Remove find_placements, build_path_follow, build_path_horizontal.

Add new find_point_placements to cover the gap left.
Change shield symbolizer to use find_point_placements.
Results are the same as before, but with much less duplicate code.
This commit is contained in:
Dave 2008-01-24 01:16:14 +00:00
parent f11a62b849
commit 5bbe90b85f
3 changed files with 64 additions and 414 deletions

View file

@ -87,26 +87,21 @@ namespace mapnik
public:
placement_finder(DetectorT & detector);
template <typename T>
void find_placements(placement & p, T & path);
//Try place a single label at the given point
void find_point_placement(placement & p, double, double);
//Iterate over the given path, placing point labels with respect to label_spacing
template <typename T>
void find_line_placement(placement & p, T & path);
void find_point_placements(placement & p, T & path);
//Iterate over the given path, placing line-following labels with respect to label_spacing
template <typename T>
void find_line_placements(placement & p, T & path);
void clear();
private:
template <typename T>
bool build_path_follow(placement & p, double target_distance, T & path);
template <typename T>
bool build_path_horizontal(placement & p, double target_distance, T & path);
void get_ideal_placements(placement & p, double distance, std::vector<double>&);
//Helpers for find_line_placement
///Helpers for find_line_placement
///Returns a possible placement on the given line, does not test for collisions
//index: index of the node the current line ends on
@ -133,6 +128,7 @@ namespace mapnik
const double &x1, const double &y1, const double &x2, const double &y2,
double &ix, double &iy);
///General Internals
void update_detector(placement & p);

View file

@ -464,7 +464,7 @@ namespace mapnik
path_type path(t_,geom,prj_trans);
placement text_placement(info, sym);
text_placement.avoid_edges = sym.get_avoid_edges();
finder.find_placements<path_type>(text_placement,path);
finder.find_point_placements<path_type>(text_placement,path);
for (unsigned int ii = 0; ii < text_placement.placements.size(); ++ ii)
{
@ -683,7 +683,7 @@ namespace mapnik
}
else //LINE_PLACEMENT
{
finder.find_line_placement<path_type>(text_placement,path);
finder.find_line_placements<path_type>(text_placement,path);
}
for (unsigned int ii = 0; ii < text_placement.placements.size(); ++ii)

