+ handle boundary cases in 3x3 convolution

This commit is contained in:
Artem Pavlenko 2012-05-23 20:26:24 +01:00
parent 557f69314f
commit fb34c7ef5a

View file

@ -29,14 +29,14 @@
// boost
#include <boost/gil/gil_all.hpp>
#include <boost/concept_check.hpp>
// agg
// agg
#include "agg_basics.h"
#include "agg_rendering_buffer.h"
#include "agg_pixfmt_rgba.h"
#include "agg_scanline_u.h"
#include "agg_blur.h"
// 8-bit YUV
//Y = ( ( 66 * R + 129 * G + 25 * B + 128) >> 8) + 16
//U = ( ( -38 * R - 74 * G + 112 * B + 128) >> 8) + 128
@ -51,48 +51,48 @@
// c3 c4 c5
// c6 c7 c8
//sharpen
//sharpen
// 0 -1 0
// -1 5 -1
// 0 -1 0
//bits_type out_value = -c1 - c3 + 5.0*c4 - c5 - c7;
// 0 -1 0
//bits_type out_value = -c1 - c3 + 5.0*c4 - c5 - c7;
// edge detect
// 0 1 0
// 1 -4 1
// 0 1 0
//bits_type out_value = c1 + c3 - 4.0*c4 + c5 + c7;
//
// 0 1 0
//bits_type out_value = c1 + c3 - 4.0*c4 + c5 + c7;
//
//if (out_value < 0) out_value = 0;
//if (out_value > 255) out_value = 255;
// emboss
// -2 -1 0
// -1 1 1
// 0 1 2
// bits_type out_value = -2*c0 - c1 - c3 + c4 + c5 + c7 + 2*c8;
// bits_type out_value = -2*c0 - c1 - c3 + c4 + c5 + c7 + 2*c8;
// blur
//float out_value = (0.1f*c0 + 0.1f*c1 + 0.1f*c2 +
// 0.1f*c3 + 0.1f*c4 + 0.1f*c5 +
// 0.1f*c6 + 0.1f*c7 + 0.1f*c8);
//float out_value = std::sqrt(std::pow(x_gradient,2) + std::pow(y_gradient,2));
//float theta = std::atan2(x_gradient,y_gradient);
//if (out_value < 0.0) out_value = 0.0;
//if (out_value < 1.0) out_value = 1.0;
//float conv_matrix[]={1/3.0,1/3.0,1/3.0};
//float gaussian_1[]={0.00022923296f,0.0059770769f,0.060597949f,0.24173197f,0.38292751f,
// 0.24173197f,0.060597949f,0.0059770769f,0.00022923296f};
//float gaussian_2[]={
// 0.00048869418f,0.0024031631f,0.0092463447f,
// 0.027839607f,0.065602221f,0.12099898f,0.17469721f,
@ -102,16 +102,16 @@
//};
// kernel_1d_fixed<float,9> kernel(conv,4);
// color_converted_view<rgb8_pixel_t>(src_view);
//typedef kth_channel_view_type< 0, const rgba8_view_t>::type view_t;
//view_t red = kth_channel_view<0>(const_view(src_view));
//kernel_1d_fixed<float,3> kernel(sharpen,0);
//convolve_rows_fixed<rgba32f_pixel_t>(src_view,kernel,src_view);
//convolve_rows_fixed<rgba32f_pixel_t>(src_view,kernel,src_view);
// convolve_cols_fixed<rgba32f_pixel_t>(src_view,kernel,dst_view);
using namespace boost::gil;
namespace mapnik { namespace filter { namespace detail {
@ -127,20 +127,20 @@ static const float edge_detect_matrix[] = {0,1,0,1,-4,1,0,1,0 };
template <typename Src, typename Dst, typename Conv>
void process_channel_impl (Src const& src, Dst & dst, Conv const& k)
{
using namespace boost::gil;
using namespace boost::gil;
typedef boost::gil::bits32f bits_type;
bits32f out_value =
bits32f out_value =
k[0]*src[0] + k[1]*src[1] + k[2]*src[2] +
k[3]*src[3] + k[4]*src[4] + k[5]*src[5] +
k[6]*src[6] + k[7]*src[7] + k[8]*src[8]
;
if (out_value < 0) out_value = 0;
if (out_value > 255) out_value = 255;
if (out_value > 255) out_value = 255;
dst = out_value;
}
template <typename Src, typename Dst, typename Conv>
void process_channel (Src const& src, Dst & dst, Conv const& k)
