/***************************************************************************** * * This file is part of Mapnik (c++ mapping toolkit) * * Copyright (C) 2006 Artem Pavlenko * Copyright (C) 2006 10East Corp. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * *****************************************************************************/ //$Id$ //mapnik #include #include #include // agg #include "agg_path_length.h" #include "agg_conv_clip_polyline.h" // boost #include #include #include #include #include //stl #include #include #ifndef M_PI #define M_PI 3.14159265358979323846 #endif namespace mapnik { placement::placement(string_info & info_, shield_symbolizer const& sym) : info(info_), displacement_(sym.get_displacement()), label_placement(sym.get_label_placement()), wrap_width(sym.get_wrap_width()), text_ratio(sym.get_text_ratio()), label_spacing(sym.get_label_spacing()), label_position_tolerance(sym.get_label_position_tolerance()), force_odd_labels(sym.get_force_odd_labels()), max_char_angle_delta(sym.get_max_char_angle_delta()), minimum_distance(sym.get_minimum_distance()), avoid_edges(sym.get_avoid_edges()), has_dimensions(true), dimensions(std::make_pair(sym.get_image()->width(), sym.get_image()->height())) { } placement::placement(string_info & info_, text_symbolizer const& sym) : info(info_), displacement_(sym.get_displacement()), label_placement(sym.get_label_placement()), wrap_width(sym.get_wrap_width()), text_ratio(sym.get_text_ratio()), label_spacing(sym.get_label_spacing()), label_position_tolerance(sym.get_label_position_tolerance()), force_odd_labels(sym.get_force_odd_labels()), max_char_angle_delta(sym.get_max_char_angle_delta()), minimum_distance(sym.get_minimum_distance()), avoid_edges(sym.get_avoid_edges()), has_dimensions(false), dimensions() { } placement::~placement() { } template std::pair get_position_at_distance(double target_distance, T & shape_path) { double x1 = 0.0; double y1 = 0.0; double x2 = 0.0; double y2 = 0.0; double distance = 0.0; bool first = true; unsigned cmd; double x = 0.0; double y = 0.0; shape_path.rewind(0); while (!agg::is_stop(cmd = shape_path.vertex(&x2,&y2))) { if (first || agg::is_move_to(cmd)) { first = false; } else { double dx = x2-x1; double dy = y2-y1; double segment_length = ::sqrt(dx*dx + dy*dy); distance +=segment_length; if (distance > target_distance) { x = x2 - dx * (distance - target_distance)/segment_length; y = y2 - dy * (distance - target_distance)/segment_length; break; } } x1 = x2; y1 = y2; } return std::pair(x, y); } template double get_total_distance(T & shape_path) { return agg::path_length(shape_path); } template placement_finder::placement_finder(DetectorT & detector) : detector_(detector), dimensions_(detector_.extent()) { } template void placement_finder::get_ideal_placements(placement & p, double distance, std::vector & ideal_label_distances) { std::pair string_dimensions = p.info.get_dimensions(); double string_width = string_dimensions.first; if (p.label_placement == LINE_PLACEMENT && string_width > distance) { //Empty! return ; } int num_labels = 0; if (p.label_spacing && p.label_placement == LINE_PLACEMENT) { num_labels = static_cast (floor(distance / (p.label_spacing + string_width))); } else if (p.label_spacing && p.label_placement == POINT_PLACEMENT) { num_labels = static_cast (floor(distance / p.label_spacing)); } if (p.force_odd_labels && num_labels%2 == 0) num_labels--; if (num_labels <= 0) num_labels = 1; double ideal_spacing = distance/num_labels; double middle; //try draw text centered if (p.label_placement == LINE_PLACEMENT) middle = (distance / 2.0) - (string_width/2.0); else // (p.label_placement == point_placement) middle = distance / 2.0; if (num_labels % 2) //odd amount of labels { for (int a = 0; a < (num_labels+1)/2; a++) { ideal_label_distances.push_back(middle - (a*ideal_spacing)); if (a != 0) ideal_label_distances.push_back(middle + (a*ideal_spacing)); } } else //even amount of labels { for (int a = 0; a < num_labels/2; a++) { ideal_label_distances.push_back(middle - (ideal_spacing/2.0) - (a*ideal_spacing)); ideal_label_distances.push_back(middle + (ideal_spacing/2.0) + (a*ideal_spacing)); } } if (p.label_position_tolerance == 0) { p.label_position_tolerance = unsigned(ideal_spacing/2.0); } } template template void placement_finder::find_placements(placement & p, T & shape_path) { double distance = get_total_distance(shape_path); std::vector ideal_label_distances; get_ideal_placements(p,distance,ideal_label_distances); std::vector::const_iterator itr = ideal_label_distances.begin(); std::vector::const_iterator end = ideal_label_distances.end(); for (; itr != end; ++itr) { if ((p.label_placement == LINE_PLACEMENT && build_path_follow(p, *itr , shape_path ) ) || (p.label_placement == POINT_PLACEMENT && build_path_horizontal(p, *itr, shape_path)) ) { update_detector(p); break; } } } template void placement_finder::find_point_placement(placement & p, double label_x, double label_y) { double x, y; std::auto_ptr current_placement(new placement_element); std::pair string_dimensions = p.info.get_dimensions(); double string_width = string_dimensions.first; double string_height = string_dimensions.second; // check if we need to wrap the string double wrap_at = string_width + 1; if (p.wrap_width && string_width > p.wrap_width) { if (p.text_ratio) for (int i = 1; ((wrap_at = string_width/i)/(string_height*i)) > p.text_ratio && (string_width/i) > p.wrap_width; ++i); else wrap_at = p.wrap_width; } // work out where our line breaks need to be std::vector line_breaks; std::vector line_widths; if (wrap_at < string_width && p.info.num_characters() > 0) { int line_count=0; int last_space = 0; string_width = 0; string_height = 0; double line_width = 0; double line_height = 0; double word_width = 0; double word_height = 0; for (unsigned int ii = 0; ii < p.info.num_characters(); ii++) { character_info ci; ci = p.info.at(ii); unsigned c = ci.character; word_width += ci.width; word_height = word_height > ci.height ? word_height : ci.height; ++line_count; if (c == ' ') { last_space = ii; line_width += word_width; line_height = line_height > word_height ? line_height : word_height; word_width = 0; word_height = 0; } if (line_width > 0 && line_width > wrap_at) { string_width = string_width > line_width ? string_width : line_width; string_height += line_height; line_breaks.push_back(last_space); line_widths.push_back(line_width); ii = last_space; line_count = 0; line_width = 0; line_height = 0; word_width = 0; word_height = 0; } } line_width += word_width; string_width = string_width > line_width ? string_width : line_width; line_breaks.push_back(p.info.num_characters() + 1); line_widths.push_back(line_width); } if (line_breaks.size() == 0) { line_breaks.push_back(p.info.num_characters() + 1); line_widths.push_back(string_width); } p.info.set_dimensions(string_width, string_height); current_placement->starting_x = label_x; current_placement->starting_y = label_y; current_placement->starting_x += boost::tuples::get<0>(p.displacement_); current_placement->starting_y += boost::tuples::get<1>(p.displacement_); double line_height = 0; unsigned int line_number = 0; unsigned int index_to_wrap_at = line_breaks[line_number]; double line_width = line_widths[line_number]; x = -line_width/2.0 - 1.0; y = -string_height/2.0 + 1.0; for (unsigned i = 0; i < p.info.num_characters(); i++) { character_info ci;; ci = p.info.at(i); unsigned c = ci.character; if (i == index_to_wrap_at) { index_to_wrap_at = line_breaks[++line_number]; line_width = line_widths[line_number]; y -= line_height; x = -line_width/2.0; line_height = 0; continue; } else { current_placement->add_node(c, x, y, 0.0); Envelope e; if (p.has_dimensions) { e.init(current_placement->starting_x - (p.dimensions.first/2.0), current_placement->starting_y - (p.dimensions.second/2.0), current_placement->starting_x + (p.dimensions.first/2.0), current_placement->starting_y + (p.dimensions.second/2.0)); } else { e.init(current_placement->starting_x + x, current_placement->starting_y - y, current_placement->starting_x + x + ci.width, current_placement->starting_y - y - ci.height); } if (!dimensions_.intersects(e) || !detector_.has_placement(e, p.info.get_string(), p.minimum_distance)) { return; } if (p.avoid_edges && !dimensions_.contains(e)) return; p.envelopes.push(e); } x += ci.width; line_height = line_height > ci.height ? line_height : ci.height; } p.placements.push_back(current_placement.release()); update_detector(p); } template template void placement_finder::find_line_placement(placement & p, PathT & shape_path) { unsigned cmd; double new_x = 0.0; double new_y = 0.0; double old_x = 0.0; double old_y = 0.0; bool first = true; //Pre-Cache all the path_positions and path_distances //This stops the PathT from having to do multiple re-projections if we need to reposition ourself // and lets us know how many points are in the shape. std::vector path_positions; std::vector path_distances; // distance from node x-1 to node x double total_distance = 0; shape_path.rewind(0); while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y))) //For each node in the shape { if (!first && agg::is_line_to(cmd)) { double dx = old_x - new_x; double dy = old_y - new_y; double distance = sqrt(dx*dx + dy*dy); total_distance += distance; path_distances.push_back(distance); } else { path_distances.push_back(0); } first = false; path_positions.push_back(vertex2d(new_x, new_y, cmd)); old_x = new_x; old_y = new_y; } //Now path_positions is full and total_distance is correct //shape_path shouldn't be used from here double distance = 0.0; std::pair string_dimensions = p.info.get_dimensions(); double string_width = string_dimensions.first; double displacement = boost::tuples::get<1>(p.displacement_); // displace by dy //Calculate a target_distance that will place the labels centered evenly rather than offset from the start of the linestring if (total_distance < string_width) //Can't place any strings return; //If there is no spacing then just do one label, otherwise calculate how many there should be int num_labels = 1; if (p.label_spacing > 0) num_labels = static_cast (floor(total_distance / (p.label_spacing + string_width))); if (p.force_odd_labels && num_labels%2 == 0) num_labels--; if (num_labels <= 0) num_labels = 1; //Now we know how many labels we are going to place, calculate the spacing so that they will get placed evenly double spacing = (total_distance / num_labels); double target_distance = (spacing - string_width) / 2; // first label should be placed at half the spacing //Calculate or read out the tolerance double tolerance_delta, tolerance; if (p.label_position_tolerance > 0) { tolerance = p.label_position_tolerance; tolerance_delta = std::max ( 1.0, p.label_position_tolerance/100.0 ); } else { tolerance = spacing/3.0; tolerance_delta = std::max ( 1.0, spacing/100.0 ); } first = true; for (unsigned index = 0; index < path_positions.size(); index++) //For each node in the shape { cmd = path_positions[index].cmd; new_x = path_positions[index].x; new_y = path_positions[index].y; if (first || agg::is_move_to(cmd)) //Don't do any processing if it is the first node { first = false; } else { //Add the length of this segment to the total we have saved up double segment_length = path_distances[index]; distance += segment_length; //While we have enough distance to place text in while (distance > target_distance) { for (double diff = 0; diff < tolerance; diff += tolerance_delta) { for(int dir = -1; dir < 2; dir+=2) //-1, +1 { //Record details for the start of the string placement int orientation = 0; std::auto_ptr current_placement = get_placement_offset(p, path_positions, path_distances, orientation, index, segment_length - (distance - target_distance) + (diff*dir)); //We were unable to place here if (current_placement.get() == NULL) continue; //Apply displacement //NOTE: The text is centered on the line in get_placement_offset, so we are offsetting from there if (displacement != 0) { //Average the angle of all characters and then offset them all by that angle //NOTE: This probably calculates a bad angle due to going around the circle, test this! double anglesum = 0; for (unsigned i = 0; i < current_placement->nodes_.size(); i++) { anglesum += current_placement->nodes_[i].angle; } anglesum /= current_placement->nodes_.size(); //Now it is angle average //Offset all the characters by this angle for (unsigned i = 0; i < current_placement->nodes_.size(); i++) { current_placement->nodes_[i].x += displacement*cos(anglesum+M_PI/2); current_placement->nodes_[i].y += displacement*sin(anglesum+M_PI/2); } } bool status = test_placement(p, current_placement, orientation); if (status) //We have successfully placed one { p.placements.push_back(current_placement.release()); update_detector(p); //Totally break out of the loops diff = tolerance; break; } else { //If we've failed to place, remove all the envelopes we've added up while (!p.envelopes.empty()) p.envelopes.pop(); } //Don't need to loop twice when diff = 0 if (diff == 0) break; } } distance -= target_distance; //Consume the spacing gap we have used up target_distance = spacing; //Need to reset the target_distance as it is spacing/2 for the first label. } } old_x = new_x; old_y = new_y; } } template std::auto_ptr placement_finder::get_placement_offset(placement & p, const std::vector &path_positions, const std::vector &path_distances, int &orientation, unsigned index, double distance) { //Check that the given distance is on the given index and find the correct index and distance if not while (distance < 0 && index > 1) { index--; distance += path_distances[index]; } if (index <= 1 && distance < 0) //We've gone off the start, fail out return std::auto_ptr(NULL); //Same thing, checking if we go off the end while (index < path_distances.size() && distance > path_distances[index]) { distance -= path_distances[index]; index++; } if (index >= path_distances.size()) return std::auto_ptr(NULL); std::auto_ptr current_placement(new placement_element); double string_height = p.info.get_dimensions().second; double old_x = path_positions[index-1].x; double old_y = path_positions[index-1].y; double new_x = path_positions[index].x; double new_y = path_positions[index].y; double dx = new_x - old_x; double dy = new_y - old_y; double segment_length = path_distances[index]; current_placement->starting_x = old_x + dx*distance/segment_length; current_placement->starting_y = old_y + dy*distance/segment_length; double angle = atan2(-dy, dx); orientation = (angle > 0.55*M_PI || angle < -0.45*M_PI) ? -1 : 1; for (unsigned i = 0; i < p.info.num_characters(); ++i) { character_info ci; unsigned c; double last_character_angle = angle; // grab the next character according to the orientation ci = orientation > 0 ? p.info.at(i) : p.info.at(p.info.num_characters() - i - 1); c = ci.character; //Coordinates this character will start at double start_x = old_x + dx*distance/segment_length; double start_y = old_y + dy*distance/segment_length; //Coordinates this character ends at, calculated below double end_x = 0; double end_y = 0; if (segment_length - distance >= ci.width) { //if the distance remaining in this segment is enough, we just go further along the segment distance += ci.width; end_x = old_x + dx*distance/segment_length; end_y = old_y + dy*distance/segment_length; } else { //If there isn't enough distance left on this segment // then we need to search untill we find the line segment that ends further than ci.width away do { old_x = new_x; old_y = new_y; index++; if (index >= path_positions.size()) //Bail out if we run off the end of the shape { //std::clog << "FAIL: Out of space" << std::endl; return std::auto_ptr(NULL); } new_x = path_positions[index].x; new_y = path_positions[index].y; dx = new_x - old_x; dy = new_y - old_y; segment_length = path_distances[index]; } while (sqrt(pow(start_x - new_x, 2) + pow(start_y - new_y, 2)) < ci.width); //Distance from start_ to new_ //Calculate the position to place the end of the character on find_line_circle_intersection( start_x, start_y, ci.width, old_x, old_y, new_x, new_y, end_x, end_y); //results are stored in end_x, end_y //Need to calculate distance on the new segment distance = sqrt(pow(old_x - end_x, 2) + pow(old_y - end_y, 2)); } //Calculate angle from the start of the character to the end based on start_/end_ position angle = atan2(start_y-end_y, end_x-start_x); //Test last_character_angle vs angle // since our rendering angle has changed then check against our // max allowable angle change. double angle_delta = last_character_angle - angle; // normalise