"""SCons.Util Various utility functions go here. """ # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import os import sys import copy import re import types import codecs import pprint import hashlib from collections import UserDict, UserList, UserString, OrderedDict from collections.abc import MappingView PYPY = hasattr(sys, 'pypy_translation_info') # Below not used? # InstanceType = types.InstanceType MethodType = types.MethodType FunctionType = types.FunctionType def dictify(keys, values, result={}): for k, v in zip(keys, values): result[k] = v return result _altsep = os.altsep if _altsep is None and sys.platform == 'win32': # My ActivePython 2.0.1 doesn't set os.altsep! What gives? _altsep = '/' if _altsep: def rightmost_separator(path, sep): return max(path.rfind(sep), path.rfind(_altsep)) else: def rightmost_separator(path, sep): return path.rfind(sep) # First two from the Python Cookbook, just for completeness. # (Yeah, yeah, YAGNI...) def containsAny(str, set): """Check whether sequence str contains ANY of the items in set.""" for c in set: if c in str: return 1 return 0 def containsAll(str, set): """Check whether sequence str contains ALL of the items in set.""" for c in set: if c not in str: return 0 return 1 def containsOnly(str, set): """Check whether sequence str contains ONLY items in set.""" for c in str: if c not in set: return 0 return 1 def splitext(path): """Same as os.path.splitext() but faster.""" sep = rightmost_separator(path, os.sep) dot = path.rfind('.') # An ext is only real if it has at least one non-digit char if dot > sep and not containsOnly(path[dot:], "0123456789."): return path[:dot],path[dot:] else: return path,"" def updrive(path): """ Make the drive letter (if any) upper case. This is useful because Windows is inconsistent on the case of the drive letter, which can cause inconsistencies when calculating command signatures. """ drive, rest = os.path.splitdrive(path) if drive: path = drive.upper() + rest return path class NodeList(UserList): """This class is almost exactly like a regular list of Nodes (actually it can hold any object), with one important difference. If you try to get an attribute from this list, it will return that attribute from every item in the list. For example: >>> someList = NodeList([ ' foo ', ' bar ' ]) >>> someList.strip() [ 'foo', 'bar' ] """ # def __init__(self, initlist=None): # self.data = [] # # print("TYPE:%s"%type(initlist)) # if initlist is not None: # # XXX should this accept an arbitrary sequence? # if type(initlist) == type(self.data): # self.data[:] = initlist # elif isinstance(initlist, (UserList, NodeList)): # self.data[:] = initlist.data[:] # elif isinstance(initlist, Iterable): # self.data = list(initlist) # else: # self.data = [ initlist,] def __nonzero__(self): return len(self.data) != 0 def __bool__(self): return self.__nonzero__() def __str__(self): return ' '.join(map(str, self.data)) def __iter__(self): return iter(self.data) def __call__(self, *args, **kwargs): result = [x(*args, **kwargs) for x in self.data] return self.__class__(result) def __getattr__(self, name): result = [getattr(x, name) for x in self.data] return self.__class__(result) def __getitem__(self, index): """ This comes for free on py2, but py3 slices of NodeList are returning a list breaking slicing nodelist and refering to properties and methods on contained object """ # return self.__class__(self.data[index]) if isinstance(index, slice): # Expand the slice object using range() # limited by number of items in self.data indices = index.indices(len(self.data)) return self.__class__([self[x] for x in range(*indices)]) else: # Return one item of the tart return self.data[index] _get_env_var = re.compile(r'^\$([_a-zA-Z]\w*|{[_a-zA-Z]\w*})$') def get_environment_var(varstr): """Given a string, first determine if it looks like a reference to a single environment variable, like "$FOO" or "${FOO}". If so, return that variable with no decorations ("FOO"). If not, return None.""" mo=_get_env_var.match(to_String(varstr)) if mo: var = mo.group(1) if var[0] == '{': return var[1:-1] else: return var else: return None class DisplayEngine: print_it = True def __call__(self, text, append_newline=1): if not self.print_it: return if append_newline: text = text + '\n' try: sys.stdout.write(str(text)) except IOError: # Stdout might be connected to a pipe that has been closed # by now. The most likely reason for the pipe being closed # is that the user has press ctrl-c. It this is the case, # then SCons is currently shutdown. We therefore ignore # IOError's here so that SCons can continue and shutdown # properly so that the .sconsign is correctly written # before SCons exits. pass def set_mode(self, mode): self.print_it = mode def render_tree(root, child_func, prune=0, margin=[0], visited=None): """ Render a tree of nodes into an ASCII tree view. :Parameters: - `root`: the root node of the tree - `child_func`: the function called to get the children of a node - `prune`: don't visit the same node twice - `margin`: the format of the left margin to use for children of root. 1 results in a pipe, and 0 results in no pipe. - `visited`: a dictionary of visited nodes in the current branch if not prune, or in the whole tree if prune. """ rname = str(root) # Initialize 'visited' dict, if required if visited is None: visited = {} children = child_func(root) retval = "" for