void process_channel (Src const& src, Dst & dst, Conv const& k)
{
boost::ignore_unused_variable_warning(src);
boost::ignore_unused_variable_warning(dst);
@ -175,19 +175,19 @@ void process_channel (Src const& src, Dst & dst, mapnik::filter::edge_detect)
template <typename Src, typename Dst>
void process_channel (Src const& src, Dst & dst, mapnik::filter::sobel)
{
using namespace boost::gil;
using namespace boost::gil;
typedef boost::gil::bits32f bits_type;
bits32f x_gradient = (src[2] + 2*src[5] + src[8])
- (src[0] + 2*src[3] + src[6]);
bits32f y_gradient = (src[0] + 2*src[1] + src[2])
- (src[6] + 2*src[7] + src[8]);
bits32f out_value = std::sqrt(std::pow(x_gradient,2) + std::pow(y_gradient,2));
//bts32f theta = std::atan2(x_gradient,y_gradient);
bits32f out_value = std::sqrt(std::pow(x_gradient,2) + std::pow(y_gradient,2));
//bts32f theta = std::atan2(x_gradient,y_gradient);
if (out_value < 0) out_value = 0;
if (out_value > 255) out_value = 255;
if (out_value > 255) out_value = 255;
dst = out_value;
}
@ -196,47 +196,164 @@ void process_channel (Src const& src, Dst & dst, mapnik::filter::sobel)
template <typename Src, typename Dst, typename FilterTag>
void apply_convolution_3x3(Src const& src_view, Dst & dst_view, FilterTag filter_tag)
{
typename Src::xy_locator src_loc = src_view.xy_at(1,1);
// p0 p1 p2
// p3 p4 p5
// p6 p7 p8
typename Src::xy_locator src_loc = src_view.xy_at(0,0);
typename Src::xy_locator::cached_location_t loc00 = src_loc.cache_location(-1,-1);
typename Src::xy_locator::cached_location_t loc10 = src_loc.cache_location( 0,-1);
typename Src::xy_locator::cached_location_t loc20 = src_loc.cache_location( 1,-1);
typename Src::xy_locator::cached_location_t loc20 = src_loc.cache_location( 1,-1);
typename Src::xy_locator::cached_location_t loc01 = src_loc.cache_location(-1, 0);
typename Src::xy_locator::cached_location_t loc11 = src_loc.cache_location( 0, 0);
typename Src::xy_locator::cached_location_t loc21 = src_loc.cache_location( 1, 0);
typename Src::xy_locator::cached_location_t loc21 = src_loc.cache_location( 1, 0);
typename Src::xy_locator::cached_location_t loc02 = src_loc.cache_location(-1, 1);
typename Src::xy_locator::cached_location_t loc12 = src_loc.cache_location( 0, 1);
typename Src::xy_locator::cached_location_t loc22 = src_loc.cache_location( 1, 1);
for (int y = 1; y<src_view.height()-1; ++y)
typename Src::x_iterator dst_it = dst_view.row_begin(0);
// top row
for (int x = 0 ; x < src_view.width(); ++x)
{
typename Src::x_iterator dst_it = dst_view.row_begin(y);
for (int x = 0; x<src_view.width(); ++x)
{
*dst_it = src_loc[loc11];
for (int i = 0; i < 3; ++i)
{
bits32f p[9];
p[4] = src_loc[loc11][i];
p[7] = src_loc[loc12][i];
if (x == 0)
{
p[3] = p[4];
p[6] = p[7];
}
else
{
p[3] = src_loc[loc01][i];
p[6] = src_loc[loc02][i];
}
if ( x == src_view.width()-1)
{
p[5] = p[4];
p[8] = p[7];
}
else
{
p[5] = src_loc[loc21][i];
p[8] = src_loc[loc22][i];
}
p[0] = p[6];
p[1] = p[7];
p[2] = p[8];
process_channel(p, (*dst_it)[i], filter_tag);
}
++src_loc.x();
++dst_it;
}
