/***************************************************************************** * * This file is part of Mapnik (c++ mapping toolkit) * * Copyright (C) 2017 Artem Pavlenko * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * *****************************************************************************/ // mapnik #include #include #include extern "C" { #include } // stl #include #include namespace mapnik { namespace impl { static toff_t tiff_seek_proc(thandle_t handle, toff_t off, int whence) { std::istream* in = reinterpret_cast(handle); switch(whence) { case SEEK_SET: in->seekg(off, std::ios_base::beg); break; case SEEK_CUR: in->seekg(off, std::ios_base::cur); break; case SEEK_END: in->seekg(off, std::ios_base::end); break; } return static_cast(in->tellg()); } static int tiff_close_proc(thandle_t) { return 0; } static toff_t tiff_size_proc(thandle_t handle) { std::istream* in = reinterpret_cast(handle); std::ios::pos_type pos = in->tellg(); in->seekg(0, std::ios::end); std::ios::pos_type len = in->tellg(); in->seekg(pos); return static_cast(len); } static tsize_t tiff_read_proc(thandle_t handle, tdata_t buf, tsize_t size) { std::istream * in = reinterpret_cast(handle); std::streamsize request_size = size; if (static_cast(request_size) != size) return static_cast(-1); in->read(reinterpret_cast(buf), request_size); return static_cast(in->gcount()); } static tsize_t tiff_write_proc(thandle_t , tdata_t , tsize_t) { return 0; } static void tiff_unmap_proc(thandle_t, tdata_t, toff_t) { } static int tiff_map_proc(thandle_t, tdata_t* , toff_t*) { return 0; } } template class tiff_reader : public image_reader { using tiff_ptr = std::shared_ptr; using source_type = T; using input_stream = std::istream; struct tiff_closer { void operator() (TIFF * tif) { if (tif != 0) { TIFFClose(tif); } } }; private: source_type source_; input_stream stream_; tiff_ptr tif_; int read_method_; int rows_per_strip_; int tile_width_; int tile_height_; std::size_t width_; std::size_t height_; boost::optional > bbox_; unsigned bps_; unsigned sample_format_; unsigned photometric_; unsigned bands_; unsigned planar_config_; unsigned compression_; bool has_alpha_; bool is_tiled_; public: enum TiffType { generic=1, stripped, tiled }; explicit tiff_reader(std::string const& filename); tiff_reader(char const* data, std::size_t size); virtual ~tiff_reader(); unsigned width() const final; unsigned height() const final; boost::optional > bounding_box() const final; inline bool has_alpha() const final { return has_alpha_; } void read(unsigned x,unsigned y,image_rgba8& image) final; image_any read(unsigned x, unsigned y, unsigned width, unsigned height) final; // methods specific to tiff reader unsigned bits_per_sample() const { return bps_; } unsigned sample_format() const { return sample_format_; } unsigned photometric() const { return photometric_; } bool is_tiled() const { return is_tiled_; } unsigned tile_width() const { return tile_width_; } unsigned tile_height() const { return tile_height_; } unsigned rows_per_strip() const { return rows_per_strip_; } unsigned planar_config() const { return planar_config_; } unsigned compression() const { return compression_; } private: tiff_reader(const tiff_reader&); tiff_reader& operator=(const tiff_reader&); void init(); template void read_generic(std::size_t x,std::size_t y, ImageData & image); template void read_stripped(std::size_t x,std::size_t y, ImageData & image); template void read_tiled(std::size_t x,std::size_t y, ImageData & image); template image_any read_any_gray(std::size_t x, std::size_t y, std::size_t width, std::size_t height); TIFF* open(std::istream & input); }; namespace { image_reader* create_tiff_reader(std::string const& filename) { return new tiff_reader(filename); } image_reader* create_tiff_reader2(char const * data, std::size_t size) { return new tiff_reader(data, size); } const bool registered = register_image_reader("tiff",create_tiff_reader); const bool registered2 = register_image_reader("tiff", create_tiff_reader2); } template tiff_reader::tiff_reader(std::string const& filename) : source_(), stream_(&source_), tif_(nullptr), read_method_(generic), rows_per_strip_(0), tile_width_(0), tile_height_(0), width_(0), height_(0), bps_(0), sample_format_(SAMPLEFORMAT_UINT), photometric_(0), bands_(1), planar_config_(PLANARCONFIG_CONTIG), compression_(COMPRESSION_NONE), has_alpha_(false), is_tiled_(false) { source_.open(filename, std::ios_base::in | std::ios_base::binary); if (!stream_) throw image_reader_exception("TIFF reader: cannot open file "+ filename); init(); } template tiff_reader::tiff_reader(char const* data, std::size_t size) : source_(data, size), stream_(&source_), tif_(nullptr), read_method_(generic), rows_per_strip_(0), tile_width_(0), tile_height_(0), width_(0), height_(0), bps_(0), sample_format_(SAMPLEFORMAT_UINT), photometric_(0), bands_(1), planar_config_(PLANARCONFIG_CONTIG), compression_(COMPRESSION_NONE), has_alpha_(false), is_tiled_(false) { if (!stream_) throw image_reader_exception("TIFF reader: cannot open image stream "); init(); } template void tiff_reader::init() { // avoid calling TIFFs global structures TIFFSetWarningHandler(0); TIFFSetErrorHandler(0); TIFF* tif = open(stream_); if (!tif) throw image_reader_exception("Can't open tiff file"); TIFFGetField(tif,TIFFTAG_BITSPERSAMPLE,&bps_); TIFFGetField(tif,TIFFTAG_SAMPLEFORMAT,&sample_format_); TIFFGetField(tif,TIFFTAG_PHOTOMETRIC,&photometric_); TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &bands_); MAPNIK_LOG_DEBUG(tiff_reader) << "bits per sample: " << bps_ ; MAPNIK_LOG_DEBUG(tiff_reader) << "sample format: " << sample_format_ ; MAPNIK_LOG_DEBUG(tiff_reader) << "photometric: " << photometric_ ; MAPNIK_LOG_DEBUG(tiff_reader) << "bands: " << bands_ ; TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &width_); TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &height_); TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &planar_config_); TIFFGetField(tif, TIFFTAG_COMPRESSION, &compression_ ); std::uint16_t orientation; if (TIFFGetField(tif, TIFFTAG_ORIENTATION, &orientation) == 0) { orientation = 1; } MAPNIK_LOG_DEBUG(tiff_reader) << "orientation: " << orientation ; MAPNIK_LOG_DEBUG(tiff_reader) << "planar-config: " << planar_config_ ; is_tiled_ = TIFFIsTiled(tif); if (is_tiled_) { TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tile_width_); TIFFGetField(tif, TIFFTAG_TILELENGTH, &tile_height_); MAPNIK_LOG_DEBUG(tiff_reader) << "tiff is tiled"; read_method_ = tiled; } else if (TIFFGetField(tif, TIFFTAG_ROWSPERSTRIP, &rows_per_strip_) != 0) { MAPNIK_LOG_DEBUG(tiff_reader) << "tiff is stripped"; read_method_ = stripped; } //TIFFTAG_EXTRASAMPLES uint16 extrasamples = 0; uint16* sampleinfo = nullptr; if (TIFFGetField(tif, TIFFTAG_EXTRASAMPLES, &extrasamples, &sampleinfo)) { has_alpha_ = true; if (extrasamples > 0 && sampleinfo[0] == EXTRASAMPLE_UNSPECIFIED) { throw image_reader_exception("Unspecified provided for extra samples to tiff reader."); } } // Try extracting bounding box from geoTIFF tags { uint16 count = 0; double *pixelscale; double *tilepoint; if (TIFFGetField(tif, 33550, &count, &pixelscale) == 1 && count == 3 && TIFFGetField(tif, 33922 , &count, &tilepoint) == 1 && count == 6) { MAPNIK_LOG_DEBUG(tiff_reader) << "PixelScale:" << pixelscale[0] << "," << pixelscale[1] << "," << pixelscale[2] ; MAPNIK_LOG_DEBUG(tiff_reader) << "TilePoint:" << tilepoint[0] << "," << tilepoint[1] << "," << tilepoint[2] ; MAPNIK_LOG_DEBUG(tiff_reader) << " " << tilepoint[3] << "," << tilepoint[4] << "," << tilepoint[5] ; // assuming upper-left double