# # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "/home/scons/scons/branch.0/baseline/src/engine/SCons/cpp.py 0.97.D001 2007/05/17 11:35:19 knight" __doc__ = """ SCons C Pre-Processor module """ import SCons.compat import os import re import string # # First "subsystem" of regular expressions that we set up: # # Stuff to turn the C preprocessor directives in a file's contents into # a list of tuples that we can process easily. # # A table of regular expressions that fetch the arguments from the rest of # a C preprocessor line. Different directives have different arguments # that we want to fetch, using the regular expressions to which the lists # of preprocessor directives map. cpp_lines_dict = { # Fetch the rest of a #if/#elif/#ifdef/#ifndef/#import/#include/ # #include_next line as one argument. ('if', 'elif', 'ifdef', 'ifndef', 'import', 'include', 'include_next',) : '\s+(.+)', # We don't care what comes after a #else or #endif line. ('else', 'endif',) : '', # Fetch three arguments from a #define line: # 1) The #defined keyword. # 2) The optional parentheses and arguments (if it's a function-like # macro, '' if it's not). # 3) The expansion value. ('define',) : '\s+([_A-Za-z][_A-Za-z0-9_]+)(\([^)]*\))?\s*(.*)', # Fetch the #undefed keyword from a #undef line. ('undef',) : '\s+([_A-Za-z][A-Za-z0-9_]+)', } # Create a table that maps each individual C preprocessor directive to # the corresponding compiled regular expression that fetches the arguments # we care about. Table = {} for op_list, expr in cpp_lines_dict.items(): e = re.compile(expr) for op in op_list: Table[op] = e del e del op del op_list # Create a list of the expressions we'll use to match all of the # preprocessor directives. These are the same as the directives # themselves *except* that we must use a negative lookahead assertion # when matching "if" so it doesn't match the "if" in "ifdef." override = { 'if' : 'if(?!def)', } l = map(lambda x, o=override: o.get(x, x), Table.keys()) # Turn the list of expressions into one big honkin' regular expression # that will match all the preprocessor lines at once. This will return # a list of tuples, one for each preprocessor line. The preprocessor # directive will be the first element in each tuple, and the rest of # the line will be the second element. e = '^\s*#\s*(' + string.join(l, '|') + ')(.*)$' # And last but not least, compile the expression. CPP_Expression = re.compile(e, re.M) # # Second "subsystem" of regular expressions that we set up: # # Stuff to translate a C preprocessor expression (as found on a #if or # #elif line) into an equivalent Python expression that we can eval(). # # A dictionary that maps the C representation of Boolean operators # to their Python equivalents. CPP_to_Python_Ops_Dict = { '!' : ' not ', '!=' : ' != ', '&&' : ' and ', '||' : ' or ', '?' : ' and ', ':' : ' or ', '\r' : '', } CPP_to_Python_Ops_Sub = lambda m, d=CPP_to_Python_Ops_Dict: d[m.group(0)] # We have to sort the keys by length so that longer expressions # come *before* shorter expressions--in particular, "!=" must # come before "!" in the alternation. Without this, the Python # re module, as late as version 2.2.2, empirically matches the # "!" in "!=" first, instead of finding the longest match. # What's up with that? l = CPP_to_Python_Ops_Dict.keys() l.sort(lambda a, b: cmp(len(b), len(a))) # Turn the list of keys into one regular expression that will allow us # to substitute all of the operators at once. expr = string.join(map(re.escape, l), '|') # ...and compile the expression. CPP_to_Python_Ops_Expression = re.compile(expr) # A separate list of expressions to be evaluated and substituted # sequentially, not all at once. CPP_to_Python_Eval_List = [ ['defined\s+(\w+)', '__dict__.has_key("\\1")'], ['defined\s*\((\w+)\)', '__dict__.has_key("\\1")'], ['/\*.*\*/', ''], ['/\*.*', ''], ['//.*', ''], ['(0x[0-9A-Fa-f]*)[UL]+', '\\1L'], ] # Replace the string representations of the regular expressions in the # list with compiled versions. for l in CPP_to_Python_Eval_List: l[0] = re.compile(l[0]) # Wrap up all of the above into a handy function. def CPP_to_Python(s): """ Converts a C pre-processor expression into an equivalent Python expression that can be evaluated. """ s = CPP_to_Python_Ops_Expression.sub(CPP_to_Python_Ops_Sub, s) for expr, repl in CPP_to_Python_Eval_List: s = expr.sub(repl, s) return s del expr del l del override class FunctionEvaluator: """ Handles delayed evaluation of a #define function call. """ def __init__(self, name, args, expansion): """ Squirrels away the arguments and expansion value of a #define macro function for later evaluation when we must actually expand a value that uses it. """ self.name = name