/***************************************************************************** * * This file is part of Mapnik (c++ mapping toolkit) * * Copyright (C) 2021 Artem Pavlenko * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * *****************************************************************************/ // mapnik #include #include #include #include #include #include #include #include // stl #include #include #include #include "gdal_featureset.hpp" #include using mapnik::box2d; using mapnik::datasource_exception; using mapnik::feature_factory; using mapnik::feature_ptr; using mapnik::view_transform; #ifdef MAPNIK_LOG namespace { void get_overview_meta(GDALRasterBand* band) { int band_overviews = band->GetOverviewCount(); if (band_overviews > 0) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: " << band_overviews << " overviews found!"; for (int b = 0; b < band_overviews; b++) { GDALRasterBand* overview = band->GetOverview(b); MAPNIK_LOG_DEBUG(gdal) << "Overview= " << b << " Width=" << overview->GetXSize() << " Height=" << overview->GetYSize(); } } else { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: No overviews found!"; } int bsx, bsy; double scale; band->GetBlockSize(&bsx, &bsy); scale = band->GetScale(); MAPNIK_LOG_DEBUG(gdal) << "Block=" << bsx << "x" << bsy << " Scale=" << scale << " Type=" << GDALGetDataTypeName(band->GetRasterDataType()) << "Color=" << GDALGetColorInterpretationName(band->GetColorInterpretation()); } } // namespace #endif gdal_featureset::gdal_featureset(GDALDataset& dataset, int band, gdal_query q, mapnik::box2d extent, unsigned width, unsigned height, int nbands, double dx, double dy, boost::optional const& nodata, double nodata_tolerance, int64_t max_image_area) : dataset_(dataset) , ctx_(std::make_shared()) , band_(band) , gquery_(q) , raster_extent_(extent) , raster_width_(width) , raster_height_(height) , dx_(dx) , dy_(dy) , nbands_(nbands) , nodata_value_(nodata) , nodata_tolerance_(nodata_tolerance) , max_image_area_(max_image_area) , first_(true) { ctx_->push("nodata"); } gdal_featureset::~gdal_featureset() {} feature_ptr gdal_featureset::next() { if (first_) { first_ = false; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Next feature in Dataset=" << &dataset_; return mapnik::util::apply_visitor(query_dispatch(*this), gquery_); } return feature_ptr(); } void gdal_featureset::find_best_overview(int bandNumber, int ideal_width, int ideal_height, int& current_width, int& current_height) const { GDALRasterBand* band = dataset_.GetRasterBand(bandNumber); int band_overviews = band->GetOverviewCount(); if (band_overviews > 0) { for (int b = 0; b < band_overviews; b++) { GDALRasterBand* overview = band->GetOverview(b); int overview_width = overview->GetXSize(); int overview_height = overview->GetYSize(); if ((overview_width < current_width || overview_height < current_height) && ideal_width <= overview_width && ideal_height <= overview_height) { current_width = overview_width; current_height = overview_height; } } } } feature_ptr gdal_featureset::get_feature(mapnik::query const& q) { feature_ptr feature = feature_factory::create(ctx_, 1); int raster_has_nodata = 0; double raster_nodata = 0; GDALRasterBand* red = 0; GDALRasterBand* green = 0; GDALRasterBand* blue = 0; GDALRasterBand* alpha = 0; GDALRasterBand* grey = 0; CPLErr raster_io_error = CE_None; /* #ifdef MAPNIK_LOG double tr[6]; dataset_.GetGeoTransform(tr); const double dx = tr[1]; const double dy = tr[5]; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: dx_=" << dx_ << " dx=" << dx << " dy_=" << dy_ << "dy=" << dy; #endif */ view_transform t(raster_width_, raster_height_, raster_extent_, 0, 0); box2d intersect = raster_extent_.intersect(q.get_bbox()); box2d box = t.forward(intersect); double filter_factor = q.get_filter_factor(); // size of resized output pixel in source image domain double margin_x = 1.0 / (std::fabs(dx_) * std::get<0>(q.resolution())); double margin_y = 1.0 / (std::fabs(dy_) * std::get<1>(q.resolution())); MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: margin_x=" << margin_x; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: margin_y=" << margin_y; if (margin_x < 1) { margin_x = 1.0; } if (margin_y < 1) { margin_y = 1.0; } // select minimum raster containing whole box int x_off = static_cast(std::floor((box.minx() - margin_x) + .5)); int y_off = static_cast(std::floor((box.miny() - margin_y) + .5)); int end_x = static_cast(std::floor((box.maxx() + margin_x) + .5)); int end_y = static_cast(std::floor((box.maxy() + margin_y) + .5)); MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: x_off=" << x_off; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: y_off=" << y_off; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: end_x=" << end_x; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: end_y=" << end_y; // clip to available data if (x_off < 0) { x_off = 0; } if (y_off < 0) { y_off = 0; } if (end_x > (int)raster_width_) { end_x = raster_width_; } if (end_y > (int)raster_height_) { end_y = raster_height_; } // width and height of the portion of the source image we are requesting int width = end_x - x_off; int height = end_y - y_off; // In many cases we want GDAL to simply return the exact image so we // can handle resampling internally in mapnik. In other cases such as // when overviews exist or when the image allocated might be too large // we want to utilize some resampling in GDAL instead. int im_height = height; int im_width = width; double im_offset_x = x_off; double im_offset_y = y_off; int current_width = static_cast(raster_width_); int current_height = static_cast(raster_height_); // loop through overviews -- snap up in resolution to closest overview // if necessary we find an image size that most resembles // the resolution of our output image. const double width_res = std::get<0>(q.resolution()); const double height_res = std::get<1>(q.resolution()); const int ideal_raster_width = static_cast(std::floor(raster_extent_.width() * width_res * filter_factor) + .5); const int ideal_raster_height = static_cast(std::floor(raster_extent_.height() * height_res * filter_factor) + .5); if (band_ > 0 && band_ < nbands_) { find_best_overview(band_, ideal_raster_width, ideal_raster_height, current_width, current_height); } else { for (int i = 0; i < nbands_; ++i) { find_best_overview(i + 1, ideal_raster_width, ideal_raster_height, current_width, current_height); } } if (current_width != (int)raster_width_ || current_height != (int)raster_height_) { if (current_width != (int)raster_width_) { double ratio = (double)current_width / (double)raster_width_; im_offset_x = std::floor(ratio * im_offset_x); im_width = static_cast(std::ceil(ratio * im_width)); } if (current_height != (int)raster_height_) { double ratio = (double)current_height / (double)raster_height_; im_offset_y = std::floor(ratio * im_offset_y); im_height = static_cast(std::ceil(ratio * im_height)); } } int64_t im_area = (int64_t)im_width * (int64_t)im_height; if (im_area > max_image_area_) { int adjusted_width = static_cast(std::round(std::sqrt(max_image_area_ * ((double)im_width / (double)im_height)))); int adjusted_height = static_cast(std::round(std::sqrt(max_image_area_ * ((double)im_height / (double)im_width)))); if (adjusted_width < 1) { adjusted_width = 1; } if (adjusted_height < 1) { adjusted_height = 1; } double ratio_x = (double)adjusted_width / (double)im_width; double ratio_y = (double)adjusted_height / (double)im_height; im_offset_x = ratio_x * im_offset_x; im_offset_y = ratio_y * im_offset_y; im_width = adjusted_width; im_height = adjusted_height; current_width = static_cast(std::floor((ratio_x * current_width) + 0.5)); current_height = static_cast(std::floor((ratio_y * current_height) + 0.5)); } // calculate actual box2d of returned raster view_transform t2(current_width, current_height, raster_extent_, 0, 0); box2d feature_raster_extent(im_offset_x, im_offset_y, im_offset_x + im_width, im_offset_y + im_height); MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Feature Raster extent=" << feature_raster_extent; feature_raster_extent = t2.backward(feature_raster_extent); MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Raster extent=" << raster_extent_; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Feature Raster extent=" << feature_raster_extent; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: View extent=" << intersect; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Query resolution=" << std::get<0>(q.resolution()) << "," << std::get<1>(q.resolution()); MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: StartX=" << x_off << " StartY=" << y_off << " Width=" << width << " Height=" << height; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: IM StartX=" << im_offset_x << " StartY=" << im_offset_y << " Width=" << im_width << " Height=" << im_height; if (width > 0 && height > 0) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Requested Image Size=(" << width << "," << height << ")"; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Image Size=(" << im_width << "," << im_height << ")"; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Reading band=" << band_; if (band_ > 0) // we are querying a single band { GDALRasterBand* band = dataset_.GetRasterBand(band_); if (band_ > nbands_) { std::ostringstream s; s << "GDAL Plugin: " << band_ << " is an invalid band, dataset only has " << nbands_ << "bands"; throw datasource_exception(s.str()); } GDALDataType band_type = band->GetRasterDataType(); switch (band_type) { case GDT_Byte: { mapnik::image_gray8 image(im_width, im_height); image.set(std::numeric_limits::max()); raster_nodata = band->GetNoDataValue(&raster_has_nodata); raster_io_error = band->RasterIO(GF_Read, x_off, y_off, width, height, image.data(), image.width(), image.height(), GDT_Byte, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } mapnik::raster_ptr raster = std::make_shared(feature_raster_extent, intersect, image, filter_factor); // set nodata value to be used in raster colorizer if (nodata_value_) raster->set_nodata(*nodata_value_); else raster->set_nodata(raster_nodata); feature->set_raster(raster); break; } case GDT_Float64: case GDT_Float32: { mapnik::image_gray32f image(im_width, im_height); image.set(std::numeric_limits::max()); raster_nodata = band->GetNoDataValue(&raster_has_nodata); raster_io_error = band->RasterIO(GF_Read, x_off, y_off, width, height, image.data(), image.width(), image.height(), GDT_Float32, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } mapnik::raster_ptr raster = std::make_shared(feature_raster_extent, intersect, image, filter_factor); // set nodata value to be used in raster colorizer if (nodata_value_) raster->set_nodata(*nodata_value_); else raster->set_nodata(raster_nodata); feature->set_raster(raster); break; } case GDT_UInt16: { mapnik::image_gray16 image(im_width, im_height); image.set(std::numeric_limits::max()); raster_nodata = band->GetNoDataValue(&raster_has_nodata); raster_io_error = band->RasterIO(GF_Read, x_off, y_off, width, height, image.data(), image.width(), image.height(), GDT_UInt16, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } mapnik::raster_ptr raster = std::make_shared(feature_raster_extent, intersect, image, filter_factor); // set nodata value to be used in raster colorizer if (nodata_value_) raster->set_nodata(*nodata_value_); else raster->set_nodata(raster_nodata); feature->set_raster(raster); break; } case GDT_Int32: { mapnik::image_gray32s image(im_width, im_height); image.set(std::numeric_limits::max()); raster_nodata = band->GetNoDataValue(&raster_has_nodata); raster_io_error = band->RasterIO(GF_Read, x_off, y_off, width, height, image.data(), image.width(), image.height(), GDT_Int32, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } mapnik::raster_ptr raster = std::make_shared(feature_raster_extent, intersect, image, filter_factor); // set nodata value to be used in raster colorizer if (nodata_value_) raster->set_nodata(*nodata_value_); else raster->set_nodata(raster_nodata); feature->set_raster(raster); break; } default: case GDT_Int16: { mapnik::image_gray16s image(im_width, im_height); image.set(std::numeric_limits::max()); raster_nodata = band->GetNoDataValue(&raster_has_nodata); raster_io_error = band->RasterIO(GF_Read, x_off, y_off, width, height, image.data(), image.width(), image.height(), GDT_Int16, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } mapnik::raster_ptr raster = std::make_shared(feature_raster_extent, intersect, image, filter_factor); // set nodata value to be used in raster colorizer if (nodata_value_) raster->set_nodata(*nodata_value_); else raster->set_nodata(raster_nodata); feature->set_raster(raster); break; } } } else // working with all bands { mapnik::image_rgba8 image(im_width, im_height); image.set(std::numeric_limits::max()); for (int i = 0; i < nbands_; ++i) { GDALRasterBand* band = dataset_.GetRasterBand(i + 1); #ifdef MAPNIK_LOG get_overview_meta(band); #endif GDALColorInterp color_interp = band->GetColorInterpretation(); switch (color_interp) { case GCI_RedBand: red = band; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found red band"; break; case GCI_GreenBand: green = band; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found green band"; break; case GCI_BlueBand: blue = band; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found blue band"; break; case GCI_AlphaBand: alpha = band; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found alpha band"; break; case GCI_GrayIndex: grey = band; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found gray band"; break; case GCI_PaletteIndex: { grey = band; #ifdef MAPNIK_LOG MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found gray band, and colortable..."; GDALColorTable* color_table = band->GetColorTable(); if (color_table) { int count = color_table->GetColorEntryCount(); MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Color Table count=" << count; for (int j = 0; j < count; j++) { const GDALColorEntry* ce = color_table->GetColorEntry(j); if (!ce) continue; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Color entry RGB=" << ce->c1 << "," << ce->c2 << "," << ce->c3; } } #endif break; } case GCI_Undefined: #if GDAL_VERSION_NUM <= 1730 if (nbands_ == 4) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found undefined band (assumming alpha band)"; alpha = band; } else { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found undefined band (assumming gray band)"; grey = band; } #else MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Found undefined band (assumming gray band)"; grey = band; #endif break; default: MAPNIK_LOG_WARN(gdal) << "gdal_featureset: Band type unknown!"; break; } } if (red && green && blue) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Processing rgb bands..."; raster_nodata = red->GetNoDataValue(&raster_has_nodata); GDALColorTable* color_table = red->GetColorTable(); bool has_nodata = nodata_value_ || raster_has_nodata; // we can deduce the alpha channel from nodata in the Byte case // by reusing the reading of R,G,B bands directly if (has_nodata && !color_table && red->GetRasterDataType() == GDT_Byte) { double apply_nodata = nodata_value_ ? *nodata_value_ : raster_nodata; // read the data in and create an alpha channel from the nodata values // TODO - we assume here the nodata value for the red band applies to all bands // more details about this at http://trac.osgeo.org/gdal/ticket/2734 float* imageData = (float*)image.bytes(); raster_io_error = red->RasterIO(GF_Read, x_off, y_off, width, height, imageData, image.width(), image.height(), GDT_Float32, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } int len = image.width() * image.height(); for (int i = 0; i < len; ++i) { if (std::fabs(apply_nodata - imageData[i]) < nodata_tolerance_) { *reinterpret_cast(&imageData[i]) = 0; } else { *reinterpret_cast(&imageData[i]) = 0xFFFFFFFF; } } } // Use dataset RasterIO in priority in 99.9% of the cases if (red->GetBand() == 1 && green->GetBand() == 2 && blue->GetBand() == 3) { int nBandsToRead = 3; if (alpha != nullptr && alpha->GetBand() == 4 && !raster_has_nodata) { nBandsToRead = 4; alpha = nullptr; // to avoid reading it again afterwards } raster_io_error = dataset_.RasterIO(GF_Read, x_off, y_off, width, height, image.bytes(), image.width(), image.height(), GDT_Byte, nBandsToRead, nullptr, 4, 4 * image.width(), 1); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } } else { raster_io_error = red->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 0, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } raster_io_error = green->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 1, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } raster_io_error = blue->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 2, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } } // In the case we skipped initializing the alpha channel if (has_nodata && !color_table && red->GetRasterDataType() == GDT_Byte) { double apply_nodata = nodata_value_ ? *nodata_value_ : raster_nodata; if (apply_nodata >= 0 && apply_nodata <= 255) { int len = image.width() * image.height(); GByte* pabyBytes = (GByte*)image.bytes(); for (int i = 0; i < len; ++i) { // TODO - we assume here the nodata value for the red band applies to all bands // more details about this at http://trac.osgeo.org/gdal/ticket/2734 if (std::fabs(apply_nodata - pabyBytes[4 * i]) < nodata_tolerance_) pabyBytes[4 * i + 3] = 0; else pabyBytes[4 * i + 3] = 255; } } } } else if (grey) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Processing gray band..."; raster_nodata = grey->GetNoDataValue(&raster_has_nodata); GDALColorTable* color_table = grey->GetColorTable(); bool has_nodata = nodata_value_ || raster_has_nodata; if (!color_table && has_nodata) { double apply_nodata = nodata_value_ ? *nodata_value_ : raster_nodata; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: applying nodata value for layer=" << apply_nodata; // first read the data in and create an alpha channel from the nodata values float* imageData = (float*)image.bytes(); raster_io_error = grey->RasterIO(GF_Read, x_off, y_off, width, height, imageData, image.width(), image.height(), GDT_Float32, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } int len = image.width() * image.height(); for (int i = 0; i < len; ++i) { if (std::fabs(apply_nodata - imageData[i]) < nodata_tolerance_) { *reinterpret_cast(&imageData[i]) = 0; } else { *reinterpret_cast(&imageData[i]) = 0xFFFFFFFF; } } } raster_io_error = grey->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 0, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } raster_io_error = grey->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 1, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } raster_io_error = grey->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 2, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } if (color_table) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: Loading color table..."; for (unsigned y = 0; y < image.height(); ++y) { unsigned int* row = image.get_row(y); for (unsigned x = 0; x < image.width(); ++x) { unsigned value = row[x] & 0xff; const GDALColorEntry* ce = color_table->GetColorEntry(value); if (ce) { row[x] = (ce->c4 << 24) | (ce->c3 << 16) | (ce->c2 << 8) | (ce->c1); } else { // make lacking color entry fully alpha // note - gdal_translate makes black row[x] = 0; } } } } } if (alpha) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: processing alpha band..."; if (!raster_has_nodata || (red && green && blue)) { raster_io_error = alpha->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 3, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } } else { MAPNIK_LOG_WARN(gdal) << "warning: nodata value (" << raster_nodata << ") used to set transparency instead of alpha band"; } } else if (dataset_.GetRasterCount() > 0 && dataset_.GetRasterBand(1)) { // Check if we have a non-alpha mask band (for example a TIFF internal mask) int flags = dataset_.GetRasterBand(1)->GetMaskFlags(); GDALRasterBand* mask = 0; if (flags == GMF_PER_DATASET) { mask = dataset_.GetRasterBand(1)->GetMaskBand(); } if (mask) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: found and processing mask band..."; if (!raster_has_nodata) { raster_io_error = mask->RasterIO(GF_Read, x_off, y_off, width, height, image.bytes() + 3, image.width(), image.height(), GDT_Byte, 4, 4 * image.width()); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } } else { MAPNIK_LOG_WARN(gdal) << "warning: nodata value (" << raster_nodata << ") used to set transparency instead of mask band"; } } } mapnik::raster_ptr raster = std::make_shared(feature_raster_extent, intersect, image, filter_factor); // set nodata value to be used in raster colorizer if (nodata_value_) { raster->set_nodata(*nodata_value_); } else if (raster_has_nodata && !std::isnan(raster_nodata)) { raster->set_nodata(raster_nodata); } feature->set_raster(raster); } // report actual/original source nodata in feature attributes if (raster_has_nodata && !std::isnan(raster_nodata)) { feature->put("nodata", raster_nodata); } return feature; } return feature_ptr(); } feature_ptr gdal_featureset::get_feature_at_point(mapnik::coord2d const& pt) { CPLErr raster_io_error = CE_None; if (band_ > 0) { unsigned raster_xsize = dataset_.GetRasterXSize(); unsigned raster_ysize = dataset_.GetRasterYSize(); double gt[6]; dataset_.GetGeoTransform(gt); double det = gt[1] * gt[5] - gt[2] * gt[4]; // subtract half a pixel width & height because gdal coord reference // is the top-left corner of a pixel, not the center. double X = pt.x - gt[0] - gt[1] / 2; double Y = pt.y - gt[3] - gt[5] / 2; double det1 = gt[1] * Y + gt[4] * X; double det2 = gt[2] * Y + gt[5] * X; unsigned x = static_cast(det2 / det); unsigned y = static_cast(det1 / det); if (x < raster_xsize && y < raster_ysize) { MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: pt.x=" << pt.x << " pt.y=" << pt.y; MAPNIK_LOG_DEBUG(gdal) << "gdal_featureset: x=" << x << " y=" << y; GDALRasterBand* band = dataset_.GetRasterBand(band_); int raster_has_nodata; double nodata = band->GetNoDataValue(&raster_has_nodata); double value; raster_io_error = band->RasterIO(GF_Read, x, y, 1, 1, &value, 1, 1, GDT_Float64, 0, 0); if (raster_io_error == CE_Failure) { throw datasource_exception(CPLGetLastErrorMsg()); } if (!raster_has_nodata || value != nodata) { // construct feature feature_ptr feature = feature_factory::create(ctx_, 1); feature->set_geometry(mapnik::geometry::point(pt.x, pt.y)); feature->put_new("value", value); if (raster_has_nodata && !std::isnan(nodata)) { feature->put_new("nodata", nodata); } return feature; } } } return feature_ptr(); }