggl exception
// not found
std::cerr << e.what() << std::endl;
return;
}
}
/**
* \brief Returns the number of elements.
*/
inline unsigned int elements() const
{
return m_count;
}
/**
* \brief Inserts an element with 'box' as key with value.
*/
inline void insert(Box const& box, Value const& value)
{
m_count++;
node_pointer leaf(choose_corresponding_leaf(box));
// check if the selected leaf is full to do the split if necessary
if (leaf->elements() >= m_max_elems_per_node)
{
leaf->insert(box, value);
// split!
node_pointer n1(new rtree_leaf<Box, Value>(leaf->get_parent()));
node_pointer n2(new rtree_leaf<Box, Value>(leaf->get_parent()));
split_node(leaf, n1, n2);
adjust_tree(leaf, n1, n2);
}
else
{
leaf->insert(box, value);
adjust_tree(leaf);
}
}
/**
* \brief Returns all the values inside 'box'
*/
inline std::deque<Value> find(Box const& box) const
{
std::deque<Value> result;
m_root->find(box, result, false);
return result;
}
/**
* \brief Print Rtree (mainly for debug)
*/
inline void print()
{
std::cerr << "===================================" << std::endl;
std::cerr << " Min/Max: " << m_min_elems_per_node << " / " << m_max_elems_per_node << std::endl;
std::cerr << "Leaves: " << m_root->get_leaves().size() << std::endl;
m_root->print();
std::cerr << "===================================" << std::endl;
}
private:
/// number of elements
unsigned int m_count;
/// minimum number of elements per node
unsigned int m_min_elems_per_node;
/// maximum number of elements per node
unsigned int m_max_elems_per_node;
/// tree root
node_pointer m_root;
/**
* \brief Reorganize the tree after a removal. It tries to
* join nodes with less elements than m.
*/
void condense_tree(node_pointer const& leaf,
typename rtree_node<Box, Value>::node_map& q_nodes)
{
if (leaf.get() == m_root.get())
{
// if it's the root we are done
return;
}
node_pointer parent = leaf->get_parent();
parent->adjust_box(leaf);
if (parent->elements() < m_min_elems_per_node)
{
if (parent.get() == m_root.get())
{
// if the parent is underfull and it's the root we just exit
return;
}
// get the nodes that we should reinsert
typename rtree_node<Box, Value>::node_map this_nodes = parent->get_nodes();
for(typename rtree_node<Box, Value>::node_map::const_iterator it = this_nodes.begin();
it != this_nodes.end(); ++it)
{
q_nodes.push_back(*it);
}
// we remove the node in the parent node because now it should be
// re inserted
parent->get_parent()->remove(parent->get_parent()->get_box(parent));
}
condense_tree(parent, q_nodes);
}
/**
* \brief After an insertion splits nodes with more than 'maximum' elements.
*/
inline void adjust_tree(node_pointer& node)
{
if (node.get() == m_root.get())
{
// we finished the adjust
return;
}
// as there are no splits just adjust the box of the parent and go on
node_pointer parent = node->get_parent();
parent->adjust_box(node);
adjust_tree(parent);
}
/**
* \brief After an insertion splits nodes with more than maximum elements
* (recursive step with subtrees 'n1' and 'n2' to be joined).
