/***************************************************************************** * * This file is part of Mapnik (c++ mapping toolkit) * * Copyright (C) 2021 Artem Pavlenko * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * *****************************************************************************/ // mapnik #include #include #include #include #include #include #include #include #include #include #include MAPNIK_DISABLE_WARNING_PUSH #include #include "agg_image_filters.h" #include "agg_trans_bilinear.h" #include "agg_span_interpolator_linear.h" #include "agg_span_image_filter_rgba.h" #include "agg_rendering_buffer.h" #include "agg_pixfmt_rgba.h" #include "agg_rasterizer_scanline_aa.h" #include "agg_basics.h" #include "agg_scanline_bin.h" #include "agg_renderer_scanline.h" #include "agg_span_allocator.h" #include "agg_image_accessors.h" #include "agg_renderer_scanline.h" MAPNIK_DISABLE_WARNING_POP namespace mapnik { template struct pixel_format { using type = typename detail::agg_scaling_traits::pixfmt_pre; }; template<> struct pixel_format { struct src_blender { using color_type = agg::rgba8; using order_type = agg::order_rgba; using value_type = typename color_type::value_type; static inline void blend_pix(unsigned /*op*/, value_type* p, unsigned cr, unsigned cg, unsigned cb, unsigned ca, unsigned cover) { agg::comp_op_rgba_src::blend_pix(p, cr, cg, cb, ca, cover); } }; // Use comp_op_src to fix seams between faces of the mesh using type = agg::pixfmt_custom_blend_rgba; }; template MAPNIK_DECL void warp_image(T& target, T const& source, proj_transform const& prj_trans, box2d const& target_ext, box2d const& source_ext, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method, double filter_factor, boost::optional const& nodata_value) { using image_type = T; using pixel_type = typename image_type::pixel_type; using pixfmt_pre = typename detail::agg_scaling_traits::pixfmt_pre; using color_type = typename detail::agg_scaling_traits::color_type; using output_pixfmt_type = typename pixel_format::type; using renderer_base = agg::renderer_base; using interpolator_type = typename detail::agg_scaling_traits::interpolator_type; constexpr std::size_t pixel_size = sizeof(pixel_type); view_transform ts(source.width(), source.height(), source_ext); view_transform tt(target.width(), target.height(), target_ext, offset_x, offset_y); std::size_t mesh_nx = std::ceil(source.width() / double(mesh_size) + 1); std::size_t mesh_ny = std::ceil(source.height() / double(mesh_size) + 1); image_gray64f xs(mesh_nx, mesh_ny, false); image_gray64f ys(mesh_nx, mesh_ny, false); // Precalculate reprojected mesh for (std::size_t j = 0; j < mesh_ny; ++j) { for (std::size_t i = 0; i < mesh_nx; ++i) { xs(i, j) = std::min(i * mesh_size, source.width()); ys(i, j) = std::min(j * mesh_size, source.height()); ts.backward(&xs(i, j), &ys(i, j)); } } prj_trans.backward(xs.data(), ys.data(), nullptr, mesh_nx * mesh_ny); agg::rasterizer_scanline_aa<> rasterizer; agg::scanline_bin scanline; agg::rendering_buffer buf(target.bytes(), target.width(), target.height(), target.width() * pixel_size); output_pixfmt_type pixf(buf); renderer_base rb(pixf); rasterizer.clip_box(0, 0, target.width(), target.height()); agg::rendering_buffer buf_tile(const_cast(source.bytes()), source.width(), source.height(), source.width() * pixel_size); pixfmt_pre pixf_tile(buf_tile); using img_accessor_type = agg::image_accessor_clone; img_accessor_type ia(pixf_tile); agg::span_allocator sa; // Project mesh cells into target interpolating raster inside each one for (std::size_t j = 0; j < mesh_ny - 1; ++j) { for (std::size_t i = 0; i < mesh_nx - 1; ++i) { double polygon[8] = {xs(i, j), ys(i, j), xs(i + 1, j), ys(i + 1, j), xs(i + 1, j + 1), ys(i + 1, j + 1), xs(i, j + 1), ys(i, j + 1)}; tt.forward(polygon + 0, polygon + 1); tt.forward(polygon + 2, polygon + 3); tt.forward(polygon + 4, polygon + 5); tt.forward(polygon + 6, polygon + 7); rasterizer.reset(); rasterizer.move_to_d(std::floor(polygon[0]), std::floor(polygon[1])); rasterizer.line_to_d(std::floor(polygon[2]), std::floor(polygon[3])); rasterizer.line_to_d(std::floor(polygon[4]), std::floor(polygon[5])); rasterizer.line_to_d(std::floor(polygon[6]), std::floor(polygon[7])); std::size_t x0 = i * mesh_size; std::size_t y0 = j * mesh_size; std::size_t x1 = (i + 1) * mesh_size; std::size_t y1 = (j + 1) * mesh_size; x1 = std::min(x1, source.width()); y1 = std::min(y1, source.height()); agg::trans_affine tr(polygon, x0, y0, x1, y1); if (tr.is_valid()) { interpolator_type interpolator(tr); if (scaling_method == SCALING_NEAR) { using span_gen_type = typename detail::agg_scaling_traits::span_image_filter; span_gen_type sg(ia, interpolator); agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg); } else { using span_gen_type = typename detail::agg_scaling_traits::span_image_resample_affine; agg::image_filter_lut filter; detail::set_scaling_method(filter, scaling_method, filter_factor); boost::optional nodata; if (nodata_value) { nodata = safe_cast(*nodata_value); } span_gen_type sg(ia, interpolator, filter, nodata); agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg); } } } } } namespace detail { struct warp_image_visitor { warp_image_visitor(raster& target_raster, proj_transform const& prj_trans, box2d const& source_ext, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method, double filter_factor, boost::optional const& nodata_value) : target_raster_(target_raster) , prj_trans_(prj_trans) , source_ext_(source_ext) , offset_x_(offset_x) , offset_y_(offset_y) , mesh_size_(mesh_size) , scaling_method_(scaling_method) , filter_factor_(filter_factor) , nodata_value_(nodata_value) {} void operator()(image_null const&) const {} template void operator()(T const& source) const { using image_type = T; // source and target image data types must match if (target_raster_.data_.template is()) { image_type& target = util::get(target_raster_.data_); warp_image(target, source, prj_trans_, target_raster_.ext_, source_ext_, offset_x_, offset_y_, mesh_size_, scaling_method_, filter_factor_, nodata_value_); } } raster& target_raster_; proj_transform const& prj_trans_; box2d const& source_ext_; double offset_x_; double offset_y_; unsigned mesh_size_; scaling_method_e scaling_method_; double filter_factor_; boost::optional const& nodata_value_; }; } // namespace detail void reproject_and_scale_raster(raster& target, raster const& source, proj_transform const& prj_trans, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method, boost::optional const& nodata_value) { detail::warp_image_visitor warper(target, prj_trans, source.ext_, offset_x, offset_y, mesh_size, scaling_method, source.get_filter_factor(), nodata_value); util::apply_visitor(warper, source.data_); } void reproject_and_scale_raster(raster& target, raster const& source, proj_transform const& prj_trans, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method) { reproject_and_scale_raster(target, source, prj_trans, offset_x, offset_y, mesh_size, scaling_method, boost::optional()); } template MAPNIK_DECL void warp_image(image_rgba8&, image_rgba8 const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const&); template MAPNIK_DECL void warp_image(image_gray8&, image_gray8 const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const&); template MAPNIK_DECL void warp_image(image_gray16&, image_gray16 const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const&); template MAPNIK_DECL void warp_image(image_gray32f&, image_gray32f const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const&); } // namespace mapnik