/******************************************************************************* * * * Author : Angus Johnson * * Version : 6.2.8 * * Date : 10 February 2015 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2015 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ #ifndef clipper_hpp #define clipper_hpp #include #define CLIPPER_VERSION "6.2.6" //use_int32: When enabled 32bit ints are used instead of 64bit ints. This //improve performance but coordinate values are limited to the range +/- 46340 //#define use_int32 //use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance. //#define use_xyz //use_lines: Enables line clipping. Adds a very minor cost to performance. //#define use_lines //use_deprecated: Enables temporary support for the obsolete functions //#define use_deprecated #include #include #include #include #include #include #include #include #include namespace ClipperLib { enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }; enum PolyType { ptSubject, ptClip }; //By far the most widely used winding rules for polygon filling are //EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32) //Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL) //see http://glprogramming.com/red/chapter11.html enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }; #ifdef use_int32 typedef int cInt; static cInt const loRange = 0x7FFF; static cInt const hiRange = 0x7FFF; #else typedef signed long long cInt; static cInt const loRange = 0x3FFFFFFF; static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL; typedef signed long long long64; //used by Int128 class typedef unsigned long long ulong64; #endif struct IntPoint { cInt X; cInt Y; #ifdef use_xyz cInt Z; IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {}; #else IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {}; #endif friend inline bool operator== (const IntPoint& a, const IntPoint& b) { return a.X == b.X && a.Y == b.Y; } friend inline bool operator!= (const IntPoint& a, const IntPoint& b) { return a.X != b.X || a.Y != b.Y; } }; //------------------------------------------------------------------------------ typedef std::vector< IntPoint > Path; typedef std::vector< Path > Paths; inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;} inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;} std::ostream& operator <<(std::ostream &s, const IntPoint &p); std::ostream& operator <<(std::ostream &s, const Path &p); std::ostream& operator <<(std::ostream &s, const Paths &p); struct DoublePoint { double X; double Y; DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {} DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {} }; //------------------------------------------------------------------------------ #ifdef use_xyz typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt); #endif enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4}; enum JoinType {jtSquare, jtRound, jtMiter}; enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound}; class PolyNode; typedef std::vector< PolyNode* > PolyNodes; class PolyNode { public: PolyNode(); virtual ~PolyNode(){}; Path Contour; PolyNodes Childs; PolyNode* Parent; PolyNode* GetNext() const; bool IsHole() const; bool IsOpen() const; int ChildCount() const; private: unsigned Index; //node index in Parent.Childs bool m_IsOpen; JoinType m_jointype; EndType m_endtype; PolyNode* GetNextSiblingUp() const; void AddChild(PolyNode& child); friend class MAPNIK_DECL Clipper; //to access Index friend class MAPNIK_DECL ClipperOffset; }; class PolyTree: public PolyNode { public: ~PolyTree(){Clear();}; PolyNode* GetFirst() const; void Clear(); int Total() const; private: PolyNodes AllNodes; friend class MAPNIK_DECL Clipper; //to access AllNodes }; bool Orientation(const Path &poly); double Area(const Path &poly); int PointInPolygon(const IntPoint &pt, const Path &path); void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd); void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd); void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd); void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415); void CleanPolygon(Path& poly, double distance = 1.415); void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415); void CleanPolygons(Paths& polys, double distance = 1.415); void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed); void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed); void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution); void PolyTreeToPaths(const PolyTree& polytree, Paths& paths); void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths); void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths); void ReversePath(Path& p); void ReversePaths(Paths& p); struct IntRect { cInt left; cInt top; cInt right; cInt bottom; }; //enums that are used internally ... enum EdgeSide { esLeft = 1, esRight = 2}; //forward declarations (for stuff used internally) ... struct TEdge; struct IntersectNode; struct LocalMinimum; struct OutPt; struct OutRec; struct Join; typedef std::vector < OutRec* > PolyOutList; typedef std::vector < TEdge* > EdgeList; typedef std::vector < Join* > JoinList; typedef std::vector < IntersectNode* > IntersectList; //------------------------------------------------------------------------------ //ClipperBase is the ancestor to the Clipper class. It should not be //instantiated directly. This class simply abstracts the conversion of sets of //polygon coordinates into edge objects that are stored in a LocalMinima list. class MAPNIK_DECL ClipperBase { public: ClipperBase(); virtual ~ClipperBase(); bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed); bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed); virtual