*/
void adjust_tree(node_pointer& leaf, node_pointer& n1, node_pointer& n2)
{
// check if we are in the root and do the split
if (leaf.get() == m_root.get())
{
node_pointer new_root(new rtree_node<Box,Value>(node_pointer (), leaf->get_level() + 1));
new_root->add_node(n1->compute_box(), n1);
new_root->add_node(n2->compute_box(), n2);
n1->set_parent(new_root);
n2->set_parent(new_root);
n1->update_parent(n1);
n2->update_parent(n2);
m_root = new_root;
return;
}
node_pointer parent = leaf->get_parent();
parent->replace_node(leaf, n1);
parent->add_node(n2->compute_box(), n2);
// if parent is full, split and readjust
if (parent->elements() > m_max_elems_per_node)
{
node_pointer p1(new rtree_node<Box, Value>(parent->get_parent(), parent->get_level()));
node_pointer p2(new rtree_node<Box, Value>(parent->get_parent(), parent->get_level()));
split_node(parent, p1, p2);
adjust_tree(parent, p1, p2);
}
else
{
adjust_tree(parent);
}
}
/**
* \brief Splits 'n' in 'n1' and 'n2'
*/
void split_node(node_pointer const& n, node_pointer& n1, node_pointer& n2) const
{
unsigned int seed1 = 0;
unsigned int seed2 = 0;
std::vector<Box> boxes = n->get_boxes();
n1->set_parent(n->get_parent());
n2->set_parent(n->get_parent());
linear_pick_seeds(n, seed1, seed2);
if (n->is_leaf())
{
n1->add_value(boxes[seed1], n->get_value(seed1));
n2->add_value(boxes[seed2], n->get_value(seed2));
}
else
{
n1->add_node(boxes[seed1], n->get_node(seed1));
n2->add_node(boxes[seed2], n->get_node(seed2));
}
unsigned int index = 0;
if (n->is_leaf())
{
// TODO: mloskot - add assert(node.size() >= 2); or similar
typename rtree_leaf<Box, Value>::leaf_map nodes = n->get_leaves();
unsigned int remaining = nodes.size() - 2;
for (typename rtree_leaf<Box, Value>::leaf_map::const_iterator it = nodes.begin();
it != nodes.end(); ++it, index++)
{
if (index != seed1 && index != seed2)
{
if (n1->elements() + remaining == m_min_elems_per_node)
{
n1->add_value(it->first, it->second);
continue;
}
if (n2->elements() + remaining == m_min_elems_per_node)
{
n2->add_value(it->first, it->second);
continue;
}
remaining--;
/// current boxes of each group
Box b1, b2;
/// enlarged boxes of each group
Box eb1, eb2;
b1 = n1->compute_box();
b2 = n2->compute_box();
/// areas
typedef typename coordinate_type<Box>::type coordinate_type;
coordinate_type b1_area, b2_area;
coordinate_type eb1_area, eb2_area;
b1_area = geometry::area(b1);
b2_area = geometry::area(b2);
eb1_area = compute_union_area(b1, it->first);
eb2_area = compute_union_area(b2, it->first);
if (eb1_area - b1_area > eb2_area - b2_area)
{
n2->add_value(it->first, it->second);
}
if (eb1_area - b1_area < eb2_area - b2_area)
{
n1->add_value(it->first, it->second);
}
if (eb1_area - b1_area == eb2_area - b2_area)
{
if (b1_area < b2_area)
{
n1->add_value(it->first, it->second);
}
if (b1_area > b2_area)
{
n2->add_value(it->first, it->second);
}
if (b1_area == b2_area)
{
if (n1->elements() > n2->elements())
{
n2->add_value(it->first, it->second);
}
else
{
n1->add_value(it->first, it->second);
}
}
}
}
}
}
else
{
// TODO: mloskot - add assert(node.size() >= 2); or similar
typename rtree_node<Box, Value>::node_map nodes = n->get_nodes();
unsigned int remaining = nodes.size() - 2;
for(typename rtree_node<Box, Value>::node_map::const_iterator it = nodes.begin();
it != nodes.end(); ++it, index++)
{
if (index != seed1 && index != seed2)
{
if (n1->elements() + remaining == m_min_elems_per_node)
{
n1->add_node(it->first, it->second);
continue;
}
if (n2->elements() + remaining == m_min_elems_per_node)
{
n2->add_node(it->first, it->second);
continue;
}
remaining--;
/// current boxes of each group
Box b1, b2;
/// enlarged boxes of each group
Box eb1, eb2;
b1 = n1->compute_box();
b2 = n2->compute_box();
/// areas
