// Copyright 2004 Christian Henning. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) /*************************************************************************************************/ #ifndef GIL_HSV_H #define GIL_HSV_H //////////////////////////////////////////////////////////////////////////////////////// /// \file /// \brief Support for HSV color space /// \author Christian Henning \n //////////////////////////////////////////////////////////////////////////////////////// #include #include namespace boost { namespace gil { /// \addtogroup ColorNameModel /// \{ namespace hsv_color_space { /// \brief Hue struct hue_t {}; /// \brief Saturation struct saturation_t{}; /// \brief Value struct value_t {}; } /// \} /// \ingroup ColorSpaceModel typedef mpl::vector3< hsv_color_space::hue_t , hsv_color_space::saturation_t , hsv_color_space::value_t > hsv_t; /// \ingroup LayoutModel typedef layout hsv_layout_t; GIL_DEFINE_ALL_TYPEDEFS( 32f, hsv ) /// \ingroup ColorConvert /// \brief RGB to HSV template <> struct default_color_converter_impl< rgb_t, hsv_t > { template void operator()( const P1& src, P2& dst ) const { using namespace hsv_color_space; // only bits32f for hsv is supported bits32f temp_red = channel_convert( get_color( src, red_t() )); bits32f temp_green = channel_convert( get_color( src, green_t() )); bits32f temp_blue = channel_convert( get_color( src, blue_t() )); bits32f hue, saturation, value; bits32f min_color = (std::min)( temp_red, (std::min)( temp_green, temp_blue )); bits32f max_color = (std::max)( temp_red, (std::max)( temp_green, temp_blue )); value = max_color; bits32f diff = max_color - min_color; if( max_color < 0.0001f ) { saturation = 0.f; } else { saturation = diff / max_color; } if( saturation < 0.0001f ) { //it doesn't matter what value it has hue = 0.f; } else { if( (std::abs)( boost::numeric_cast(temp_red - max_color) ) < 0.0001f ) { hue = ( temp_green - temp_blue ) / diff; } else if( temp_green == max_color ) { hue = 2.f + ( temp_blue - temp_red ) / diff; } else { hue = 4.f + ( temp_red - temp_green ) / diff; } //to bring it to a number between 0 and 1 hue /= 6.f; if( hue < 0.f ) { hue++; } } get_color( dst, hue_t() ) = hue; get_color( dst, saturation_t() ) = saturation; get_color( dst, value_t() ) = value; } }; /// \ingroup ColorConvert /// \brief HSV to RGB template <> struct default_color_converter_impl { template void operator()( const P1& src, P2& dst) const { using namespace hsv_color_space; bits32f red, green, blue; //If saturation is 0, the color is a shade of gray if( abs( get_color( src, saturation_t() )) < 0.0001f ) { // If saturation is 0, the color is a shade of gray red = get_color( src, value_t() ); green = get_color( src, value_t() ); blue = get_color( src, value_t() ); } else { bits32f frac, p, q, t, h; bits32 i; //to bring hue to a number between 0 and 6, better for the calculations h = get_color( src, hue_t() ); h *= 6.f; i = static_cast( floor( h )); frac = h - i; p = get_color( src, value_t() ) * ( 1.f - get_color( src, saturation_t() )); q = get_color( src, value_t() ) * ( 1.f - ( get_color( src, saturation_t() ) * frac )); t = get_color( src, value_t() ) * ( 1.f - ( get_color( src, saturation_t() ) * ( 1.f - frac ))); switch( i ) { case 0: { red = get_color( src, value_t() ); green = t; blue = p; break; } case 1: { red = q; green = get_color( src, value_t() ); blue = p; break; } case 2: { red = p; green = get_color( src, value_t() ); blue = t; break; } case 3: { red = p; green = q; blue = get_color( src, value_t() ); break; } case 4: { red = t; green = p; blue = get_color( src, value_t() ); break; } case 5: { red = get_color( src, value_t() ); green = p; blue = q; break; } } } get_color(dst,red_t()) = channel_convert::type>( red ); get_color(dst,green_t())= channel_convert::type>( green ); get_color(dst,blue_t()) = channel_convert::type>( blue ); } }; } } // namespace boost::gil #endif // GIL_HSV_H