/***************************************************************************** * * This file is part of Mapnik (c++ mapping toolkit) * * Copyright (C) 2015 Artem Pavlenko * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * *****************************************************************************/ // mapnik #include #include #include #include #include #include #include #include #include #pragma GCC diagnostic push #include #include "agg_image_filters.h" #include "agg_trans_bilinear.h" #include "agg_span_interpolator_linear.h" #include "agg_span_image_filter_rgba.h" #include "agg_rendering_buffer.h" #include "agg_pixfmt_rgba.h" #include "agg_rasterizer_scanline_aa.h" #include "agg_basics.h" #include "agg_scanline_bin.h" #include "agg_renderer_scanline.h" #include "agg_span_allocator.h" #include "agg_image_accessors.h" #include "agg_renderer_scanline.h" #pragma GCC diagnostic pop namespace mapnik { template MAPNIK_DECL void warp_image (T & target, T const& source, proj_transform const& prj_trans, box2d const& target_ext, box2d const& source_ext, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method, double filter_factor, boost::optional const & nodata_value) { using image_type = T; using pixel_type = typename image_type::pixel_type; using pixfmt_pre = typename detail::agg_scaling_traits::pixfmt_pre; using color_type = typename detail::agg_scaling_traits::color_type; using renderer_base = agg::renderer_base; using interpolator_type = typename detail::agg_scaling_traits::interpolator_type; constexpr std::size_t pixel_size = sizeof(pixel_type); view_transform ts(source.width(), source.height(), source_ext); view_transform tt(target.width(), target.height(), target_ext, offset_x, offset_y); std::size_t mesh_nx = std::ceil(source.width()/double(mesh_size) + 1); std::size_t mesh_ny = std::ceil(source.height()/double(mesh_size) + 1); image_gray64f xs(mesh_nx, mesh_ny, false); image_gray64f ys(mesh_nx, mesh_ny, false); // Precalculate reprojected mesh for(std::size_t j = 0; j < mesh_ny; ++j) { for (std::size_t i=0; i rasterizer; agg::scanline_bin scanline; agg::rendering_buffer buf(target.bytes(), target.width(), target.height(), target.width() * pixel_size); pixfmt_pre pixf(buf); renderer_base rb(pixf); rasterizer.clip_box(0, 0, target.width(), target.height()); agg::rendering_buffer buf_tile( const_cast(source.bytes()), source.width(), source.height(), source.width() * pixel_size); pixfmt_pre pixf_tile(buf_tile); using img_accessor_type = agg::image_accessor_clone; img_accessor_type ia(pixf_tile); agg::span_allocator sa; // Project mesh cells into target interpolating raster inside each one for (std::size_t j = 0; j < mesh_ny - 1; ++j) { for (std::size_t i = 0; i < mesh_nx - 1; ++i) { double polygon[8] = {xs(i,j), ys(i,j), xs(i+1,j), ys(i+1,j), xs(i+1,j+1), ys(i+1,j+1), xs(i,j+1), ys(i,j+1)}; tt.forward(polygon+0, polygon+1); tt.forward(polygon+2, polygon+3); tt.forward(polygon+4, polygon+5); tt.forward(polygon+6, polygon+7); rasterizer.reset(); rasterizer.move_to_d(std::floor(polygon[0]), std::floor(polygon[1])); rasterizer.line_to_d(std::floor(polygon[2]), std::floor(polygon[3])); rasterizer.line_to_d(std::floor(polygon[4]), std::floor(polygon[5])); rasterizer.line_to_d(std::floor(polygon[6]), std::floor(polygon[7])); std::size_t x0 = i * mesh_size; std::size_t y0 = j * mesh_size; std::size_t x1 = (i+1) * mesh_size; std::size_t y1 = (j+1) * mesh_size; x1 = std::min(x1, source.width()); y1 = std::min(y1, source.height()); agg::trans_affine tr(polygon, x0, y0, x1, y1); if (tr.is_valid()) { interpolator_type interpolator(tr); if (scaling_method == SCALING_NEAR) { using span_gen_type = typename detail::agg_scaling_traits::span_image_filter; span_gen_type sg(ia, interpolator); agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg); } else { using span_gen_type = typename detail::agg_scaling_traits::span_image_resample_affine; agg::image_filter_lut filter; detail::set_scaling_method(filter, scaling_method, filter_factor); boost::optional nodata; if (nodata_value) { nodata = nodata_value; } span_gen_type sg(ia, interpolator, filter, nodata); agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg); } } } } } namespace detail { struct warp_image_visitor { warp_image_visitor (raster & target_raster, proj_transform const& prj_trans, box2d const& source_ext, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method, double filter_factor, boost::optional const & nodata_value) : target_raster_(target_raster), prj_trans_(prj_trans), source_ext_(source_ext), offset_x_(offset_x), offset_y_(offset_y), mesh_size_(mesh_size), scaling_method_(scaling_method), filter_factor_(filter_factor), nodata_value_(nodata_value) {} void operator() (image_null const&) const {} template void operator() (T const& source) const { using image_type = T; //source and target image data types must match if (target_raster_.data_.template is()) { image_type & target = util::get(target_raster_.data_); warp_image (target, source, prj_trans_, target_raster_.ext_, source_ext_, offset_x_, offset_y_, mesh_size_, scaling_method_, filter_factor_, nodata_value_); } } raster & target_raster_; proj_transform const& prj_trans_; box2d const& source_ext_; double offset_x_; double offset_y_; unsigned mesh_size_; scaling_method_e scaling_method_; double filter_factor_; boost::optional const & nodata_value_; }; } void reproject_and_scale_raster(raster & target, raster const& source, proj_transform const& prj_trans, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method, boost::optional const & nodata_value) { detail::warp_image_visitor warper(target, prj_trans, source.ext_, offset_x, offset_y, mesh_size, scaling_method, source.get_filter_factor(), nodata_value); util::apply_visitor(warper, source.data_); } void reproject_and_scale_raster(raster & target, raster const& source, proj_transform const& prj_trans, double offset_x, double offset_y, unsigned mesh_size, scaling_method_e scaling_method) { reproject_and_scale_raster(target, source, prj_trans, offset_x, offset_y, mesh_size, scaling_method, boost::optional()); } template MAPNIK_DECL void warp_image (image_rgba8&, image_rgba8 const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const &); template MAPNIK_DECL void warp_image (image_gray8&, image_gray8 const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const &); template MAPNIK_DECL void warp_image (image_gray16&, image_gray16 const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const &); template MAPNIK_DECL void warp_image (image_gray32f&, image_gray32f const&, proj_transform const&, box2d const&, box2d const&, double, double, unsigned, scaling_method_e, double, boost::optional const &); }// namespace mapnik