typedef typename coordinate_type<Box>::type coordinate_type;
coordinate_type b1_area, b2_area;
coordinate_type eb1_area, eb2_area;
b1_area = geometry::area(b1);
b2_area = geometry::area(b2);
eb1_area = compute_union_area(b1, it->first);
eb2_area = compute_union_area(b2, it->first);
if (eb1_area - b1_area > eb2_area - b2_area)
{
n2->add_node(it->first, it->second);
}
if (eb1_area - b1_area < eb2_area - b2_area)
{
n1->add_node(it->first, it->second);
}
if (eb1_area - b1_area == eb2_area - b2_area)
{
if (b1_area < b2_area)
{
n1->add_node(it->first, it->second);
}
if (b1_area > b2_area)
{
n2->add_node(it->first, it->second);
}
if (b1_area == b2_area)
{
if (n1->elements() > n2->elements())
{
n2->add_node(it->first, it->second);
}
else
{
n1->add_node(it->first, it->second);
}
}
}
}
}
}
}
/**
* \brief Choose initial values for the split algorithm (linear version)
*/
void linear_pick_seeds(node_pointer const& n, unsigned int &seed1, unsigned int &seed2) const
{
// get boxes from the node
std::vector<Box>boxes = n->get_boxes();
if (boxes.size() == 0)
{
// TODO: mloskot - throw ggl exception
throw std::logic_error("Empty Node trying to Pick Seeds");
}
// only two dim for now
// unsigned int dimensions =
// geometry::point_traits<Point>::coordinate_count;
// find the first two elements
typedef typename coordinate_type<Box>::type coordinate_type;
coordinate_type separation_x, separation_y;
unsigned int first_x, second_x;
unsigned int first_y, second_y;
find_normalized_separations<0u>(boxes, separation_x, first_x, second_x);
find_normalized_separations<1u>(boxes, separation_y, first_y, second_y);
if (separation_x > separation_y)
{
seed1 = first_x;
seed2 = second_x;
}
else
{
seed1 = first_y;
seed2 = second_y;
}
}
/**
* \brief Find distances between possible initial values for the
* pick_seeds algorithm.
*/
template <std::size_t D, typename T>
void find_normalized_separations(std::vector<Box> const& boxes, T& separation,
unsigned int& first, unsigned int& second) const
{
if (boxes.size() < 2)
{
throw std::logic_error("At least two boxes needed to split");
}
// find the lowest high
typename std::vector<Box>::const_iterator it = boxes.begin();
typedef typename coordinate_type<Box>::type coordinate_type;
coordinate_type lowest_high = geometry::get<max_corner, D>(*it);
unsigned int lowest_high_index = 0;
unsigned int index = 1;
++it;
for(; it != boxes.end(); ++it)
{
if (geometry::get<max_corner, D>(*it) < lowest_high)
{
lowest_high = geometry::get<max_corner, D>(*it);
lowest_high_index = index;
}
index++;
}
// find the highest low
coordinate_type highest_low = 0;
unsigned int highest_low_index = 0;
if (lowest_high_index == 0)
{
highest_low = geometry::get<min_corner, D>(boxes[1]);
highest_low_index = 1;
}
else
{
highest_low = geometry::get<min_corner, D>(boxes[0]);
highest_low_index = 0;
}
index = 0;
for (typename std::vector<Box>::const_iterator it = boxes.begin();
it != boxes.end(); ++it, index++)
{
if (geometry::get<min_corner, D>(*it) >= highest_low && index != lowest_high_index)
{
highest_low = geometry::get<min_corner, D>(*it);
highest_low_index = index;
}
}
// find the lowest low
it = boxes.begin();
coordinate_type lowest_low = geometry::get<min_corner, D>(*it);
++it;
for(; it != boxes.end(); ++it)
{
if (geometry::get<min_corner, D>(*it) < lowest_low)
{
lowest_low = geometry::get<min_corner, D>(*it);
}
}
// find the highest high
it = boxes.begin();
coordinate_type highest_high = geometry::get<max_corner, D>(*it);
++it;
for(; it != boxes.end(); ++it)
{
if (geometry::get<max_corner, D>(*it) > highest_high)
{
highest_high = geometry::get<max_corner, D>(*it);
}
}
coordinate_type const width = highest_high - lowest_low;
separation = (highest_low - lowest_high) / width;
first = highest_low_index;
second = lowest_high_index;
}
/**