between -180 and 180 while (angle_delta > M_PI) angle_delta -= 2*M_PI; while (angle_delta < -M_PI) angle_delta += 2*M_PI; if (p.max_char_angle_delta > 0 && fabs(angle_delta) > p.max_char_angle_delta*(M_PI/180)) { //std::clog << "FAIL: Too Bendy!" << std::endl; return std::auto_ptr(NULL); } double render_angle = angle; double render_x = start_x; double render_y = start_y; //Center the text on the line render_x -= (((double)string_height/2.0) - 1.0)*cos(render_angle+M_PI/2); render_y += (((double)string_height/2.0) - 1.0)*sin(render_angle+M_PI/2); if (orientation < 0) { // rotate in place render_x += ci.width*cos(render_angle) - (string_height-2)*sin(render_angle); render_y -= ci.width*sin(render_angle) + (string_height-2)*cos(render_angle); render_angle += M_PI; } current_placement->add_node(c,render_x - current_placement->starting_x, -render_y + current_placement->starting_y, render_angle); } return current_placement; } template bool placement_finder::test_placement(placement & p, const std::auto_ptr & current_placement, const int & orientation) { std::pair string_dimensions = p.info.get_dimensions(); double string_height = string_dimensions.second; //Create and test envelopes bool status = true; for (unsigned i = 0; i < p.info.num_characters(); ++i) { // grab the next character according to the orientation character_info ci = orientation > 0 ? p.info.at(i) : p.info.at(p.info.num_characters() - i - 1); int c; double x, y, angle; current_placement->vertex(&c, &x, &y, &angle); x = current_placement->starting_x + x; y = current_placement->starting_y - y; if (orientation < 0) { // rotate in place x += ci.width*cos(angle) - (string_height-2)*sin(angle); y -= ci.width*sin(angle) + (string_height-2)*cos(angle); angle += M_PI; } Envelope e; if (p.has_dimensions) { e.init(x, y, x + p.dimensions.first, y + p.dimensions.second); } else { // put four corners of the letter into envelope e.init(x, y, x + ci.width*cos(angle), y - ci.width*sin(angle)); e.expand_to_include(x - ci.height*sin(angle), y - ci.height*cos(angle)); e.expand_to_include(x + (ci.width*cos(angle) - ci.height*sin(angle)), y - (ci.width*sin(angle) + ci.height*cos(angle))); } if (!dimensions_.intersects(e) || !detector_.has_placement(e, p.info.get_string(), p.minimum_distance)) { //std::clog << "No Intersects:" << !dimensions_.intersects(e) << ": " << e << " @ " << dimensions_ << std::endl; //std::clog << "No Placements:" << !detector_.has_placement(e, p.info.get_string(), p.minimum_distance) << std::endl; status = false; break; } if (p.avoid_edges && !dimensions_.contains(e)) { //std::clog << "Fail avoid edges" << std::endl; status = false; break; } p.envelopes.push(e); } current_placement->rewind(); return status; } template void placement_finder::find_line_circle_intersection( const double &cx, const double &cy, const double &radius, const double &x1, const double &y1, const double &x2, const double &y2, double &ix, double &iy) { double dx = x2 - x1; double dy = y2 - y1; double A = dx * dx + dy * dy; double B = 2 * (dx * (x1 - cx) + dy * (y1 - cy)); double C = (x1 - cx) * (x1 - cx) + (y1 - cy) * (y1 - cy) - radius * radius; double det = B * B - 4 * A * C; if (A <= 0.0000001 || det < 0) { //Should never happen //' No real solutions. return; } else if (det == 0) { //Could potentially happen.... //One solution. double t = -B / (2 * A); ix = x1 + t * dx; iy = y1 + t * dy; return; } else { //Two solutions. //Always use the 1st one //We only really have one solution here, as we know the line segment will start in the circle and end outside double t = (-B + sqrt(det)) / (2 * A); ix = x1 + t * dx; iy = y1 + t * dy; //t = (-B - sqrt(det)) / (2 * A); //ix = x1 + t * dx; //iy = y1 + t * dy; return; } } template void placement_finder::update_detector(placement & p) { while (!p.envelopes.empty()) { Envelope e = p.envelopes.front(); detector_.insert(e, p.info.get_string()); p.envelopes.pop(); } } template template bool placement_finder::build_path_follow(placement & p, double target_distance, PathT & shape_path) { double new_x = 0.0; double new_y = 0.0; double old_x = 0.0; double old_y = 0.0; double next_char_x = 0.0; double next_char_y = 