lox = tilepoint[3]; double loy = tilepoint[4]; double hix = lox + pixelscale[0] * width_; double hiy = loy - pixelscale[1] * height_; bbox_.reset(box2d(lox, loy, hix, hiy)); MAPNIK_LOG_DEBUG(tiff_reader) << "Bounding Box:" << *bbox_ ; } } if (!is_tiled_ && compression_ == COMPRESSION_NONE && planar_config_ == PLANARCONFIG_CONTIG) { if (height_ > 128 * 1024 * 1024) { std::size_t line_size = (bands_ * width_ * bps_ + 7) / 8; std::size_t default_strip_height = 8192 / line_size; if (default_strip_height == 0) default_strip_height = 1; std::size_t num_strips = height_ / default_strip_height; if (num_strips > 128 * 1024 * 1024) { throw image_reader_exception("Can't allocate tiff"); } } } } template tiff_reader::~tiff_reader() { } template unsigned tiff_reader::width() const { return width_; } template unsigned tiff_reader::height() const { return height_; } template boost::optional > tiff_reader::bounding_box() const { return bbox_; } template void tiff_reader::read(unsigned x,unsigned y,image_rgba8& image) { if (read_method_==stripped) { read_stripped(static_cast(x),static_cast(y),image); } else if (read_method_==tiled) { read_tiled(static_cast(x),static_cast(y),image); } else { read_generic(static_cast(x),static_cast(y),image); } } template template image_any tiff_reader::read_any_gray(std::size_t x0, std::size_t y0, std::size_t width, std::size_t height) { using image_type = ImageData; using pixel_type = typename image_type::pixel_type; if (read_method_ == tiled) { image_type data(width, height); read_tiled(x0, y0, data); return image_any(std::move(data)); } // TODO: temp disable and default to `scanline` method for stripped images. else if (read_method_ == stripped) { image_type data(width, height); read_stripped(x0, y0, data); return image_any(std::move(data)); } else { TIFF* tif = open(stream_); if (tif) { image_type data(width, height); std::size_t block_size = rows_per_strip_ > 0 ? rows_per_strip_ : tile_height_ ; std::size_t start_y = y0 - y0 % block_size; std::size_t end_y = std::min(y0 + height, height_); std::size_t start_x = x0; std::size_t end_x = std::min(x0 + width, width_); std::size_t element_size = sizeof(pixel_type); MAPNIK_LOG_DEBUG(tiff_reader) << "SCANLINE SIZE=" << TIFFScanlineSize(tif); std::size_t size_to_allocate = (TIFFScanlineSize(tif) + element_size - 1)/element_size; std::unique_ptr const scanline(new pixel_type[size_to_allocate]); if (planar_config_ == PLANARCONFIG_CONTIG) { for (std::size_t y = start_y; y < end_y; ++y) { // we have to read all scanlines sequentially from start_y // to be able to use scanline interface with compressed blocks. if (-1 != TIFFReadScanline(tif, scanline.get(), y) && (y >= y0)) { pixel_type * row = data.get_row(y - y0); if (bands_ == 1) { std::transform(scanline.get() + start_x, scanline.get() + end_x, row, [](pixel_type const& p) { return p;}); } else if (size_to_allocate == bands_ * width_) { // bands_ > 1 => packed bands in grayscale image e.g an extra alpha channel. // Just pick first one for now. pixel_type * buf = scanline.get() + start_x * bands_; std::size_t x_index = 0; for (std::size_t j = 0; j < end_x * bands_; ++j) { if (x_index >= width) break; if (j % bands_ == 0) { row[x_index++] = buf[j]; } } } } } } else if (planar_config_ == PLANARCONFIG_SEPARATE) { for (std::size_t s = 0 ; s < bands_ ; ++s) { for (std::size_t y = start_y; y < end_y; ++y) { if (-1 != TIFFReadScanline(tif, scanline.get(), y) && (y >= y0)) { pixel_type * row = data.get_row(y - y0); std::transform(scanline.get() + start_x, scanline.get() + end_x, row, [](pixel_type const& p) { return p;}); } } } } return image_any(std::move(data)); } } return image_any(); } namespace detail { struct rgb8 { std::uint8_t r; std::uint8_t g; std::uint8_t b; }; struct rgb8_to_rgba8 { std::uint32_t operator() (rgb8 