* \brief Choose one of the possible leaves to make an insertion
*/
inline node_pointer choose_corresponding_leaf(Box const& e)
{
node_pointer node = m_root;
// if the tree is empty add an initial leaf
if (m_root->elements() == 0)
{
leaf_pointer new_leaf(new rtree_leaf<Box, Value>(m_root));
m_root->add_leaf_node(Box (), new_leaf);
return new_leaf;
}
while (!node->is_leaf())
{
/// traverse node's map to see which node we should select
node = node->choose_node(e);
}
return node;
}
/**
* \brief Choose the exact leaf where an insertion should be done
*/
node_pointer choose_exact_leaf(Box const&e) const
{
// find possible leaves
typedef typename std::vector<node_pointer> node_type;
node_type nodes;
m_root->find_leaves(e, nodes);
// refine the result
for (typename node_type::const_iterator it = nodes.begin(); it != nodes.end(); ++it)
{
typedef std::vector<std::pair<Box, Value> > leaves_type;
leaves_type leaves = (*it)->get_leaves();
for (typename leaves_type::const_iterator itl = leaves.begin();
itl != leaves.end(); ++itl)
{
if (itl->first.max_corner() == e.max_corner()
&& itl->first.min_corner() == e.min_corner())
{
return *it;
}
}
}
// TODO: mloskot - ggl exception
throw std::logic_error("Leaf not found");
}
};
}}} // namespace boost::geometry::index
#endif // BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_HPP

View file

@ -0,0 +1,253 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Boost.SpatialIndex - rtree leaf implementation
//
// Copyright 2008 Federico J. Fernandez.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_LEAF_HPP
#define BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_LEAF_HPP
#include <deque>
#include <iostream> // TODO: Remove if print() is removed
#include <stdexcept>
#include <utility>
#include <vector>
#include <boost/shared_ptr.hpp>
#include <boost/geometry/algorithms/area.hpp>
#include <boost/geometry/algorithms/assign.hpp>
#include <boost/geometry/algorithms/expand.hpp>
#include <boost/geometry/extensions/index/rtree/rtree_node.hpp>
namespace boost { namespace geometry { namespace index
{
template <typename Box, typename Value >
class rtree_leaf : public rtree_node<Box, Value>
{
public:
/// container type for the leaves
typedef boost::shared_ptr<rtree_node<Box, Value> > node_pointer;
typedef std::vector<std::pair<Box, Value> > leaf_map;
/**
* \brief Creates an empty leaf
*/
inline rtree_leaf()
{
}
/**
* \brief Creates a new leaf, with 'parent' as parent
*/
inline rtree_leaf(node_pointer const& parent)
: rtree_node<Box, Value> (parent, 0)
{
}
/**
* \brief Search for elements in 'box' in the Rtree. Add them to 'result'.
* If exact_match is true only return the elements having as
* key the 'box'. Otherwise return everything inside 'box'.
*/
virtual void find(Box const& box, std::deque<Value>& result, bool const exact_match)
{
for (typename leaf_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
if (exact_match)
{
if (geometry::equals(it->first, box))
{
result.push_back(it->second);
}
}
else
{
if (is_overlapping(it->first, box))
{
result.push_back(it->second);
}
}
}
}
/**
* \brief Compute bounding box for this leaf
*/
virtual Box compute_box() const
{
if (m_nodes.empty())
{
return Box ();
}
Box r;
geometry::assign_inverse(r);
for(typename leaf_map::const_iterator it = m_nodes.begin(); it != m_nodes.end(); ++it)
{
geometry::expand(r, it->first);
}
return r;
}
/**
* \brief True if we are a leaf
*/
virtual bool is_leaf() const
{
return true;
}
/**
* \brief Number of elements in the tree
*/
virtual unsigned int elements() const
{
return m_nodes.size();
}
/**
* \brief Insert a new element, with key 'box' and value 'v'
*/
virtual void insert(Box const& box, Value const& v)
{
m_nodes.push_back(std::make_pair(box, v));
}
/**
* \brief Proyect leaves of this node.