pipe in margin[:-1]: if pipe: retval = retval + "| " else: retval = retval + " " if rname in visited: return retval + "+-[" + rname + "]\n" retval = retval + "+-" + rname + "\n" if not prune: visited = copy.copy(visited) visited[rname] = 1 for i in range(len(children)): margin.append(i < len(children)-1) retval = retval + render_tree(children[i], child_func, prune, margin, visited) margin.pop() return retval IDX = lambda N: N and 1 or 0 # unicode line drawing chars: BOX_HORIZ = chr(0x2500) # '─' BOX_VERT = chr(0x2502) # '│' BOX_UP_RIGHT = chr(0x2514) # '└' BOX_DOWN_RIGHT = chr(0x250c) # '┌' BOX_DOWN_LEFT = chr(0x2510) # '┐' BOX_UP_LEFT = chr(0x2518) # '┘' BOX_VERT_RIGHT = chr(0x251c) # '├' BOX_HORIZ_DOWN = chr(0x252c) # '┬' def print_tree(root, child_func, prune=0, showtags=0, margin=[0], visited=None, lastChild=False, singleLineDraw=False): """ Print a tree of nodes. This is like render_tree, except it prints lines directly instead of creating a string representation in memory, so that huge trees can be printed. :Parameters: - `root` - the root node of the tree - `child_func` - the function called to get the children of a node - `prune` - don't visit the same node twice - `showtags` - print status information to the left of each node line - `margin` - the format of the left margin to use for children of root. 1 results in a pipe, and 0 results in no pipe. - `visited` - a dictionary of visited nodes in the current branch if not prune, or in the whole tree if prune. - `singleLineDraw` - use line-drawing characters rather than ASCII. """ rname = str(root) # Initialize 'visited' dict, if required if visited is None: visited = {} if showtags: if showtags == 2: legend = (' E = exists\n' + ' R = exists in repository only\n' + ' b = implicit builder\n' + ' B = explicit builder\n' + ' S = side effect\n' + ' P = precious\n' + ' A = always build\n' + ' C = current\n' + ' N = no clean\n' + ' H = no cache\n' + '\n') sys.stdout.write(legend) tags = [ '[', ' E'[IDX(root.exists())], ' R'[IDX(root.rexists() and not root.exists())], ' BbB'[ [0, 1][IDX(root.has_explicit_builder())] + [0, 2][IDX(root.has_builder())] ], ' S'[IDX(root.side_effect)], ' P'[IDX(root.precious)], ' A'[IDX(root.always_build)], ' C'[IDX(root.is_up_to_date())], ' N'[IDX(root.noclean)], ' H'[IDX(root.nocache)], ']' ] else: tags = [] def MMM(m): if singleLineDraw: return [" ", BOX_VERT + " "][m] else: return [" ", "| "][m] margins = list(map(MMM, margin[:-1])) children = child_func(root) cross = "+-" if singleLineDraw: cross = BOX_VERT_RIGHT + BOX_HORIZ # sign used to point to the leaf. # check if this is the last leaf of the branch if lastChild: #if this if the last leaf, then terminate: cross = BOX_UP_RIGHT + BOX_HORIZ # sign for the last leaf # if this branch has children then split it if children: # if it's a leaf: if prune and rname in visited and children: cross += BOX_HORIZ else: cross += BOX_HORIZ_DOWN if prune and rname in visited and children: sys.stdout.write(''.join(tags + margins + [cross,'[', rname, ']']) + '\n') return sys.stdout.write(''.join(tags + margins + [cross, rname]) + '\n') visited[rname] = 1 # if this item has children: if children: margin.append(1) # Initialize margin with 1 for vertical bar. idx = IDX(showtags) _child = 0 # Initialize this for the first child. for C in children[:-1]: _child = _child + 1 # number the children print_tree(C, child_func, prune, idx, margin, visited, (len(children) - _child) <= 0 ,singleLineDraw) margin[-1] = 0 # margins are with space (index 0) because we arrived to the last child. print_tree(children[-1], child_func, prune, idx, margin, visited, True ,singleLineDraw) # for this call child and nr of children needs to be set 0, to signal the second phase. margin.pop() # destroy the last margin added # Functions for deciding if things are like various types, mainly to # handle UserDict, UserList and UserString like their underlying types. # # Yes, all of this manual testing breaks polymorphism, and the real # Pythonic way to do all of this would be to just try it and handle the # exception, but handling the exception when it's not the right type is # often too slow. # We are using the following trick to speed up these # functions. Default arguments are used to take a snapshot of # the global functions and constants used by these functions. This # transforms accesses to global variable into local variables # accesses (i.e. LOAD_FAST instead of LOAD_GLOBAL). DictTypes = (dict, UserDict) ListTypes = (list, UserList) # Handle getting dictionary views. SequenceTypes = (list, tuple, UserList, MappingView) # TODO: PY3 check this benchmarking is still correct. # Note that profiling data shows a speed-up when comparing # explicitly with str instead of simply comparing # with basestring. (at least on Python 2.5.1) StringTypes = (str, UserString) # Empirically, it is faster to check explicitly for str than for basestring. BaseStringTypes = str def is_Dict(obj, isinstance=isinstance, DictTypes=DictTypes): return isinstance(obj, DictTypes) def is_List(obj, isinstance=isinstance, ListTypes=ListTypes): return isinstance(obj, ListTypes) def is_Sequence(obj, isinstance=isinstance, SequenceTypes=SequenceTypes): return isinstance(obj, SequenceTypes) def is_Tuple(obj, isinstance=isinstance, tuple=tuple): return isinstance(obj, tuple) def is_String(obj, isinstance=isinstance, StringTypes=StringTypes): return