View file

@ -143,87 +143,69 @@ namespace mapnik
}
template <typename DetectorT>
void placement_finder<DetectorT>::get_ideal_placements(placement & p, double distance, std::vector<double> & ideal_label_distances)
template <typename T>
void placement_finder<DetectorT>::find_point_placements(placement & p, T & shape_path)
{
std::pair<double, double> string_dimensions = p.info.get_dimensions();
double string_width = string_dimensions.first;
unsigned cmd;
double new_x = 0.0;
double new_y = 0.0;
double old_x = 0.0;
double old_y = 0.0;
bool first = true;
if (p.label_placement == LINE_PLACEMENT && string_width > distance)
double total_distance = get_total_distance<T>(shape_path);
shape_path.rewind(0);
if (distance == 0) //Point data, not a line
{
//Empty!
return ;
double x, y;
shape_path.vertex(&x,&y);
find_point_placement(p, x, y);
return;
}
int num_labels = 0;
if (p.label_spacing && p.label_placement == LINE_PLACEMENT)
{
num_labels = static_cast<int> (floor(distance / (p.label_spacing + string_width)));
}
else if (p.label_spacing && p.label_placement == POINT_PLACEMENT)
{
num_labels = static_cast<int> (floor(distance / p.label_spacing));
}
int num_labels = 1;
if (p.label_spacing > 0)
num_labels = static_cast<int> (floor(total_distance / p.label_spacing));
if (p.force_odd_labels && num_labels%2 == 0)
num_labels--;
if (num_labels <= 0)
num_labels = 1;
double distance = 0.0; // distance from last label
double spacing = total_distance / num_labels;
double target_distance = spacing / 2; // first label should be placed at half the spacing
double ideal_spacing = distance/num_labels;
double middle; //try draw text centered
if (p.label_placement == LINE_PLACEMENT)
middle = (distance / 2.0) - (string_width/2.0);
else // (p.label_placement == point_placement)
middle = distance / 2.0;
if (num_labels % 2) //odd amount of labels
while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y))) //For each node in the shape
{
for (int a = 0; a < (num_labels+1)/2; a++)
if (first || agg::is_move_to(cmd)) //Don't do any processing if it is the first node
{
ideal_label_distances.push_back(middle - (a*ideal_spacing));
if (a != 0)
ideal_label_distances.push_back(middle + (a*ideal_spacing));
first = false;
}
}
else //even amount of labels
{
for (int a = 0; a < num_labels/2; a++)
else
{
ideal_label_distances.push_back(middle - (ideal_spacing/2.0) - (a*ideal_spacing));
ideal_label_distances.push_back(middle + (ideal_spacing/2.0) + (a*ideal_spacing));
//Add the length of this segment to the total we have saved up
double segment_length = sqrt(pow(old_x-new_x,2) + pow(old_y-new_y,2)); //Pythagoras
distance += segment_length;
//While we have enough distance to place text in
while (distance > target_distance)
{
//Try place at the specified place
double new_weight = (segment_length - (distance - target_distance))/segment_length;
find_point_placement(p, old_x + (new_x-old_x)*new_weight, old_y + (new_y-old_y)*new_weight);
distance -= target_distance; //Consume the spacing gap we have used up
target_distance = spacing; //Need to reset the target_distance as it is spacing/2 for the first label.
}
}
old_x = new_x;
old_y = new_y;
}
if (p.label_position_tolerance == 0)
{
p.label_position_tolerance = unsigned(ideal_spacing/2.0);
}
}
template <typename DetectorT>
template <typename T>
void placement_finder<DetectorT>::find_placements(placement & p, T & shape_path)
{
double distance = get_total_distance<T>(shape_path);
std::vector<double> ideal_label_distances;
get_ideal_placements(p,distance,ideal_label_distances);
std::vector<double>::const_iterator itr = ideal_label_distances.begin();
std::vector<double>::const_iterator end = ideal_label_distances.end();
for (; itr != end; ++itr)
{
if ((p.label_placement == LINE_PLACEMENT &&
build_path_follow(p, *itr , shape_path ) ) ||
(p.label_placement == POINT_PLACEMENT &&
build_path_horizontal(p, *itr, shape_path)) )
{
update_detector(p);
break;
}
}
}
template <typename DetectorT>
@ -376,7 +358,7 @@ namespace mapnik
template <typename DetectorT>
template <typename PathT>
void placement_finder<DetectorT>::find_line_placement(placement & p, PathT & shape_path)
void placement_finder<DetectorT>::find_line_placements(placement & p, PathT & shape_path)
{
unsigned cmd;
double new_x = 0.0;
@ -437,7 +419,7 @@ namespace mapnik
num_labels = 1;
//Now we know how many labels we are going to place, calculate the spacing so that they will get placed evenly
double spacing = (total_distance / num_labels);
double spacing = total_distance / num_labels;
double target_distance = (spacing - string_width) / 2; // first label should be placed at half the spacing