*/
virtual std::vector< std::pair<Box, Value> > get_leaves() const
{
return m_nodes;
}
/**
* \brief Add a new child (node) to this node
*/
virtual void add_node(Box const&, node_pointer const&)
{
// TODO: mloskot - define & use GGL exception
throw std::logic_error("Can't add node to leaf node.");
}
/**
* \brief Add a new leaf to this node
*/
virtual void add_value(Box const& box, Value const& v)
{
m_nodes.push_back(std::make_pair(box, v));
}
/**
* \brief Proyect value in position 'index' in the nodes container
*/
virtual Value get_value(unsigned int index) const
{
return m_nodes[index].second;
}
/**
* \brief Box projector for leaf
*/
virtual Box get_box(unsigned int index) const
{
return m_nodes[index].first;
}
/**
* \brief Remove value with key 'box' in this leaf
*/
virtual void remove(Box const& box)
{
for (typename leaf_map::iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
if (geometry::equals(it->first, box))
{
m_nodes.erase(it);
return;
}
}
// TODO: mloskot - use GGL exception
throw std::logic_error("Node not found.");
}
/**
* \brief Remove value in this leaf
*/
virtual void remove(Value const& v)
{
for (typename leaf_map::iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
if (it->second == v)
{
m_nodes.erase(it);
return;
}
}
// TODO: mloskot - use GGL exception
throw std::logic_error("Node not found.");
}
/**
* \brief Proyect boxes from this node
*/
virtual std::vector<Box> get_boxes() const
{
std::vector<Box> result;
for (typename leaf_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
result.push_back(it->first);
}
return result;
}
/**
* \brief Print leaf (mainly for debug)
*/
virtual void print() const
{
std::cerr << "\t" << " --> Leaf --------" << std::endl;
std::cerr << "\t" << " Size: " << m_nodes.size() << std::endl;
for (typename leaf_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
std::cerr << "\t" << " | ";
std::cerr << "( " << geometry::get<min_corner, 0>
(it->first) << " , " << geometry::get<min_corner, 1>
(it->first) << " ) x ";
std::cerr << "( " << geometry::get<max_corner, 0>
(it->first) << " , " << geometry::get<max_corner, 1>
(it->first) << " )";
std::cerr << " -> ";
std::cerr << it->second;
std::cerr << " | " << std::endl;;
}
std::cerr << "\t" << " --< Leaf --------" << std::endl;
}
private:
/// leaves of this node
leaf_map m_nodes;
};
}}} // namespace boost::geometry::index
#endif // BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_LEAF_HPP

View file

@ -0,0 +1,493 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Boost.SpatialIndex - rtree node implementation
//
// Copyright 2008 Federico J. Fernandez.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_NODE_HPP
#define BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_NODE_HPP
#include <deque>
#include <iostream> // TODO: Remove if print() is removed
#include <stdexcept>
#include <utility>
#include <vector>
#include <boost/shared_ptr.hpp>
#include <boost/geometry/algorithms/area.hpp>
#include <boost/geometry/algorithms/assign.hpp>
#include <boost/geometry/algorithms/equals.hpp>
#include <boost/geometry/algorithms/expand.hpp>
#include <boost/geometry/extensions/index/rtree/helpers.hpp>
namespace boost { namespace geometry { namespace index
{
/// forward declaration
template <typename Box, typename Value>
class rtree_leaf;
template <typename Box, typename Value>
class rtree_node
{
public:
typedef boost::shared_ptr<rtree_node<Box, Value> > node_pointer;
typedef boost::shared_ptr<rtree_leaf<Box, Value> > leaf_pointer;
/// type for the node map
typedef std::vector<std::pair<Box, node_pointer > > node_map;
/**
* \brief Creates a default node (needed for the containers)
*/
rtree_node()
{
}
/**
* \brief Creates a node with 'parent' as parent and 'level' as its level
*/
rtree_node(node_pointer const& parent, unsigned int const& level)
: m_parent(parent), m_level(level)
{
}
/**
* \brief destructor (virtual because we have virtual functions)
*/
virtual ~rtree_node()
{
}
/**
* \brief Level projector
*/
virtual unsigned int get_level() const
{
return m_level;
}
/**
* \brief Number of elements in the subtree
*/
virtual unsigned int elements() const
{
return m_nodes.size();
}
/**
* \brief Project first element, to replace root in case of condensing
*/
inline node_pointer first_element() const
{
if (0 == m_nodes.size())
{
// TODO: mloskot - define & use GGL exception
throw std::logic_error("first_element in empty node");
}
return m_nodes.begin()->second;
}
/**
* \brief True if it is a leaf node
*/
virtual bool is_leaf() const
{
return false;
}
/**
* \brief Proyector for the 'i' node
*/
node_pointer get_node(unsigned int index)
{
return m_nodes[index].second;
}
/**
* \brief Search for elements in 'box' in the Rtree. Add them to 'result'.