// carrige-return
src_loc += point2<std::ptrdiff_t>(-src_view.width(),1);
// 1... height-1 rows
for (int y = 1; y<src_view.height()-1; ++y)
{
for (int x = 0; x < src_view.width(); ++x)
{
*dst_it = src_loc[loc11];
for (int i = 0; i < 3; ++i)
{
bits32f p[9];
p[0] = src_loc[loc00][i];
p[1] = src_loc[loc10][i];
p[2] = src_loc[loc20][i];
p[3] = src_loc[loc01][i];
p[4] = src_loc[loc11][i];
p[5] = src_loc[loc21][i];
p[6] = src_loc[loc02][i];
p[7] = src_loc[loc12][i];
p[8] = src_loc[loc22][i];
if (x == 0)
{
p[0] = p[1];
p[3] = p[4];
p[6] = p[7];
}
else
{
p[0] = src_loc[loc00][i];
p[3] = src_loc[loc01][i];
p[6] = src_loc[loc02][i];
}
if ( x == src_view.width() - 1)
{
p[2] = p[1];
p[5] = p[4];
p[8] = p[7];
}
else
{
p[2] = src_loc[loc20][i];
p[5] = src_loc[loc21][i];
p[8] = src_loc[loc22][i];
}
process_channel(p, (*dst_it)[i], filter_tag);
}
++dst_it;
++src_loc.x();
++src_loc.x();
}
// carrige-return
src_loc += point2<std::ptrdiff_t>(-src_view.width(),1);
}
// bottom row
//src_loc = src_view.xy_at(0,src_view.height()-1);
for (int x = 0 ; x < src_view.width(); ++x)
{
*dst_it = src_loc[loc11];
for (int i = 0; i < 3; ++i)
{
bits32f p[9];
p[1] = src_loc[loc10][i];
p[4] = src_loc[loc11][i];
if (x == 0)
{
p[0] = p[1];
p[3] = p[4];
}
else
{
p[0] = src_loc[loc00][i];
p[3] = src_loc[loc01][i];
}
if ( x == src_view.width()-1)
{
p[2] = p[1];
p[5] = p[4];
}
else
{
p[2] = src_loc[loc20][i];
p[5] = src_loc[loc21][i];
}
p[6] = p[0];
p[7] = p[1];
p[8] = p[2];
process_channel(p, (*dst_it)[i], filter_tag);
}
++src_loc.x();
++dst_it;
}
}
template <typename Src, typename Dst,typename FilterTag>
template <typename Src, typename Dst,typename FilterTag>
void apply_filter(Src const& src, Dst & dst, FilterTag filter_tag)
{
using namespace boost::gil;
@ -245,63 +362,63 @@ void apply_filter(Src const& src, Dst & dst, FilterTag filter_tag)
src.width()*4);
rgba8_view_t dst_view = interleaved_view(dst.width(),dst.height(),
(rgba8_pixel_t*) dst.raw_data(),
dst.width()*4);
dst.width()*4);
typedef boost::mpl::vector<red_t,green_t,blue_t> channels;
apply_convolution_3x3(src_view,dst_view,filter_tag);
}
template <typename Src, typename FilterTag>
template <typename Src, typename FilterTag>
void apply_filter(Src & src, FilterTag filter_tag)
{
using namespace boost::gil;
rgba8_view_t src_view = interleaved_view(src.width(),src.height(),
(rgba8_pixel_t*) src.raw_data(),
src.width()*4);
src.width()*4);
rgba8_image_t temp_buffer(src_view.dimensions());
apply_convolution_3x3(src_view,boost::gil::view(temp_buffer), filter_tag);
boost::gil::copy_pixels(view(temp_buffer), src_view);
boost::gil::copy_pixels(view(temp_buffer), src_view);
}
template <typename Src>
template <typename Src>
void apply_filter(Src & src, agg_stack_blur const& op)
{
agg::rendering_buffer buf(src.raw_data(),src.width(),src.height(), src.width() * 4);
agg::pixfmt_rgba32 pixf(buf);
agg::stack_blur_rgba32(pixf,op.rx,op.ry);
agg::stack_blur_rgba32(pixf,op.rx,op.ry);
}
template <typename Src>
template <typename Src>
void apply_filter(Src & src, gray)
{
using namespace boost::gil;