void Clear(); IntRect GetBounds(); bool PreserveCollinear() {return m_PreserveCollinear;}; void PreserveCollinear(bool value) {m_PreserveCollinear = value;}; protected: void DisposeLocalMinimaList(); TEdge* AddBoundsToLML(TEdge *e, bool IsClosed); void PopLocalMinima(); virtual void Reset(); TEdge* ProcessBound(TEdge* E, bool IsClockwise); TEdge* DescendToMin(TEdge *&E); void AscendToMax(TEdge *&E, bool Appending, bool IsClosed); typedef std::vector MinimaList; MinimaList::iterator m_CurrentLM; MinimaList m_MinimaList; bool m_UseFullRange; EdgeList m_edges; bool m_PreserveCollinear; bool m_HasOpenPaths; }; //------------------------------------------------------------------------------ class MAPNIK_DECL Clipper : public virtual ClipperBase { public: Clipper(int initOptions = 0); ~Clipper(); bool Execute(ClipType clipType, Paths &solution, PolyFillType fillType = pftEvenOdd); bool Execute(ClipType clipType, Paths &solution, PolyFillType subjFillType, PolyFillType clipFillType); bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType fillType = pftEvenOdd); bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType subjFillType, PolyFillType clipFillType); bool ReverseSolution() { return m_ReverseOutput; }; void ReverseSolution(bool value) {m_ReverseOutput = value;}; bool StrictlySimple() {return m_StrictSimple;}; void StrictlySimple(bool value) {m_StrictSimple = value;}; //set the callback function for z value filling on intersections (otherwise Z is 0) #ifdef use_xyz void ZFillFunction(ZFillCallback zFillFunc); #endif protected: void Reset(); virtual bool ExecuteInternal(); private: PolyOutList m_PolyOuts; JoinList m_Joins; JoinList m_GhostJoins; IntersectList m_IntersectList; ClipType m_ClipType; typedef std::priority_queue ScanbeamList; ScanbeamList m_Scanbeam; typedef std::list MaximaList; MaximaList m_Maxima; TEdge *m_ActiveEdges; TEdge *m_SortedEdges; bool m_ExecuteLocked; PolyFillType m_ClipFillType; PolyFillType m_SubjFillType; bool m_ReverseOutput; bool m_UsingPolyTree; bool m_StrictSimple; #ifdef use_xyz ZFillCallback m_ZFill; //custom callback #endif void SetWindingCount(TEdge& edge); bool IsEvenOddFillType(const TEdge& edge) const; bool IsEvenOddAltFillType(const TEdge& edge) const; void InsertScanbeam(const cInt Y); cInt PopScanbeam(); void InsertLocalMinimaIntoAEL(const cInt botY); void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge); void AddEdgeToSEL(TEdge *edge); void CopyAELToSEL(); void DeleteFromSEL(TEdge *e); void DeleteFromAEL(TEdge *e); void UpdateEdgeIntoAEL(TEdge *&e); void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2); bool IsContributing(const TEdge& edge) const; bool IsTopHorz(const cInt XPos); void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2); void DoMaxima(TEdge *e); void ProcessHorizontals(); void ProcessHorizontal(TEdge *horzEdge); void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); OutRec* GetOutRec(int idx); void AppendPolygon(TEdge *e1, TEdge *e2); void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt); OutRec* CreateOutRec(); OutPt* AddOutPt(TEdge *e, const IntPoint &pt); OutPt* GetLastOutPt(TEdge *e); void DisposeAllOutRecs(); void DisposeOutRec(PolyOutList::size_type index); bool ProcessIntersections(const cInt topY); void BuildIntersectList(const cInt topY); void ProcessIntersectList(); void ProcessEdgesAtTopOfScanbeam(const cInt topY); void BuildResult(Paths& polys); void BuildResult2(PolyTree& polytree); void SetHoleState(TEdge *e, OutRec *outrec); void DisposeIntersectNodes(); bool FixupIntersectionOrder(); void FixupOutPolygon(OutRec &outrec); void FixupOutPolyline(OutRec &outrec); bool IsHole(TEdge *e); bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl); void FixHoleLinkage(OutRec &outrec); void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt); void ClearJoins(); void ClearGhostJoins(); void AddGhostJoin(OutPt *op, const IntPoint offPt); bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2); void JoinCommonEdges(); void DoSimplePolygons(); void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec); void FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec); #ifdef use_xyz void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2); #endif }; //------------------------------------------------------------------------------ class MAPNIK_DECL ClipperOffset { public: ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25); ~ClipperOffset(); void AddPath(const Path& path, JoinType joinType, EndType endType); void AddPaths(const Paths& paths, JoinType joinType, EndType endType); void Execute(Paths& solution, double delta); void Execute(PolyTree& solution, double delta); void Clear(); double MiterLimit; double ArcTolerance; private: Paths m_destPolys; Path m_srcPoly; Path m_destPoly; std::vector m_normals; double m_delta, m_sinA, m_sin, m_cos; double m_miterLim, m_StepsPerRad; IntPoint m_lowest; PolyNode m_polyNodes; void FixOrientations(); void DoOffset(double delta); void OffsetPoint(int j, int& k, JoinType jointype); void DoSquare(int j, int k); void DoMiter(int j, int k, double r); void DoRound(int j, int k); }; //------------------------------------------------------------------------------ class clipperException : public std::exception { public: clipperException(const char* description): m_descr(description) {} virtual ~clipperException() throw() {} virtual const char* what() const throw() {return m_descr.c_str();} private: std::string m_descr; }; //------------------------------------------------------------------------------ } //ClipperLib namespace #endif //clipper_hpp