* If exact_match is true only return the elements having as
* key the box 'box'. Otherwise return everything inside 'box'.
*/
virtual void find(Box const& box, std::deque<Value>& result, bool const exact_match)
{
for (typename node_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
if (is_overlapping(it->first, box))
{
it->second->find(box, result, exact_match);
}
}
}
/**
* \brief Return in 'result' all the leaves inside 'box'
*/
void find_leaves(Box const& box, typename std::vector<node_pointer>& result) const
{
for (typename node_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
if (is_overlapping(it->first, box))
{
if (it->second->is_leaf())
{
result.push_back(it->second);
}
else
{
it->second->find_leaves(box, result);
}
}
}
}
/**
* \brief Compute bounding box for this node
*/
virtual Box compute_box() const
{
if (m_nodes.empty())
{
return Box();
}
Box result;
geometry::assign_inverse(result);
for(typename node_map::const_iterator it = m_nodes.begin(); it != m_nodes.end(); ++it)
{
geometry::expand(result, it->first);
}
return result;
}
/**
* \brief Insert a value (not allowed for a node, only on leaves)
*/
virtual void insert(Box const&, Value const&)
{
// TODO: mloskot - define & use GGL exception
throw std::logic_error("Insert in node!");
}
/**
* \brief Get the envelopes of a node
*/
virtual std::vector<Box> get_boxes() const
{
std::vector<Box> result;
for(typename node_map::const_iterator it = m_nodes.begin(); it != m_nodes.end(); ++it)
{
result.push_back(it->first);
}
return result;
}
/**
* \brief Recompute the bounding box
*/
void adjust_box(node_pointer const& node)
{
unsigned int index = 0;
for (typename node_map::iterator it = m_nodes.begin();
it != m_nodes.end(); ++it, index++)
{
if (it->second.get() == node.get())
{
m_nodes[index] = std::make_pair(node->compute_box(), node);
return;
}
}
}
/**
* \brief Remove elements inside the 'box'
*/
virtual void remove(Box const& box)
{
for (typename node_map::iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
if (geometry::equals(it->first, box))
{
m_nodes.erase(it);
return;
}
}
}
/**
* \brief Remove value in this leaf
*/
virtual void remove(Value const&)
{
// TODO: mloskot - define & use GGL exception
throw std::logic_error("Can't remove a non-leaf node by value.");
}
/**
* \brief Replace the node in the m_nodes vector and recompute the box
*/
void replace_node(node_pointer const& leaf, node_pointer& new_leaf)
{
unsigned int index = 0;
for(typename node_map::iterator it = m_nodes.begin(); it != m_nodes.end(); ++it, index++)
{
if (it->second.get() == leaf.get())
{
m_nodes[index] = std::make_pair(new_leaf->compute_box(), new_leaf);
new_leaf->update_parent(new_leaf);
return;
}
}
// TODO: mloskot - define & use GGL exception
throw std::logic_error("Node not found.");
}
/**
* \brief Add a child to this node
*/
virtual void add_node(Box const& box, node_pointer const& node)
{
m_nodes.push_back(std::make_pair(box, node));
node->update_parent(node);
}
/**
* \brief add a value (not allowed in nodes, only on leaves)
*/
virtual void add_value(Box const&, Value const&)
{
// TODO: mloskot - define & use GGL exception
throw std::logic_error("Can't add value to non-leaf node.");
}
/**
* \brief Add a child leaf to this node
*/
inline void add_leaf_node(Box const& box, leaf_pointer const& leaf)
{
m_nodes.push_back(std::make_pair(box, leaf));
}
/**
* \brief Choose a node suitable for adding 'box'
*/
node_pointer choose_node(Box const& box)
{
if (m_nodes.size() == 0)
{
// TODO: mloskot - define & use GGL exception
throw std::logic_error("Empty node trying to choose the least enlargement node.");
}
typedef typename coordinate_type<Box>::type coordinate_type;
bool first = true;
coordinate_type min_area = 0;
coordinate_type min_diff_area = 0;
node_pointer chosen_node;
// check for the least enlargement