typedef pixel<channel_type<rgba8_view_t>::type, gray_layout_t> gray_pixel_t;
typedef pixel<channel_type<rgba8_view_t>::type, gray_layout_t> gray_pixel_t;
rgba8_view_t src_view = interleaved_view(src.width(),src.height(),
(rgba8_pixel_t*) src.raw_data(),
src.width()*4);
boost::gil::copy_and_convert_pixels(color_converted_view<gray_pixel_t>(src_view), src_view);
boost::gil::copy_and_convert_pixels(color_converted_view<gray_pixel_t>(src_view), src_view);
}
template <typename Src>
template <typename Src>
void apply_filter(Src & src, x_gradient)
{
using namespace boost::gil;
rgba8_view_t src_view = interleaved_view(src.width(),src.height(),
(rgba8_pixel_t*) src.raw_data(),
src.width()*4);
rgba8_image_t temp_buffer(src_view.dimensions());
rgba8_view_t dst_view = view(temp_buffer);
for (int y=0; y<src_view.height(); ++y)
for (int y=0; y<src_view.height(); ++y)
{
rgba8_view_t::x_iterator src_it = src_view.row_begin(y);
rgba8_view_t::x_iterator dst_it = dst_view.row_begin(y);
for (int x=1; x<src_view.width()-1; ++x)
{
dst_it[x][0] = 127 + (src_it[x-1][0] - src_it[x+1][0]) / 2;
@ -310,27 +427,27 @@ void apply_filter(Src & src, x_gradient)
dst_it[x][3] = 255;
}
}
boost::gil::copy_pixels(view(temp_buffer), src_view);
boost::gil::copy_pixels(view(temp_buffer), src_view);
}
template <typename Src>
template <typename Src>
void apply_filter(Src & src, y_gradient)
{
using namespace boost::gil;
rgba8_view_t in = interleaved_view(src.width(),src.height(),
(rgba8_pixel_t*) src.raw_data(),
src.width()*4);
rgba8_image_t temp_buffer(in.dimensions());
dynamic_xy_step_type<rgba8_view_t>::type src_view = rotated90ccw_view(in);
dynamic_xy_step_type<rgba8_view_t>::type dst_view = rotated90ccw_view(view(temp_buffer));
for (int y=0; y<src_view.height(); ++y)
for (int y=0; y<src_view.height(); ++y)
{
dynamic_xy_step_type<rgba8_view_t>::type::x_iterator src_it = src_view.row_begin(y);
dynamic_xy_step_type<rgba8_view_t>::type::x_iterator dst_it = dst_view.row_begin(y);
for (int x=1; x<src_view.width()-1; ++x)
{
dst_it[x][0] = 127 + (src_it[x-1][0] - src_it[x+1][0]) / 2;
@ -339,21 +456,21 @@ void apply_filter(Src & src, y_gradient)
dst_it[x][3] = 255;
}
}
boost::gil::copy_pixels(view(temp_buffer), in);
boost::gil::copy_pixels(view(temp_buffer), in);
}
template <typename Src>
template <typename Src>
void apply_filter(Src & src, invert)
{
{
using namespace boost::gil;
rgba8_view_t src_view = interleaved_view(src.width(),src.height(),
(rgba8_pixel_t*) src.raw_data(),
src.width()*4);
for (int y=0; y<src_view.height(); ++y)
src.width()*4);
for (int y=0; y<src_view.height(); ++y)
{
rgba8_view_t::x_iterator src_itr = src_view.row_begin(y);
rgba8_view_t::x_iterator src_itr = src_view.row_begin(y);
for (int x=0; x<src_view.width(); ++x)
{
get_color(src_itr[x],red_t()) = channel_invert(get_color(src_itr[x],red_t()));
@ -368,14 +485,14 @@ template <typename Src>
struct filter_visitor : boost::static_visitor<void>
{
filter_visitor(Src & src)
: src_(src) {}
: src_(src) {}
template <typename T>
void operator () (T filter_tag)
{
apply_filter(src_,filter_tag);
}
}
Src & src_;
};