//Calculate or read out the tolerance
@ -843,334 +825,6 @@ namespace mapnik
}
}
template <typename DetectorT>
template <typename PathT>
bool placement_finder<DetectorT>::build_path_follow(placement & p,
double target_distance,
PathT & shape_path)
{
double new_x = 0.0;
double new_y = 0.0;
double old_x = 0.0;
double old_y = 0.0;
double next_char_x = 0.0;
double next_char_y = 0.0;
double angle = 0.0;
int orientation = 0;
double displacement = boost::tuples::get<1>(p.displacement_); // displace by dy
std::auto_ptr<placement_element> current_placement(new placement_element);
double x = 0.0;
double y = 0.0;
double distance = 0.0;
std::pair<double, double> string_dimensions = p.info.get_dimensions();
double string_height = string_dimensions.second;
// find the segment that our text should start on
shape_path.rewind(0);
unsigned cmd;
bool first = true;
while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y)))
{
if (first || agg::is_move_to(cmd))
{
first = false;
}
else
{
double dx = new_x - old_x;
double dy = new_y - old_y;
double segment_length = sqrt(dx*dx + dy*dy);
distance += segment_length;
if (distance > target_distance)
{
current_placement->starting_x = new_x - dx*(distance - target_distance)/segment_length;
current_placement->starting_y = new_y - dy*(distance - target_distance)/segment_length;
// angle text starts at and orientation
angle = atan2(-dy, dx);
orientation = (angle > 0.55*M_PI || angle < -0.45*M_PI) ? -1 : 1;
distance -= target_distance;
break;
}
}
old_x = new_x;
old_y = new_y;
}
// now find the placement of each character starting from our initial segment
// determined above
double last_angle = angle;
for (unsigned i = 0; i < p.info.num_characters(); ++i)
{
character_info ci;
unsigned c;
// grab the next character according to the orientation
ci = orientation > 0 ? p.info.at(i) : p.info.at(p.info.num_characters() - i - 1);
c = ci.character;
double angle_delta = 0;
// if the distance remaining in this segment is less than the character width
// move to the next segment
if (distance <= ci.width)
{
last_angle = angle;
while (distance <= ci.width)
{
double dx, dy;
old_x = new_x;
old_y = new_y;
if (agg::is_stop(shape_path.vertex(&new_x,&new_y)))
return false;
dx = new_x - old_x;
dy = new_y - old_y;
angle = atan2(-dy, dx );
distance += sqrt(dx*dx+dy*dy);
}
// since our rendering angle has changed then check against our
// max allowable angle change.
angle_delta = last_angle - angle;
// normalise between -180 and 180
while (angle_delta > M_PI)
angle_delta -= 2*M_PI;
while (angle_delta < -M_PI)
angle_delta += 2*M_PI;
if (p.max_char_angle_delta > 0 && fabs(angle_delta) > p.max_char_angle_delta*(M_PI/180))
{
return false;
}
}
Envelope<double> e;
if (p.has_dimensions)
{
e.init(x, y, x + p.dimensions.first, y + p.dimensions.second);
}
double render_angle = angle;
x = new_x - (distance)*cos(angle);
y = new_y + (distance)*sin(angle);
//Center the text on the line, unless displacement != 0
if (displacement == 0.0) {
x -= (((double)string_height/2.0) - 1.0)*cos(render_angle+M_PI/2);
y += (((double)string_height/2.0) - 1.0)*sin(render_angle+M_PI/2);
} else if (displacement*orientation > 0.0) {
x -= ((fabs(displacement) - (double)string_height) + 1.0)*cos(render_angle+M_PI/2);
y += ((fabs(displacement) - (double)string_height) + 1.0)*sin(render_angle+M_PI/2);
} else { // displacement < 0
x -= ((fabs(displacement) + (double)string_height) - 1.0)*cos(render_angle+M_PI/2);
y += ((fabs(displacement) + (double)string_height) - 1.0)*sin(render_angle+M_PI/2);
}
distance -= ci.width;
next_char_x = ci.width*cos(render_angle);
next_char_y = ci.width*sin(render_angle);
double render_x = x;
double render_y = y;
if (!p.has_dimensions)
{
// put four corners of the letter into envelope
e.init(render_x, render_y, render_x + ci.width*cos(render_angle), render_y - ci.width*sin(render_angle));
e.expand_to_include(render_x - ci.height*sin(render_angle), render_y - ci.height*cos(render_angle));
e.expand_to_include(render_x + (ci.width*cos(render_angle) - ci.height*sin(render_angle)),
render_y - (ci.width*sin(render_angle) + ci.height*cos(render_angle)));
}
if (!dimensions_.intersects(e) ||
!detector_.has_placement(e, p.info.get_string(), p.minimum_distance))
{
return false;
}
if (p.avoid_edges && !dimensions_.contains(e))
{
return false;
}
p.envelopes.push(e);
if (orientation < 0)
{
// rotate in place
render_x += ci.width*cos(render_angle) - (string_height-2)*sin(render_angle);
render_y -= ci.width*sin(render_angle) + (string_height-2)*cos(render_angle);
render_angle += M_PI;
}