for (typename node_map::const_iterator it = m_nodes.begin(); it != m_nodes.end(); ++it)
{
coordinate_type const
diff_area = coordinate_type(compute_union_area(box, it->first))
- geometry::area(it->first);
if (first)
{
// it's the first time, we keep the first
min_diff_area = diff_area;
min_area = geometry::area(it->first);
chosen_node = it->second;
first = false;
}
else
{
if (diff_area < min_diff_area)
{
min_diff_area = diff_area;
min_area = geometry::area(it->first);
chosen_node = it->second;
}
else
{
if (diff_area == min_diff_area)
{
if (geometry::area(it->first) < min_area)
{
min_diff_area = diff_area;
min_area = geometry::area(it->first);
chosen_node = it->second;
}
}
}
}
}
return chosen_node;
}
/**
* \brief Empty the node
*/
virtual void empty_nodes()
{
m_nodes.clear();
}
/**
* \brief Projector for parent
*/
inline node_pointer get_parent() const
{
return m_parent;
}
/**
* \brief Update the parent of all the childs
*/
void update_parent(node_pointer const& node)
{
for (typename node_map::iterator it = m_nodes.begin(); it != m_nodes.end(); ++it)
{
it->second->set_parent(node);
}
}
/**
* \brief Set parent
*/
void set_parent(node_pointer const& node)
{
m_parent = node;
}
/**
* \brief Value projector for leaf_node (not allowed for non-leaf nodes)
*/
virtual Value get_value(unsigned int) const
{
// TODO: mloskot - define & use GGL exception
throw std::logic_error("No values in a non-leaf node.");
}
/**
* \brief Box projector for node 'index'
*/
virtual Box get_box(unsigned int index) const
{
return m_nodes[index].first;
}
/**
* \brief Box projector for node pointed by 'leaf'
*/
virtual Box get_box(node_pointer const& leaf) const
{
for (typename node_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
if (it->second.get() == leaf.get())
{
return it->first;
}
}
// TODO: mloskot - define & use GGL exception
throw std::logic_error("Node not found");
}
/**
* \brief Children projector
*/
node_map get_nodes() const
{
return m_nodes;
}
/**
* \brief Get leaves for a node
*/
virtual std::vector<std::pair<Box, Value> > get_leaves() const
{
typedef std::vector<std::pair<Box, Value> > leaf_type;
leaf_type leaf;
for (typename node_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
leaf_type this_leaves = it->second->get_leaves();
for (typename leaf_type::iterator it_leaf = this_leaves.begin();
it_leaf != this_leaves.end(); ++it_leaf)
{
leaf.push_back(*it_leaf);
}
}
return leaf;
}
/**
* \brief Print Rtree subtree (mainly for debug)
*/
virtual void print() const
{
std::cerr << " --> Node --------" << std::endl;
std::cerr << " Address: " << this << std::endl;
std::cerr << " Level: " << m_level << std::endl;
std::cerr << " Size: " << m_nodes.size() << std::endl;
std::cerr << " | ";
for(typename node_map::const_iterator it = m_nodes.begin(); it != m_nodes.end(); ++it)
{
if (this != it->second->get_parent().get())
{
std::cerr << "ERROR - " << this << " is not " << it->second->get_parent().get() << " ";
}
std::cerr << "( " << geometry::get<min_corner, 0>(it->first) << " , "
<< geometry::get<min_corner, 1>(it->first) << " ) x ";
std::cerr << "( " << geometry::get<max_corner, 0>(it->first) << " , "
<< geometry::get<max_corner, 1>(it->first) << " )";
std::cerr << " | ";
}
std::cerr << std::endl;
std::cerr << " --< Node --------" << std::endl;
// print child nodes
std::cerr << " Children: " << std::endl;
for (typename node_map::const_iterator it = m_nodes.begin();
it != m_nodes.end(); ++it)
{
it->second->print();
}
}
private:
/// parent node
node_pointer m_parent;
/// level of this node
// TODO: mloskot - Why not std::size_t or node_map::size_type, same with member functions?
unsigned int m_level;
/// child nodes
node_map m_nodes;
};
}}} // namespace boost::geometry::index
#endif // BOOST_GEOMETRY_EXTENSIONS_INDEX_RTREE_RTREE_NODE_HPP