isinstance(obj, StringTypes) def is_Scalar(obj, isinstance=isinstance, StringTypes=StringTypes, SequenceTypes=SequenceTypes): # Profiling shows that there is an impressive speed-up of 2x # when explicitly checking for strings instead of just not # sequence when the argument (i.e. obj) is already a string. # But, if obj is a not string then it is twice as fast to # check only for 'not sequence'. The following code therefore # assumes that the obj argument is a string most of the time. return isinstance(obj, StringTypes) or not isinstance(obj, SequenceTypes) def do_flatten(sequence, result, isinstance=isinstance, StringTypes=StringTypes, SequenceTypes=SequenceTypes): for item in sequence: if isinstance(item, StringTypes) or not isinstance(item, SequenceTypes): result.append(item) else: do_flatten(item, result) def flatten(obj, isinstance=isinstance, StringTypes=StringTypes, SequenceTypes=SequenceTypes, do_flatten=do_flatten): """Flatten a sequence to a non-nested list. Flatten() converts either a single scalar or a nested sequence to a non-nested list. Note that flatten() considers strings to be scalars instead of sequences like Python would. """ if isinstance(obj, StringTypes) or not isinstance(obj, SequenceTypes): return [obj] result = [] for item in obj: if isinstance(item, StringTypes) or not isinstance(item, SequenceTypes): result.append(item) else: do_flatten(item, result) return result def flatten_sequence(sequence, isinstance=isinstance, StringTypes=StringTypes, SequenceTypes=SequenceTypes, do_flatten=do_flatten): """Flatten a sequence to a non-nested list. Same as flatten(), but it does not handle the single scalar case. This is slightly more efficient when one knows that the sequence to flatten can not be a scalar. """ result = [] for item in sequence: if isinstance(item, StringTypes) or not isinstance(item, SequenceTypes): result.append(item) else: do_flatten(item, result) return result # Generic convert-to-string functions. The wrapper # to_String_for_signature() will use a for_signature() method if the # specified object has one. # def to_String(s, isinstance=isinstance, str=str, UserString=UserString, BaseStringTypes=BaseStringTypes): if isinstance(s, BaseStringTypes): # Early out when already a string! return s elif isinstance(s, UserString): # s.data can only be a regular string. Please see the UserString initializer. return s.data else: return str(s) def to_String_for_subst(s, isinstance=isinstance, str=str, to_String=to_String, BaseStringTypes=BaseStringTypes, SequenceTypes=SequenceTypes, UserString=UserString): # Note that the test cases are sorted by order of probability. if isinstance(s, BaseStringTypes): return s elif isinstance(s, SequenceTypes): return ' '.join([to_String_for_subst(e) for e in s]) elif isinstance(s, UserString): # s.data can only a regular string. Please see the UserString initializer. return s.data else: return str(s) def to_String_for_signature(obj, to_String_for_subst=to_String_for_subst, AttributeError=AttributeError): try: f = obj.for_signature except AttributeError: if isinstance(obj, dict): # pprint will output dictionary in key sorted order # with py3.5 the order was randomized. In general depending on dictionary order # which was undefined until py3.6 (where it's by insertion order) was not wise. # TODO: Change code when floor is raised to PY36 return pprint.pformat(obj, width=1000000) else: return to_String_for_subst(obj) else: return f() # The SCons "semi-deep" copy. # # This makes separate copies of lists (including UserList objects) # dictionaries (including UserDict objects) and tuples, but just copies # references to anything else it finds. # # A special case is any object that has a __semi_deepcopy__() method, # which we invoke to create the copy. Currently only used by # BuilderDict to actually prevent the copy operation (as invalid on that object). # # The dispatch table approach used here is a direct rip-off from the # normal Python copy module. _semi_deepcopy_dispatch = d = {} def semi_deepcopy_dict(x, exclude = [] ): copy = {} for key, val in x.items(): # The regular Python copy.deepcopy() also deepcopies the key, # as follows: # # copy[semi_deepcopy(key)] = semi_deepcopy(val) # # Doesn't seem like we need to, but we'll comment it just in case. if key not in exclude: copy[key] = semi_deepcopy(val) return copy d[dict] = semi_deepcopy_dict def _semi_deepcopy_list(x): return list(map(semi_deepcopy, x)) d[list] = _semi_deepcopy_list def _semi_deepcopy_tuple(x): return tuple(map(semi_deepcopy, x)) d[tuple] = _semi_deepcopy_tuple def semi_deepcopy(x): copier = _semi_deepcopy_dispatch.get(type(x)) if copier: return copier(x) else: if hasattr(x, '__semi_deepcopy__') and callable(x.__semi_deepcopy__): return x.__semi_deepcopy__() elif isinstance(x, UserDict): return x.__class__(semi_deepcopy_dict(x)) elif isinstance(x, UserList): return x.__class__(_semi_deepcopy_list(x)) return x class Proxy: """A simple generic Proxy class, forwarding all calls to subject. So, for the benefit of the python newbie, what does this really mean? Well, it means that you can take an object, let's call it 'objA', and wrap it in this Proxy class, with a statement like this proxyObj = Proxy(objA), Then, if in the future, you do something like this x = proxyObj.var1, since Proxy does not have a 'var1' attribute (but presumably objA does), the request actually is equivalent to saying x = objA.var1 Inherit from this class to create a Proxy. Note that, with new-style classes, this does *not* work transparently for Proxy subclasses that use special .