/***************************************************************************** * * This file is part of Mapnik (c++ mapping toolkit) * * Copyright (C) 2011 Artem Pavlenko * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * *****************************************************************************/ // mapnik #include #include #include #include #include #include #include #include // agg #include "agg_image_filters.h" #include "agg_trans_bilinear.h" #include "agg_span_interpolator_linear.h" #include "agg_span_image_filter_rgba.h" #include "agg_rendering_buffer.h" #include "agg_pixfmt_rgba.h" #include "agg_rasterizer_scanline_aa.h" #include "agg_basics.h" #include "agg_scanline_bin.h" #include "agg_renderer_scanline.h" #include "agg_span_allocator.h" #include "agg_image_accessors.h" #include "agg_renderer_scanline.h" namespace mapnik { void reproject_and_scale_raster(raster & target, raster const& source, proj_transform const& prj_trans, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method) { view_transform ts(source.data_.width(), source.data_.height(), source.ext_); view_transform tt(target.data_.width(), target.data_.height(), target.ext_, offset_x, offset_y); std::size_t mesh_nx = std::ceil(source.data_.width()/double(mesh_size) + 1); std::size_t mesh_ny = std::ceil(source.data_.height()/double(mesh_size) + 1); image_data xs(mesh_nx, mesh_ny); image_data ys(mesh_nx, mesh_ny); // Precalculate reprojected mesh for(std::size_t j = 0; j < mesh_ny; ++j) { for (std::size_t i=0; i; agg::rasterizer_scanline_aa<> rasterizer; agg::scanline_bin scanline; agg::rendering_buffer buf((unsigned char*)target.data_.getData(), target.data_.width(), target.data_.height(), target.data_.width()*4); pixfmt pixf(buf); renderer_base rb(pixf); rasterizer.clip_box(0, 0, target.data_.width(), target.data_.height()); agg::rendering_buffer buf_tile( (unsigned char*)source.data_.getData(), source.data_.width(), source.data_.height(), source.data_.width() * 4); pixfmt pixf_tile(buf_tile); using img_accessor_type = agg::image_accessor_clone; img_accessor_type ia(pixf_tile); agg::span_allocator sa; // Initialize filter agg::image_filter_lut filter; switch(scaling_method) { case SCALING_NEAR: break; case SCALING_BILINEAR: filter.calculate(agg::image_filter_bilinear(), true); break; case SCALING_BICUBIC: filter.calculate(agg::image_filter_bicubic(), true); break; case SCALING_SPLINE16: filter.calculate(agg::image_filter_spline16(), true); break; case SCALING_SPLINE36: filter.calculate(agg::image_filter_spline36(), true); break; case SCALING_HANNING: filter.calculate(agg::image_filter_hanning(), true); break; case SCALING_HAMMING: filter.calculate(agg::image_filter_hamming(), true); break; case SCALING_HERMITE: filter.calculate(agg::image_filter_hermite(), true); break; case SCALING_KAISER: filter.calculate(agg::image_filter_kaiser(), true); break; case SCALING_QUADRIC: filter.calculate(agg::image_filter_quadric(), true); break; case SCALING_CATROM: filter.calculate(agg::image_filter_catrom(), true); break; case SCALING_GAUSSIAN: filter.calculate(agg::image_filter_gaussian(), true); break; case SCALING_BESSEL: filter.calculate(agg::image_filter_bessel(), true); break; case SCALING_MITCHELL: filter.calculate(agg::image_filter_mitchell(), true); break; case SCALING_SINC: filter.calculate(agg::image_filter_sinc(source.get_filter_factor()), true); break; case SCALING_LANCZOS: filter.calculate(agg::image_filter_lanczos(source.get_filter_factor()), true); break; case SCALING_BLACKMAN: filter.calculate(agg::image_filter_blackman(source.get_filter_factor()), true); break; } // Project mesh cells into target interpolating raster inside each one for(std::size_t j = 0; j < mesh_ny - 1; ++j) { for (std::size_t i = 0; i < mesh_nx - 1; ++i) { double polygon[8] = {xs(i,j), ys(i,j), xs(i+1,j), ys(i+1,j), xs(i+1,j+1), ys(i+1,j+1), xs(i,j+1), ys(i,j+1)}; tt.forward(polygon+0, polygon+1); tt.forward(polygon+2, polygon+3); tt.forward(polygon+4, polygon+5); tt.forward(polygon+6, polygon+7); rasterizer.reset(); rasterizer.move_to_d(std::floor(polygon[0]), std::floor(polygon[1])); rasterizer.line_to_d(std::floor(polygon[2]), std::floor(polygon[3])); rasterizer.line_to_d(std::floor(polygon[4]), std::floor(polygon[5])); rasterizer.line_to_d(std::floor(polygon[6]), std::floor(polygon[7])); std::size_t x0 = i * mesh_size; std::size_t y0 = j * mesh_size; std::size_t x1 = (i+1) * mesh_size; std::size_t y1 = (j+1) * mesh_size; x1 = std::min(x1, source.data_.width()); y1 = std::min(y1, source.data_.height()); agg::trans_affine tr(polygon, x0, y0, x1, y1); if (tr.is_valid()) { using interpolator_type = agg::span_interpolator_linear; interpolator_type interpolator(tr); if (scaling_method == SCALING_NEAR) { using span_gen_type = agg::span_image_filter_rgba_nn ; span_gen_type sg(ia, interpolator); agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg); } else { using span_gen_type = agg::span_image_resample_rgba_affine ; span_gen_type sg(ia, interpolator, filter); agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg); } } } } } }// namespace mapnik