const& in) const { return ((255 << 24) | (in.r) | (in.g << 8) | (in.b << 16)); } }; template struct tiff_reader_traits { using image_type = T; using pixel_type = typename image_type::pixel_type; constexpr static bool reverse = false; static bool read_tile(TIFF * tif, std::size_t x, std::size_t y, pixel_type* buf, std::size_t tile_width, std::size_t tile_height) { std::uint32_t tile_size = TIFFTileSize(tif); return (TIFFReadEncodedTile(tif, TIFFComputeTile(tif, x, y, 0, 0), buf, tile_size) != -1); } static bool read_strip(TIFF * tif, std::size_t y, std::size_t rows_per_strip, std::size_t strip_width, pixel_type * buf) { return (TIFFReadEncodedStrip(tif, y/rows_per_strip, buf, -1) != -1); } }; // default specialization that expands into RGBA template <> struct tiff_reader_traits { using image_type = image_rgba8; using pixel_type = std::uint32_t; constexpr static bool reverse = true; static bool read_tile(TIFF * tif, std::size_t x0, std::size_t y0, pixel_type* buf, std::size_t tile_width, std::size_t tile_height) { return (TIFFReadRGBATile(tif, x0, y0, buf) != 0); } static bool read_strip(TIFF * tif, std::size_t y, std::size_t rows_per_strip, std::size_t strip_width, pixel_type * buf) { return (TIFFReadRGBAStrip(tif, y, buf) != 0); } }; } template image_any tiff_reader::read(unsigned x, unsigned y, unsigned width, unsigned height) { if (width > 10000 || height > 10000) { throw image_reader_exception("Can't allocate tiff > 10000x10000"); } std::size_t x0 = static_cast(x); std::size_t y0 = static_cast(y); switch (photometric_) { case PHOTOMETRIC_MINISBLACK: case PHOTOMETRIC_MINISWHITE: { switch (bps_) { case 8: { switch (sample_format_) { case SAMPLEFORMAT_UINT: { return read_any_gray(x0, y0, width, height); } case SAMPLEFORMAT_INT: { return read_any_gray(x0, y0, width, height); } default: { throw image_reader_exception("tiff_reader: This sample format is not supported for this bits per sample"); } } } case 16: { switch (sample_format_) { case SAMPLEFORMAT_UINT: { return read_any_gray(x0, y0, width, height); } case SAMPLEFORMAT_INT: { return read_any_gray(x0, y0, width, height); } default: { throw image_reader_exception("tiff_reader: This sample format is not supported for this bits per sample"); } } } case 32: { switch (sample_format_) { case SAMPLEFORMAT_UINT: { return read_any_gray(x0, y0, width, height); } case SAMPLEFORMAT_INT: { return read_any_gray(x0, y0, width, height); } case SAMPLEFORMAT_IEEEFP: { return read_any_gray(x0, y0, width, height); } default: { throw image_reader_exception("tiff_reader: This sample format is not supported for this bits per sample"); } } } case 64: { switch (sample_format_) { case SAMPLEFORMAT_UINT: { return read_any_gray(x0, y0, width, height); } case SAMPLEFORMAT_INT: { return read_any_gray(x0, y0, width, height); } case SAMPLEFORMAT_IEEEFP: { return read_any_gray(x0, y0, width, height); } default: { throw image_reader_exception("tiff_reader: This sample format is not supported for this bits per sample"); } } } } } default: { //PHOTOMETRIC_PALETTE = 3; //PHOTOMETRIC_MASK = 4; //PHOTOMETRIC_SEPARATED = 5; //PHOTOMETRIC_YCBCR = 6; //PHOTOMETRIC_CIELAB = 8; //PHOTOMETRIC_ICCLAB = 9; //PHOTOMETRIC_ITULAB = 10; //PHOTOMETRIC_LOGL = 32844; //PHOTOMETRIC_LOGLUV = 32845; image_rgba8 data(width,height, true, true); read(x0, y0, data); return image_any(std::move(data)); } } return image_any(); } template template void tiff_reader::read_generic(std::size_t, std::size_t, ImageData &) { throw image_reader_exception("tiff_reader: TODO - tiff is not stripped or tiled"); } template template void tiff_reader::read_tiled(std::size_t x0,std::size_t y0, ImageData & image) { using pixel_type = typename detail::tiff_reader_traits::pixel_type; TIFF* tif = open(stream_); if (tif) { std::uint32_t tile_size = TIFFTileSize(tif); std::unique_ptr