__*__() method names, because those names are now bound to the class, not the individual instances. You now need to know in advance which .__*__() method names you want to pass on to the underlying Proxy object, and specifically delegate their calls like this: class Foo(Proxy): __str__ = Delegate('__str__') """ def __init__(self, subject): """Wrap an object as a Proxy object""" self._subject = subject def __getattr__(self, name): """Retrieve an attribute from the wrapped object. If the named attribute doesn't exist, AttributeError is raised""" return getattr(self._subject, name) def get(self): """Retrieve the entire wrapped object""" return self._subject def __eq__(self, other): if issubclass(other.__class__, self._subject.__class__): return self._subject == other return self.__dict__ == other.__dict__ class Delegate: """A Python Descriptor class that delegates attribute fetches to an underlying wrapped subject of a Proxy. Typical use: class Foo(Proxy): __str__ = Delegate('__str__') """ def __init__(self, attribute): self.attribute = attribute def __get__(self, obj, cls): if isinstance(obj, cls): return getattr(obj._subject, self.attribute) else: return self # attempt to load the windows registry module: can_read_reg = 0 try: import winreg can_read_reg = 1 hkey_mod = winreg RegOpenKeyEx = winreg.OpenKeyEx RegEnumKey = winreg.EnumKey RegEnumValue = winreg.EnumValue RegQueryValueEx = winreg.QueryValueEx RegError = winreg.error except ImportError: try: import win32api import win32con can_read_reg = 1 hkey_mod = win32con RegOpenKeyEx = win32api.RegOpenKeyEx RegEnumKey = win32api.RegEnumKey RegEnumValue = win32api.RegEnumValue RegQueryValueEx = win32api.RegQueryValueEx RegError = win32api.error except ImportError: class _NoError(Exception): pass RegError = _NoError # Make sure we have a definition of WindowsError so we can # run platform-independent tests of Windows functionality on # platforms other than Windows. (WindowsError is, in fact, an # OSError subclass on Windows.) class PlainWindowsError(OSError): pass try: WinError = WindowsError except NameError: WinError = PlainWindowsError if can_read_reg: HKEY_CLASSES_ROOT = hkey_mod.HKEY_CLASSES_ROOT HKEY_LOCAL_MACHINE = hkey_mod.HKEY_LOCAL_MACHINE HKEY_CURRENT_USER = hkey_mod.HKEY_CURRENT_USER HKEY_USERS = hkey_mod.HKEY_USERS def RegGetValue(root, key): r"""This utility function returns a value in the registry without having to open the key first. Only available on Windows platforms with a version of Python that can read the registry. Returns the same thing as SCons.Util.RegQueryValueEx, except you just specify the entire path to the value, and don't have to bother opening the key first. So: Instead of: k = SCons.Util.RegOpenKeyEx(SCons.Util.HKEY_LOCAL_MACHINE, r'SOFTWARE\Microsoft\Windows\CurrentVersion') out = SCons.Util.RegQueryValueEx(k, 'ProgramFilesDir') You can write: out = SCons.Util.RegGetValue(SCons.Util.HKEY_LOCAL_MACHINE, r'SOFTWARE\Microsoft\Windows\CurrentVersion\ProgramFilesDir') """ # I would use os.path.split here, but it's not a filesystem # path... p = key.rfind('\\') + 1 keyp = key[:p-1] # -1 to omit trailing slash val = key[p:] k = RegOpenKeyEx(root, keyp) return RegQueryValueEx(k,val) else: HKEY_CLASSES_ROOT = None HKEY_LOCAL_MACHINE = None HKEY_CURRENT_USER = None HKEY_USERS = None def RegGetValue(root, key): raise WinError def RegOpenKeyEx(root, key): raise WinError if sys.platform == 'win32': def WhereIs(file, path=None, pathext=None, reject=[]): if path is None: try: path = os.environ['PATH'] except KeyError: return None if is_String(path): path = path.split(os.pathsep) if pathext is None: try: pathext = os.environ['PATHEXT'] except KeyError: pathext = '.COM;.EXE;.BAT;.CMD' if is_String(pathext): pathext = pathext.split(os.pathsep) for ext in pathext: if ext.lower() == file[-len(ext):].lower(): pathext = [''] break if not is_List(reject) and not is_Tuple(reject): reject = [reject] for dir in path: f = os.path.join(dir, file) for ext in pathext: fext = f + ext if os.path.isfile(fext): try: reject.index(fext) except ValueError: return os.path.normpath(fext) continue return None elif os.name == 'os2': def WhereIs(file, path=None, pathext=None, reject=[]): if path is None: try: path = os.environ['PATH'] except KeyError: return None if is_String(path): path = path.split(os.pathsep) if pathext is None: pathext = ['.exe', '.cmd'] for ext in pathext: if ext.lower() == file[-len(ext):].lower(): pathext = [''] break if not is_List(reject) and not is_Tuple(reject): reject = [reject] for dir in path: f = os.path.join(dir, file) for ext in pathext: fext = f + ext if os.path.isfile(fext): try: reject.index(fext) except ValueError: return os.path.normpath(fext) continue return None else: def WhereIs(file, path=None, pathext=None, reject=[]): import stat if path is None: try: path = os.environ['PATH'] except KeyError: return None if is_String(path): path = path.split(os.pathsep) if not is_List(reject) and not is_Tuple(reject): reject = [reject] for d in path: f = os.path.join(d, file) if os.path.isfile(f): try: st = os.stat(f) except OSError: # os.stat() raises OSError, not IOError if the file # doesn't exist, so in this case we let IOError get # raised