0.0; double angle = 0.0; int orientation = 0; double displacement = boost::tuples::get<1>(p.displacement_); // displace by dy std::auto_ptr current_placement(new placement_element); double x = 0.0; double y = 0.0; double distance = 0.0; std::pair string_dimensions = p.info.get_dimensions(); double string_height = string_dimensions.second; // find the segment that our text should start on shape_path.rewind(0); unsigned cmd; bool first = true; while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y))) { if (first || agg::is_move_to(cmd)) { first = false; } else { double dx = new_x - old_x; double dy = new_y - old_y; double segment_length = sqrt(dx*dx + dy*dy); distance += segment_length; if (distance > target_distance) { current_placement->starting_x = new_x - dx*(distance - target_distance)/segment_length; current_placement->starting_y = new_y - dy*(distance - target_distance)/segment_length; // angle text starts at and orientation angle = atan2(-dy, dx); orientation = (angle > 0.55*M_PI || angle < -0.45*M_PI) ? -1 : 1; distance -= target_distance; break; } } old_x = new_x; old_y = new_y; } // now find the placement of each character starting from our initial segment // determined above double last_angle = angle; for (unsigned i = 0; i < p.info.num_characters(); ++i) { character_info ci; unsigned c; // grab the next character according to the orientation ci = orientation > 0 ? p.info.at(i) : p.info.at(p.info.num_characters() - i - 1); c = ci.character; double angle_delta = 0; // if the distance remaining in this segment is less than the character width // move to the next segment if (distance <= ci.width) { last_angle = angle; while (distance <= ci.width) { double dx, dy; old_x = new_x; old_y = new_y; if (agg::is_stop(shape_path.vertex(&new_x,&new_y))) return false; dx = new_x - old_x; dy = new_y - old_y; angle = atan2(-dy, dx ); distance += sqrt(dx*dx+dy*dy); } // since our rendering angle has changed then check against our // max allowable angle change. angle_delta = last_angle - angle; // normalise between -180 and 180 while (angle_delta > M_PI) angle_delta -= 2*M_PI; while (angle_delta < -M_PI) angle_delta += 2*M_PI; if (p.max_char_angle_delta > 0 && fabs(angle_delta) > p.max_char_angle_delta*(M_PI/180)) { return false; } } Envelope e; if (p.has_dimensions) { e.init(x, y, x + p.dimensions.first, y + p.dimensions.second); } double render_angle = angle; x = new_x - (distance)*cos(angle); y = new_y + (distance)*sin(angle); //Center the text on the line, unless displacement != 0 if (displacement == 0.0) { x -= (((double)string_height/2.0) - 1.0)*cos(render_angle+M_PI/2); y += (((double)string_height/2.0) - 1.0)*sin(render_angle+M_PI/2); } else if (displacement*orientation > 0.0) { x -= ((fabs(displacement) - (double)string_height) + 1.0)*cos(render_angle+M_PI/2); y += ((fabs(displacement) - (double)string_height) + 1.0)*sin(render_angle+M_PI/2); } else { // displacement < 0 x -= ((fabs(displacement) + (double)string_height) - 1.0)*cos(render_angle+M_PI/2); y += ((fabs(displacement) + (double)string_height) - 1.0)*sin(render_angle+M_PI/2); } distance -= ci.width; next_char_x = ci.width*cos(render_angle); next_char_y = ci.width*sin(render_angle); double render_x = x; double render_y = y; if (!p.has_dimensions) { // put four corners of the letter into envelope e.init(render_x, render_y, render_x + ci.width*cos(render_angle), render_y - ci.width*sin(render_angle)); e.expand_to_include(render_x - ci.height*sin(render_angle), render_y - ci.height*cos(render_angle)); e.expand_to_include(render_x + (ci.width*cos(render_angle) - ci.height*sin(render_angle)), render_y - (ci.width*sin(render_angle) + ci.height*cos(render_angle))); } if (!dimensions_.intersects(e) || !detector_.has_placement(e, p.info.get_string(), p.minimum_distance)) { return false; } if (p.avoid_edges && !dimensions_.contains(e)) { return false; } p.envelopes.push(e); if (orientation < 0) { // rotate in place render_x += ci.width*cos(render_angle) - (string_height-2)*sin(render_angle); render_y -= ci.width*sin(render_angle) + (string_height-2)*cos(render_angle); render_angle += M_PI; } current_placement->add_node(c,render_x - current_placement->starting_x, -render_y + current_placement->starting_y, render_angle); x += next_char_x; y -= next_char_y; } p.placements.push_back(current_placement.release()); return true; } template template bool placement_finder::build_path_horizontal(placement & p, double target_distance, PathT & shape_path) { double x, y; std::auto_ptr current_placement(new placement_element); std::pair string_dimensions = p.info.get_dimensions(); double string_width = string_dimensions.first; double string_height = string_dimensions.second; // check if we need to wrap the string double wrap_at = string_width + 1; if (p.wrap_width && string_width > p.wrap_width) { if (p.text_ratio) for (int i = 1; ((wrap_at = string_width/i)/(string_height*i)) > p.text_ratio && (string_width/i) > p.wrap_width; ++i); else wrap_at = p.wrap_width; } // work out where our line breaks need to be std::vector line_breaks; std::vector line_widths; if (wrap_at < string_width && p.info.num_characters() > 0) { int line_count=0; int last_space = 0; string_width = 0; string_height = 0; double line_width = 0; double line_height = 0; double word_width = 0; double word_height = 0; for (unsigned int ii = 0; ii < p.info.num_characters(); ii++) { character_info ci; ci = p.info.at(ii); unsigned c = ci.character; word_width += ci.width; word_height = word_height > ci.height ? word_height : ci.height; ++line_count; if (c == ' ') { last_space = ii; line_width += word_width; line_height = line_height > word_height ? line_height : word_height; word_width = 0; word_height = 0; } if (line_width > 0 && line_width > wrap_at) { string_width = string_width > line_width ? string_width : line_width; string_height += line_height; line_breaks.push_back(last_space); line_widths.push_back(line_width); ii = last_space; line_count = 0; line_width = 0; line_height = 0; word_width = 0; word_height = 0; } } line_width += word_width; string_width = string_width > line_width ? string_width : line_width; line_breaks.push_back(p.info.num_characters() + 1); line_widths.push_back(line_width); } if (line_breaks.size() == 0) { line_breaks.push_back(p.info.num_characters() + 1); line_widths.push_back(string_width); } p.info.set_dimensions(string_width, string_height); std::pair starting_pos = get_position_at_distance(target_distance,shape_path); current_placement->starting_x = starting_pos.first; current_placement->starting_y = starting_pos.second; double line_height = 0; unsigned int line_number = 0; unsigned int index_to_wrap_at = line_breaks[line_number]; double line_width = line_widths[line_number]; x = -line_width/2.0 - 1.0; y = -string_height/2.0 + 1.0; for (unsigned i = 0; i < p.info.num_characters(); i++) { character_info ci;; ci = p.info.at(i); unsigned c = ci.character; if (i == index_to_wrap_at) { index_to_wrap_at = line_breaks[++line_number]; line_width = line_widths[line_number]; y -= line_height; x = -line_width/2.0; line_height = 0; continue; } else { current_placement->add_node(c, x, y, 0.0); Envelope e; if (p.has_dimensions) { e.init(current_placement->starting_x - (p.dimensions.first/2.0), current_placement->starting_y - (p.dimensions.second/2.0), current_placement->starting_x + (p.dimensions.first/2.0), current_placement->starting_y + (p.dimensions.second/2.0)); } else { e.init(current_placement->starting_x + x, current_placement->starting_y - y, current_placement->starting_x + x + ci.width, current_placement->starting_y - y - ci.height); } if (!dimensions_.intersects(e) || !detector_.has_placement(e, p.info.get_string(), p.minimum_distance)) { return false; } if (p.avoid_edges && !dimensions_.contains(e)) { return false; } p.envelopes.push(e); } x += ci.width; line_height = line_height > ci.height ? line_height : ci.height; } p.placements.push_back(current_placement.release()); return true; } template void placement_finder::clear() { detector_.clear(); } typedef coord_transform2 PathType; typedef label_collision_detector4 DetectorType; template class placement_finder; template void placement_finder::find_placements (placement&, PathType & ); template void placement_finder::find_line_placement (placement&, PathType & ); } // namespace