tile(new pixel_type[tile_size]); std::size_t width = image.width(); std::size_t height = image.height(); std::size_t start_y = (y0 / tile_height_) * tile_height_; std::size_t end_y = ((y0 + height) / tile_height_ + 1) * tile_height_; std::size_t start_x = (x0 / tile_width_) * tile_width_; std::size_t end_x = ((x0 + width) / tile_width_ + 1) * tile_width_; end_y = std::min(end_y, height_); end_x = std::min(end_x, width_); bool pick_first_band = (bands_ > 1) && (tile_size / (tile_width_ * tile_height_ * sizeof(pixel_type)) == bands_); for (std::size_t y = start_y; y < end_y; y += tile_height_) { std::size_t ty0 = std::max(y0, y) - y; std::size_t ty1 = std::min(height + y0, y + tile_height_) - y; for (std::size_t x = start_x; x < end_x; x += tile_width_) { if (!detail::tiff_reader_traits::read_tile(tif, x, y, tile.get(), tile_width_, tile_height_)) { MAPNIK_LOG_DEBUG(tiff_reader) << "read_tile(...) failed at " << x << "/" << y << " for " << width_ << "/" << height_ << "\n"; break; } if (pick_first_band) { std::uint32_t size = tile_width_ * tile_height_ * sizeof(pixel_type); for (std::uint32_t n = 0; n < size; ++n) { tile[n] = tile[n * bands_]; } } std::size_t tx0 = std::max(x0, x); std::size_t tx1 = std::min(width + x0, x + tile_width_); std::size_t row_index = y + ty0 - y0; if (detail::tiff_reader_traits::reverse) { for (std::size_t ty = ty0; ty < ty1; ++ty, ++row_index) { // This is in reverse because the TIFFReadRGBATile reads are inverted image.set_row(row_index, tx0 - x0, tx1 - x0, &tile[(tile_height_ - ty - 1) * tile_width_ + tx0 - x]); } } else { for (std::size_t ty = ty0; ty < ty1; ++ty, ++row_index) { image.set_row(row_index, tx0 - x0, tx1 - x0, &tile[ty * tile_width_ + tx0 - x]); } } } } } } template template void tiff_reader::read_stripped(std::size_t x0, std::size_t y0, ImageData & image) { using pixel_type = typename detail::tiff_reader_traits::pixel_type; TIFF* tif = open(stream_); if (tif) { std::uint32_t strip_size = TIFFStripSize(tif); std::unique_ptr strip(new pixel_type[strip_size]); std::size_t width = image.width(); std::size_t height = image.height(); std::size_t start_y = (y0 / rows_per_strip_) * rows_per_strip_; std::size_t end_y = std::min(y0 + height, height_); std::size_t tx0, tx1, ty0, ty1; tx0 = x0; tx1 = std::min(width + x0, width_); std::size_t row = 0; bool pick_first_band = (bands_ > 1) && (strip_size / (width_ * rows_per_strip_ * sizeof(pixel_type)) == bands_); for (std::size_t y = start_y; y < end_y; y += rows_per_strip_) { ty0 = std::max(y0, y) - y; ty1 = std::min(end_y, y + rows_per_strip_) - y; if (!detail::tiff_reader_traits::read_strip(tif, y, rows_per_strip_, width_, strip.get())) { MAPNIK_LOG_DEBUG(tiff_reader) << "TIFFRead(Encoded|RGBA)Strip failed at " << y << " for " << width_ << "/" << height_ << "\n"; break; } if (pick_first_band) { std::uint32_t size = width_ * rows_per_strip_ * sizeof(pixel_type); for (std::uint32_t n = 0; n < size; ++n) { strip[n] = strip[bands_ * n]; } } if (detail::tiff_reader_traits::reverse) { std::size_t num_rows = std::min(end_y - y, static_cast(rows_per_strip_)); for (std::size_t ty = ty0; ty < ty1; ++ty) { // This is in reverse because the TIFFReadRGBAStrip reads are inverted image.set_row(row++, tx0 - x0, tx1 - x0, &strip[(num_rows - ty - 1) * width_ + tx0]); } } else { for (std::size_t ty = ty0; ty < ty1; ++ty) { image.set_row(row++, tx0 - x0, tx1 - x0, &strip[ty * width_ + tx0]); } } } } } template TIFF* tiff_reader::open(std::istream & input) { if (!tif_) { tif_ = tiff_ptr(TIFFClientOpen("tiff_input_stream", "rcm", reinterpret_cast(&input), impl::tiff_read_proc, impl::tiff_write_proc, impl::tiff_seek_proc, impl::tiff_close_proc, impl::tiff_size_proc, impl::tiff_map_proc, impl::tiff_unmap_proc), tiff_closer()); } return tif_.get(); } } // namespace mapnik