so as to not mask possibly serious disk or # network issues. continue if stat.S_IMODE(st[stat.ST_MODE]) & 0o111: try: reject.index(f) except ValueError: return os.path.normpath(f) continue return None def PrependPath(oldpath, newpath, sep = os.pathsep, delete_existing=1, canonicalize=None): """This prepends newpath elements to the given oldpath. Will only add any particular path once (leaving the first one it encounters and ignoring the rest, to preserve path order), and will os.path.normpath and os.path.normcase all paths to help assure this. This can also handle the case where the given old path variable is a list instead of a string, in which case a list will be returned instead of a string. Example: Old Path: "/foo/bar:/foo" New Path: "/biz/boom:/foo" Result: "/biz/boom:/foo:/foo/bar" If delete_existing is 0, then adding a path that exists will not move it to the beginning; it will stay where it is in the list. If canonicalize is not None, it is applied to each element of newpath before use. """ orig = oldpath is_list = 1 paths = orig if not is_List(orig) and not is_Tuple(orig): paths = paths.split(sep) is_list = 0 if is_String(newpath): newpaths = newpath.split(sep) elif not is_List(newpath) and not is_Tuple(newpath): newpaths = [ newpath ] # might be a Dir else: newpaths = newpath if canonicalize: newpaths=list(map(canonicalize, newpaths)) if not delete_existing: # First uniquify the old paths, making sure to # preserve the first instance (in Unix/Linux, # the first one wins), and remembering them in normpaths. # Then insert the new paths at the head of the list # if they're not already in the normpaths list. result = [] normpaths = [] for path in paths: if not path: continue normpath = os.path.normpath(os.path.normcase(path)) if normpath not in normpaths: result.append(path) normpaths.append(normpath) newpaths.reverse() # since we're inserting at the head for path in newpaths: if not path: continue normpath = os.path.normpath(os.path.normcase(path)) if normpath not in normpaths: result.insert(0, path) normpaths.append(normpath) paths = result else: newpaths = newpaths + paths # prepend new paths normpaths = [] paths = [] # now we add them only if they are unique for path in newpaths: normpath = os.path.normpath(os.path.normcase(path)) if path and normpath not in normpaths: paths.append(path) normpaths.append(normpath) if is_list: return paths else: return sep.join(paths) def AppendPath(oldpath, newpath, sep = os.pathsep, delete_existing=1, canonicalize=None): """This appends new path elements to the given old path. Will only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path order), and will os.path.normpath and os.path.normcase all paths to help assure this. This can also handle the case where the given old path variable is a list instead of a string, in which case a list will be returned instead of a string. Example: Old Path: "/foo/bar:/foo" New Path: "/biz/boom:/foo" Result: "/foo/bar:/biz/boom:/foo" If delete_existing is 0, then adding a path that exists will not move it to the end; it will stay where it is in the list. If canonicalize is not None, it is applied to each element of newpath before use. """ orig = oldpath is_list = 1 paths = orig if not is_List(orig) and not is_Tuple(orig): paths = paths.split(sep) is_list = 0 if is_String(newpath): newpaths = newpath.split(sep) elif not is_List(newpath) and not is_Tuple(newpath): newpaths = [ newpath ] # might be a Dir else: newpaths = newpath if canonicalize: newpaths=list(map(canonicalize, newpaths)) if not delete_existing: # add old paths to result, then # add new paths if not already present # (I thought about using a dict for normpaths for speed, # but it's not clear hashing the strings would be faster # than linear searching these typically short lists.) result = [] normpaths = [] for path in paths: if not path: continue result.append(path) normpaths.append(os.path.normpath(os.path.normcase(path))) for path in newpaths: if not path: continue normpath = os.path.normpath(os.path.normcase(path)) if normpath not in normpaths: result.append(path) normpaths.append(normpath) paths = result else: # start w/ new paths, add old ones if not present, # then reverse. newpaths = paths + newpaths # append new paths newpaths.reverse() normpaths = [] paths = [] # now we add them only if they are unique for path in newpaths: normpath = os.path.normpath(os.path.normcase(path)) if path and normpath not in normpaths: paths.append(path) normpaths.append(normpath) paths.reverse() if is_list: return paths else: return sep.join(paths) def AddPathIfNotExists(env_dict, key, path, sep=os.pathsep): """This function will take 'key' out of the dictionary 'env_dict', then add the path 'path' to that key if it is not already there. This treats the value of env_dict[key] as if it has a similar format to the PATH variable...a list of paths separated by tokens. The 'path' will get added to the list if it is not already there.""" try: is_list = 1 paths = env_dict[key] if not is_List(env_dict[key]): paths = paths.split(sep) is_list = 0 if os.path.normcase(path) not in list(map(os.path.normcase, paths)): paths = [ path ] + paths if is_list: env_dict[key] = paths else: env_dict[key] = sep.join(paths) except KeyError: env_dict[key] = path if sys.platform == 'cygwin': def get_native_path(path): """Transforms an absolute path into a native path for the system. In