self.args = function_arg_separator.split(args) self.expansion = string.split(expansion, '##') def __call__(self, *values): """ Evaluates the expansion of a #define macro function called with the specified values. """ if len(self.args) != len(values): raise ValueError, "Incorrect number of arguments to `%s'" % self.name # Create a dictionary that maps the macro arguments to the # corresponding values in this "call." We'll use this when we # eval() the expansion so that arguments will get expanded to # the right values. locals = {} for k, v in zip(self.args, values): locals[k] = v parts = [] for s in self.expansion: if not s in self.args: s = repr(s) parts.append(s) statement = string.join(parts, ' + ') return eval(statement, globals(), locals) # Find line continuations. line_continuations = re.compile('\\\\\r?\n') # Search for a "function call" macro on an expansion. Returns the # two-tuple of the "function" name itself, and a string containing the # arguments within the call parentheses. function_name = re.compile('(\S+)\(([^)]*)\)') # Split a string containing comma-separated function call arguments into # the separate arguments. function_arg_separator = re.compile(',\s*') class PreProcessor: """ The main workhorse class for handling C pre-processing. """ def __init__(self, current='.', cpppath=[], dict={}, all=0): global Table self.searchpath = { '"' : [current] + cpppath, '<' : cpppath + [current], } # Initialize our C preprocessor namespace for tracking the # values of #defined keywords. We use this namespace to look # for keywords on #ifdef/#ifndef lines, and to eval() the # expressions on #if/#elif lines (after massaging them from C to # Python). self.cpp_namespace = dict.copy() self.cpp_namespace['__dict__'] = self.cpp_namespace if all: self.do_include = self.all_include # For efficiency, a dispatch table maps each C preprocessor # directive (#if, #define, etc.) to the method that should be # called when we see it. We accomodate state changes (#if, # #ifdef, #ifndef) by pushing the current dispatch table on a # stack and changing what method gets called for each relevant # directive we might see next at this level (#else, #elif). # #endif will simply pop the stack. d = {} for op in Table.keys(): d[op] = getattr(self, 'do_' + op) self.default_table = d # Controlling methods. def tupleize(self, contents): """ Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file. The first element of each tuple is the line's preprocessor directive (#if, #include, #define, etc., minus the initial '#'). The remaining elements are specific to the type of directive, as pulled apart by the regular expression. """ global CPP_Expression, Table contents = line_continuations.sub('', contents) cpp_tuples = CPP_Expression.findall(contents) return map(lambda m, t=Table: (m[0],) + t[m[0]].match(m[1]).groups(), cpp_tuples) def __call__(self, contents): """ Pre-processes a file contents. This is the main entry point, which """ self.stack = [] self.dispatch_table = self.default_table.copy() self.tuples = self.tupleize(contents) self.result = [] while self.tuples: t = self.tuples.pop(0) # Uncomment to see the list of tuples being processed (e.g., # to validate the CPP lines are being translated correctly). #print t self.dispatch_table[t[0]](t) return self.result # Dispatch table stack manipulation methods. def save(self): """ Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default. """ self.stack.append(self.dispatch_table) self.dispatch_table = self.default_table.copy() def restore(self): """ Pops the previous dispatch table off the stack and makes it the current one. """ try: self.dispatch_table = self.stack.pop() except IndexError: pass # Utility methods. def do_nothing(self, t): """ Null method for when we explicitly want the action for a specific preprocessor directive to do nothing. """ pass def eval_expression(self, t): """ Evaluates a C preprocessor expression. This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to track #define values. """ t = CPP_to_Python(string.join(t[1:])) try: return eval(t, self.cpp_namespace) except (NameError, TypeError): return 0 def find_include_file(self, t): """ Finds the #include file for a given preprocessor tuple. """ fname = t[2] for d in self.searchpath[t[1]]: f = os.path.join(d, fname) if os.path.isfile(f): return f return None # Start and stop processing include lines. def start_handling_includes(self, t=None): """ Causes the PreProcessor object to start processing #import, #include and #include_next lines. This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if, #ifdef, #ifndef or #elif block where a condition already evaluated False. """ d = self.dispatch_table d['import'] = self.do_import d['include'] = self.do_include