current_placement->add_node(c,render_x - current_placement->starting_x,
-render_y + current_placement->starting_y,
render_angle);
x += next_char_x;
y -= next_char_y;
}
p.placements.push_back(current_placement.release());
return true;
}
template <typename DetectorT>
template <typename PathT>
bool placement_finder<DetectorT>::build_path_horizontal(placement & p, double target_distance, PathT & shape_path)
{
double x, y;
std::auto_ptr<placement_element> current_placement(new placement_element);
std::pair<double, double> string_dimensions = p.info.get_dimensions();
double string_width = string_dimensions.first;
double string_height = string_dimensions.second;
// check if we need to wrap the string
double wrap_at = string_width + 1;
if (p.wrap_width && string_width > p.wrap_width)
{
if (p.text_ratio)
for (int i = 1; ((wrap_at = string_width/i)/(string_height*i)) > p.text_ratio && (string_width/i) > p.wrap_width; ++i);
else
wrap_at = p.wrap_width;
}
// work out where our line breaks need to be
std::vector<int> line_breaks;
std::vector<double> line_widths;
if (wrap_at < string_width && p.info.num_characters() > 0)
{
int line_count=0;
int last_space = 0;
string_width = 0;
string_height = 0;
double line_width = 0;
double line_height = 0;
double word_width = 0;
double word_height = 0;
for (unsigned int ii = 0; ii < p.info.num_characters(); ii++)
{
character_info ci;
ci = p.info.at(ii);
unsigned c = ci.character;
word_width += ci.width;
word_height = word_height > ci.height ? word_height : ci.height;
++line_count;
if (c == ' ')
{
last_space = ii;
line_width += word_width;
line_height = line_height > word_height ? line_height : word_height;
word_width = 0;
word_height = 0;
}
if (line_width > 0 && line_width > wrap_at)
{
string_width = string_width > line_width ? string_width : line_width;
string_height += line_height;
line_breaks.push_back(last_space);
line_widths.push_back(line_width);
ii = last_space;
line_count = 0;
line_width = 0;
line_height = 0;
word_width = 0;
word_height = 0;
}
}
line_width += word_width;
string_width = string_width > line_width ? string_width : line_width;
line_breaks.push_back(p.info.num_characters() + 1);
line_widths.push_back(line_width);
}
if (line_breaks.size() == 0)
{
line_breaks.push_back(p.info.num_characters() + 1);
line_widths.push_back(string_width);
}
p.info.set_dimensions(string_width, string_height);
std::pair<double, double> starting_pos =
get_position_at_distance<PathT>(target_distance,shape_path);
current_placement->starting_x = starting_pos.first;
current_placement->starting_y = starting_pos.second;
double line_height = 0;
unsigned int line_number = 0;
unsigned int index_to_wrap_at = line_breaks[line_number];
double line_width = line_widths[line_number];
x = -line_width/2.0 - 1.0;
y = -string_height/2.0 + 1.0;
for (unsigned i = 0; i < p.info.num_characters(); i++)
{
character_info ci;;
ci = p.info.at(i);
unsigned c = ci.character;
if (i == index_to_wrap_at)
{
index_to_wrap_at = line_breaks[++line_number];
line_width = line_widths[line_number];
y -= line_height;
x = -line_width/2.0;
line_height = 0;
continue;
}
else
{
current_placement->add_node(c, x, y, 0.0);
Envelope<double> e;
if (p.has_dimensions)
{
e.init(current_placement->starting_x - (p.dimensions.first/2.0),
current_placement->starting_y - (p.dimensions.second/2.0),
current_placement->starting_x + (p.dimensions.first/2.0),
current_placement->starting_y + (p.dimensions.second/2.0));
}
else
{
e.init(current_placement->starting_x + x,
current_placement->starting_y - y,
current_placement->starting_x + x + ci.width,
current_placement->starting_y - y - ci.height);
}
if (!dimensions_.intersects(e) ||
!detector_.has_placement(e, p.info.get_string(), p.minimum_distance))
{
return false;
}
if (p.avoid_edges && !dimensions_.contains(e))
{
return false;
}
p.envelopes.push(e);
}
x += ci.width;
line_height = line_height > ci.height ? line_height : ci.height;
}
p.placements.push_back(current_placement.release());
return true;
}
template <typename DetectorT>
void placement_finder<DetectorT>::clear()
{
@ -1181,7 +835,7 @@ namespace mapnik
typedef label_collision_detector4 DetectorType;
template class placement_finder<DetectorType>;
template void placement_finder<DetectorType>::find_placements<PathType> (placement&, PathType & );
template void placement_finder<DetectorType>::find_line_placement<PathType> (placement&, PathType & );
template void placement_finder<DetectorType>::find_point_placements<PathType> (placement&, PathType & );
template void placement_finder<DetectorType>::find_line_placements<PathType> (placement&, PathType & );
} // namespace