Cygwin, this converts from a Cygwin path to a Windows one.""" with os.popen('cygpath -w ' + path) as p: npath = p.read().replace('\n', '') return npath else: def get_native_path(path): """Transforms an absolute path into a native path for the system. Non-Cygwin version, just leave the path alone.""" return path display = DisplayEngine() def Split(arg): if is_List(arg) or is_Tuple(arg): return arg elif is_String(arg): return arg.split() else: return [arg] class CLVar(UserList): """A class for command-line construction variables. This is a list that uses Split() to split an initial string along white-space arguments, and similarly to split any strings that get added. This allows us to Do the Right Thing with Append() and Prepend() (as well as straight Python foo = env['VAR'] + 'arg1 arg2') regardless of whether a user adds a list or a string to a command-line construction variable. """ def __init__(self, seq = []): UserList.__init__(self, Split(seq)) def __add__(self, other): return UserList.__add__(self, CLVar(other)) def __radd__(self, other): return UserList.__radd__(self, CLVar(other)) def __str__(self): return ' '.join(self.data) class Selector(OrderedDict): """A callable ordered dictionary that maps file suffixes to dictionary values. We preserve the order in which items are added so that get_suffix() calls always return the first suffix added.""" def __call__(self, env, source, ext=None): if ext is None: try: ext = source[0].get_suffix() except IndexError: ext = "" try: return self[ext] except KeyError: # Try to perform Environment substitution on the keys of # the dictionary before giving up. s_dict = {} for (k,v) in self.items(): if k is not None: s_k = env.subst(k) if s_k in s_dict: # We only raise an error when variables point # to the same suffix. If one suffix is literal # and a variable suffix contains this literal, # the literal wins and we don't raise an error. raise KeyError(s_dict[s_k][0], k, s_k) s_dict[s_k] = (k,v) try: return s_dict[ext][1] except KeyError: try: return self[None] except KeyError: return None if sys.platform == 'cygwin': # On Cygwin, os.path.normcase() lies, so just report back the # fact that the underlying Windows OS is case-insensitive. def case_sensitive_suffixes(s1, s2): return 0 else: def case_sensitive_suffixes(s1, s2): return (os.path.normcase(s1) != os.path.normcase(s2)) def adjustixes(fname, pre, suf, ensure_suffix=False): if pre: path, fn = os.path.split(os.path.normpath(fname)) if fn[:len(pre)] != pre: fname = os.path.join(path, pre + fn) # Only append a suffix if the suffix we're going to add isn't already # there, and if either we've been asked to ensure the specific suffix # is present or there's no suffix on it at all. if suf and fname[-len(suf):] != suf and \ (ensure_suffix or not splitext(fname)[1]): fname = fname + suf return fname # From Tim Peters, # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52560 # ASPN: Python Cookbook: Remove duplicates from a sequence # (Also in the printed Python Cookbook.) def unique(s): """Return a list of the elements in s, but without duplicates. For example, unique([1,2,3,1,2,3]) is some permutation of [1,2,3], unique("abcabc") some permutation of ["a", "b", "c"], and unique(([1, 2], [2, 3], [1, 2])) some permutation of [[2, 3], [1, 2]]. For best speed, all sequence elements should be hashable. Then unique() will usually work in linear time. If not possible, the sequence elements should enjoy a total ordering, and if list(s).sort() doesn't raise TypeError it's assumed that they do enjoy a total ordering. Then unique() will usually work in O(N*log2(N)) time. If that's not possible either, the sequence elements must support equality-testing. Then unique() will usually work in quadratic time. """ n = len(s) if n == 0: return [] # Try using a dict first, as that's the fastest and will usually # work. If it doesn't work, it will usually fail quickly, so it # usually doesn't cost much to *try* it. It requires that all the # sequence elements be hashable, and support equality comparison. u = {} try: for x in s: u[x] = 1 except TypeError: pass # move on to the next method else: return list(u.keys()) del u # We can't hash all the elements. Second fastest is to sort, # which brings the equal elements together; then duplicates are # easy to weed out in a single pass. # NOTE: Python's list.sort() was designed to be efficient in the # presence of many duplicate elements. This isn't true of all # sort functions in all languages or libraries, so this approach # is more effective in Python than it may be elsewhere. try: t = sorted(s) except TypeError: pass # move on to the next method else: assert n > 0 last = t[0] lasti = i = 1 while i < n: if t[i] != last: t[lasti] = last = t[i] lasti = lasti + 1 i = i + 1 return t[:lasti] del t # Brute force is all that's left. u = [] for x in s: if x not in u: u.append(x) return u # From Alex Martelli, # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52560 # ASPN: Python Cookbook: Remove duplicates from a sequence # First comment, dated 2001/10/13. # (Also in the printed Python Cookbook.) # This not currently used, in favor of the next function... def uniquer(seq, idfun=None): def default_idfun(x): return x if not idfun: idfun = default_idfun seen = {} result = [] for item in seq: marker = idfun(item) # in old Python versions: # if seen.has_key(marker) # but in new ones: if marker in seen: continue seen[marker] = 1 result.append(item) return result # A more efficient implementation of Alex's uniquer(), this avoids the # idfun() argument and function-call overhead by assuming that all # items in the sequence are hashable. def uniquer_hashables(seq): seen = {} result = [] for item in seq: #if not item in seen: if item not in seen: seen[item] = 1 result.append(item) return result # Recipe 19.11 "Reading Lines with Continuation Characters", # by Alex Martelli, straight from the Python CookBook (2nd edition). def logical_lines(physical_lines, joiner=''.join): logical_line = [] for line in physical_lines: stripped = line.rstrip() if stripped.endswith('\\'): # a line which continues w/the next physical line logical_line.append(stripped[:-1]) else: # a line which does not continue, end of logical line logical_line.append(line) yield joiner(logical_line) logical_line = [] if logical_line: # end of sequence implies end of last logical line yield joiner(logical_line) class LogicalLines: """ Wrapper class for the logical_lines method. Allows us to read all "logical" lines at once from a given file object. """ def __init__(self, fileobj): self.fileobj = fileobj def readlines(self): result = [l for l in logical_lines(self.fileobj)] return result class UniqueList(UserList): def __init__(self, seq = []): UserList.__init__(self, seq) self.unique = True def __make_unique(self): if not self.unique: self.data = uniquer_hashables(self.data) self.unique = True def __lt__(self, other): self.__make_unique() return UserList.__lt__(self, other) def __le__(self, other): self.__make_unique() return UserList.__le__(self, other) def __eq__(self, other): self.__make_unique() return UserList.__eq__(self, other) def __ne__(self, other): self.__make_unique() return UserList.__ne__(self, other) def __gt__(self, other): self.__make_unique() return UserList.__gt__(self, other) def __ge__(self, other): self.__make_unique() return UserList.__ge__(self, other) def __cmp__(self, other): self.__make_unique() return UserList.__cmp__(self, other) def __len__(self): self.__make_unique() return UserList.__len__(self) def __getitem__(self, i): self.__make_unique() return UserList.__getitem__(self, i) def __setitem__(self, i, item): UserList.__setitem__(self, i, item) self.unique = False def __getslice__(self, i, j): self.__make_unique() return UserList.__getslice__(self, i, j) def __setslice__(self, i, j, other): UserList.__setslice__(self, i, j, other) self.unique = False def __add__(self, other): result = UserList.__add__(self, other) result.unique = False return result def __radd__(self, other): result = UserList.__radd__(self, other) result.unique = False return result def __iadd__(self, other): result = UserList.__iadd__(self, other) result.unique = False return result def __mul__(self, other): result = UserList.__mul__(self, other) result.unique = False return result def __rmul__(self, other): result = UserList.__rmul__(self, other) result.unique = False return result def __imul__(self, other): result = UserList.__imul__(self, other) result.unique = False return result def append(self, item): UserList.append(self, item) self.unique = False def insert(self, i): UserList.insert(self, i) self.unique = False def count(self, item): self.__make_unique() return UserList.count(self, item) def index(self, item): self.__make_unique() return UserList.index(self, item) def reverse(self): self.__make_unique() UserList.reverse(self) def sort(self, *args, **kwds): self.__make_unique() return UserList.sort(self, *args, **kwds) def extend(self, other): UserList.extend(self, other) self.unique = False class Unbuffered: """ A proxy class that wraps a file object, flushing after every write, and delegating everything else to the wrapped object. """ def __init__(self, file): self.file = file self.softspace = 0 ## backward compatibility; not supported in Py3k def write(self, arg): try: self.file.write(arg) self.file.flush() except IOError: # Stdout might be connected to a pipe that has been closed # by now. The most likely reason for the pipe being closed # is that the user has press ctrl-c. It this is the case, # then SCons is currently shutdown. We therefore ignore # IOError's here so that SCons can continue and shutdown # properly so that the .sconsign is correctly written # before SCons exits. pass def __getattr__(self, attr): return getattr(self.file, attr) def make_path_relative(path): """ makes an absolute path name to a relative pathname. """ if os.path.isabs(path): drive_s,path = os.path.splitdrive(path) import re if not drive_s: path=re.compile("/*(.*)").findall(path)[0] else: path=path[1:] assert( not os.path.isabs( path ) ), path return path # The original idea for AddMethod() and RenameFunction() come from the # following post to the ActiveState Python Cookbook: # # ASPN: Python Cookbook : Install bound methods in an instance # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/223613 # # That code was a little fragile, though, so the following changes # have been wrung on it: # # * Switched the installmethod() "object" and "function" arguments, # so the order reflects that the left-hand side is the thing being # "assigned to" and the right-hand side is the value being assigned. # # * Changed explicit type-checking to the "try: klass = object.