d['include_next'] = self.do_include def stop_handling_includes(self, t=None): """ Causes the PreProcessor object to stop processing #import, #include and #include_next lines. This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if, #ifdef, #ifndef or #elif block where a condition already evaluated True. """ d = self.dispatch_table d['import'] = self.do_nothing d['include'] = self.do_nothing d['include_next'] = self.do_nothing # Default methods for handling all of the preprocessor directives. # (Note that what actually gets called for a given directive at any # point in time is really controlled by the dispatch_table.) def _do_if_else_condition(self, condition): """ Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines. """ self.save() d = self.dispatch_table if condition: self.start_handling_includes() d['elif'] = self.stop_handling_includes d['else'] = self.stop_handling_includes else: self.stop_handling_includes() d['elif'] = self.do_elif d['else'] = self.start_handling_includes def do_ifdef(self, t): """ Default handling of a #ifdef line. """ self._do_if_else_condition(self.cpp_namespace.has_key(t[1])) def do_ifndef(self, t): """ Default handling of a #ifndef line. """ self._do_if_else_condition(not self.cpp_namespace.has_key(t[1])) def do_if(self, t): """ Default handling of a #if line. """ self._do_if_else_condition(self.eval_expression(t)) def do_elif(self, t): """ Default handling of a #elif line. """ d = self.dispatch_table if self.eval_expression(t): self.start_handling_includes() d['elif'] = self.stop_handling_includes d['else'] = self.stop_handling_includes def do_else(self, t): """ Default handling of a #else line. """ pass def do_endif(self, t): """ Default handling of a #endif line. """ self.restore() def do_define(self, t): """ Default handling of a #define line. """ _, name, args, expansion = t try: expansion = int(expansion) except (TypeError, ValueError): pass if args: evaluator = FunctionEvaluator(name, args[1:-1], expansion) self.cpp_namespace[name] = evaluator else: self.cpp_namespace[name] = expansion def do_undef(self, t): """ Default handling of a #undef line. """ try: del self.cpp_namespace[t[1]] except KeyError: pass def do_import(self, t): """ Default handling of a #import line. """ # XXX finish this -- maybe borrow/share logic from do_include()...? pass def do_include(self, t): """ Default handling of a #include line. """ t = self.resolve_include(t) include_file = self.find_include_file(t) if include_file: #print "include_file =", include_file self.result.append(include_file) contents = open(include_file).read() new_tuples = self.tupleize(contents) self.tuples[:] = new_tuples + self.tuples # Date: Tue, 22 Nov 2005 20:26:09 -0500 # From: Stefan Seefeld # # By the way, #include_next is not the same as #include. The difference # being that #include_next starts its search in the path following the # path that let to the including file. In other words, if your system # include paths are ['/foo', '/bar'], and you are looking at a header # '/foo/baz.h', it might issue an '#include_next ' which would # correctly resolve to '/bar/baz.h' (if that exists), but *not* see # '/foo/baz.h' again. See http://www.delorie.com/gnu/docs/gcc/cpp_11.html # for more reasoning. # # I have no idea in what context 'import' might be used. # XXX is #include_next really the same as #include ? do_include_next = do_include # Utility methods for handling resolution of include files. def resolve_include(self, t): """Resolve a tuple-ized #include line. This handles recursive expansion of values without "" or <> surrounding the name until an initial " or < is found, to handle #include FILE where FILE is a #define somewhere else. """ s = t[1] while not s[0] in '<"': #print "s =", s try: s = self.cpp_namespace[s] except KeyError: m = function_name.search(s) s = self.cpp_namespace[m.group(1)] if callable(s): args = function_arg_separator.split(m.group(2)) s = apply(s, args) if not s: return None return (t[0], s[0], s[1:-1]) def all_include(self, t): """ """ self.result.append(self.resolve_include(t)) class DumbPreProcessor(PreProcessor): """A preprocessor that ignores all #if/#elif/#else/#endif directives and just reports back *all* of the #include files (like the classic SCons scanner did). This is functionally equivalent to using a regular expression to find all of the #include lines, only slower. It exists mainly as an example of how the main PreProcessor class can be sub-classed to tailor its behavior. """ def __init__(self, *args, **kw): apply(PreProcessor.__init__, (self,)+args, kw) d = self.default_table for func in ['if', 'elif', 'else', 'endif', 'ifdef', 'ifndef']: d[func] = d[func] = self.do_nothing del __revision__