__class__" # block in installmethod() below so that it still works with the # old-style classes that SCons uses. # # * Replaced the by-hand creation of methods and functions with use of # the "new" module, as alluded to in Alex Martelli's response to the # following Cookbook post: # # ASPN: Python Cookbook : Dynamically added methods to a class # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/81732 def AddMethod(obj, function, name=None): """ Adds either a bound method to an instance or the function itself (or an unbound method in Python 2) to a class. If name is ommited the name of the specified function is used by default. Example:: a = A() def f(self, x, y): self.z = x + y AddMethod(f, A, "add") a.add(2, 4) print(a.z) AddMethod(lambda self, i: self.l[i], a, "listIndex") print(a.listIndex(5)) """ if name is None: name = function.__name__ else: function = RenameFunction(function, name) # Note the Python version checks - WLB # Python 3.3 dropped the 3rd parameter from types.MethodType if hasattr(obj, '__class__') and obj.__class__ is not type: # "obj" is an instance, so it gets a bound method. if sys.version_info[:2] > (3, 2): method = MethodType(function, obj) else: method = MethodType(function, obj, obj.__class__) else: # Handle classes method = function setattr(obj, name, method) def RenameFunction(function, name): """ Returns a function identical to the specified function, but with the specified name. """ return FunctionType(function.__code__, function.__globals__, name, function.__defaults__) if hasattr(hashlib, 'md5'): md5 = True def MD5signature(s): """ Generate md5 signature of a string :param s: either string or bytes. Normally should be bytes :return: String of hex digits representing the signature """ m = hashlib.md5() try: m.update(to_bytes(s)) except TypeError as e: m.update(to_bytes(str(s))) return m.hexdigest() def MD5filesignature(fname, chunksize=65536): """ Generate the md5 signature of a file :param fname: file to hash :param chunksize: chunk size to read :return: String of Hex digits representing the signature """ m = hashlib.md5() with open(fname, "rb") as f: while True: blck = f.read(chunksize) if not blck: break m.update(to_bytes(blck)) return m.hexdigest() else: # if md5 algorithm not available, just return data unmodified # could add alternative signature scheme here md5 = False def MD5signature(s): return str(s) def MD5filesignature(fname, chunksize=65536): with open(fname, "rb") as f: result = f.read() return result def MD5collect(signatures): """ Collects a list of signatures into an aggregate signature. signatures - a list of signatures returns - the aggregate signature """ if len(signatures) == 1: return signatures[0] else: return MD5signature(', '.join(signatures)) def silent_intern(x): """ Perform sys.intern() on the passed argument and return the result. If the input is ineligible the original argument is returned and no exception is thrown. """ try: return sys.intern(x) except TypeError: return x # From Dinu C. Gherman, # Python Cookbook, second edition, recipe 6.17, p. 277. # Also: # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/68205 # ASPN: Python Cookbook: Null Object Design Pattern class Null: """ Null objects always and reliably "do nothing." """ def __new__(cls, *args, **kwargs): if '_instance' not in vars(cls): cls._instance = super(Null, cls).__new__(cls, *args, **kwargs) return cls._instance def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return self def __repr__(self): return "Null(0x%08X)" % id(self) def __nonzero__(self): return False def __bool__(self): return False def __getattr__(self, name): return self def __setattr__(self, name, value): return self def __delattr__(self, name): return self class NullSeq(Null): """ A Null object that can also be iterated over. """ def __len__(self): return 0 def __iter__(self): return iter(()) def __getitem__(self, i): return self def __delitem__(self, i): return self def __setitem__(self, i, v): return self del __revision__ def to_bytes(s): if s is None: return b'None' if isinstance(s, (bytes, bytearray)): # if already bytes return. return s return bytes(s, 'utf-8') def to_str(s): if s is None: return 'None' if is_String(s): return s return str(s, 'utf-8') def cmp(a, b): """ Define cmp because it's no longer available in python3 Works under python 2 as well """ return (a > b) - (a < b) def get_env_bool(env, name, default=False): """Convert a construction variable to bool. If the value of *name* in *env* is 'true', 'yes', 'y', 'on' (case insensitive) or anything convertible to int that yields non-zero then return True; if 'false', 'no', 'n', 'off' (case insensitive) or a number that converts to integer zero return False. Otherwise, return *default*. Args: env: construction environment, or any dict-like object name: name of the variable default: value to return if *name* not in *env* or cannot be converted (default: False) Returns: bool: the "truthiness" of *name* """ try: var = env[name] except KeyError: return default try: return bool(int(var)) except ValueError: if str(var).lower() in ('true', 'yes', 'y', 'on'): return True elif str(var).lower() in ('false', 'no', 'n', 'off'): return False else: return default def get_os_env_bool(name, default=False): """Convert an environment variable to bool. Conversion is the same as for :func:`get_env_bool`. """ return get_env_bool(os.environ, name, default) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4: