mapnik/include/mapnik/simplify_converter.hpp
2017-03-27 16:14:51 +01:00

620 lines
18 KiB
C++

#ifndef MAPNIK_SIMPLIFY_CONVERTER_HPP
#define MAPNIK_SIMPLIFY_CONVERTER_HPP
// mapnik
#include <mapnik/config.hpp>
#include <mapnik/vertex.hpp>
#include <mapnik/simplify.hpp>
#include <mapnik/util/noncopyable.hpp>
// stl
#include <limits>
#include <set>
#include <vector>
#include <deque>
#include <cmath>
#include <stdexcept>
#include <algorithm>
namespace mapnik
{
struct weighted_vertex : private util::noncopyable
{
vertex2d coord;
double weight;
weighted_vertex *prev;
weighted_vertex *next;
weighted_vertex(vertex2d coord_) :
coord(coord_),
weight(std::numeric_limits<double>::infinity()),
prev(nullptr),
next(nullptr) {}
double nominalWeight()
{
if (prev == nullptr || next == nullptr || coord.cmd != SEG_LINETO)
{
return std::numeric_limits<double>::infinity();
}
vertex2d const& A = prev->coord;
vertex2d const& B = next->coord;
vertex2d const& C = coord;
return std::abs(static_cast<double>((A.x - C.x) * (B.y - A.y) - (A.x - B.x) * (C.y - A.y))) / 2.0;
}
struct ascending_sort
{
bool operator() (const weighted_vertex *a, const weighted_vertex *b) const
{
return b->weight > a->weight;
}
};
};
struct sleeve
{
vertex2d v[5];
sleeve(vertex2d const& v0, vertex2d const& v1, double offset)
{
double a = std::atan2((v1.y - v0.y), (v1.x - v0.x));
double dx = offset * std::cos(a);
double dy = offset * std::sin(a);
v[0].x = v0.x + dy;
v[0].y = v0.y - dx;
v[1].x = v0.x - dy;
v[1].y = v0.y + dx;
v[2].x = v1.x - dy;
v[2].y = v1.y + dx;
v[3].x = v1.x + dy;
v[3].y = v1.y - dx;
v[4].x = v0.x + dy;
v[4].y = v0.y - dx;
}
bool inside(vertex2d const& q)
{
bool _inside=false;
for (unsigned i=0;i<4;++i)
{
if ((((v[i+1].y <= q.y) && (q.y < v[i].y)) ||
((v[i].y <= q.y) && (q.y < v[i+1].y))) &&
(q.x < (v[i].x - v[i+1].x) * (q.y - v[i+1].y)/ (v[i].y - v[i+1].y) + v[i+1].x))
_inside=!_inside;
}
return _inside;
}
};
template <typename Geometry>
struct simplify_converter
{
public:
simplify_converter(Geometry & geom)
: geom_(geom),
tolerance_(0.0),
status_(initial),
algorithm_(radial_distance),
pos_(0)
{}
enum status : std::uint8_t
{
initial,
process,
closing,
done,
cache
};
unsigned type() const
{
return static_cast<unsigned>(geom_.type());
}
simplify_algorithm_e get_simplify_algorithm()
{
return algorithm_;
}
void set_simplify_algorithm(simplify_algorithm_e val)
{
if (algorithm_ != val)
{
algorithm_ = val;
reset();
}
}
double get_simplify_tolerance()
{
return tolerance_;
}
void set_simplify_tolerance(double val)
{
if (tolerance_ != val)
{
tolerance_ = val;
reset();
}
}
void reset()
{
geom_.rewind(0);
vertices_.clear();
status_ = initial;
pos_ = 0;
}
void rewind(unsigned int) const
{
pos_ = 0;
}
unsigned vertex(double* x, double* y)
{
if (tolerance_ == 0.0)
return geom_.vertex(x, y);
if (status_ == initial)
init_vertices();
return output_vertex(x, y);
}
private:
unsigned output_vertex(double* x, double* y)
{
switch (algorithm_)
{
case visvalingam_whyatt:
case douglas_peucker:
return output_vertex_cached(x, y);
case radial_distance:
return output_vertex_distance(x, y);
case zhao_saalfeld:
return output_vertex_sleeve(x, y);
default:
throw std::runtime_error("simplification algorithm not yet implemented");
}
return SEG_END;
}
unsigned output_vertex_cached(double* x, double* y)
{
if (pos_ >= vertices_.size())
return SEG_END;
previous_vertex_ = vertices_[pos_];
if (previous_vertex_.cmd == SEG_CLOSE)
{
*x = *y = 0.0; // restore SEG_CLOSE command
}
else
{
*x = previous_vertex_.x;
*y = previous_vertex_.y;
}
pos_++;
return previous_vertex_.cmd;
}
unsigned output_vertex_distance(double* x, double* y)
{
if (status_ == closing)
{
*x = *y = 0.0;
status_ = done;
return SEG_CLOSE;
}
vertex2d last;
vertex2d vtx(vertex2d::no_init);
while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
{
if (vtx.cmd == SEG_LINETO)
{
if (distance_to_previous(vtx) > tolerance_)
{
// Only output a vertex if it's far enough away from the previous
break;
}
else
{
last = vtx;
// continue
}
}
else if (vtx.cmd == SEG_CLOSE)
{
if (last.cmd == SEG_END)
{
// The previous vertex was already output in the previous call.
// We can now safely output SEG_CLOSE.
status_ = done;
}
else
{
// We eliminated the previous point because it was too close, but
// we have to output it now anyway, since this is the end of the
// vertex stream. Make sure that we output SEG_CLOSE in the next call.
vtx.x = start_vertex_.x;
vtx.y = start_vertex_.y;
status_ = closing;
}
break;
}
else if (vtx.cmd == SEG_MOVETO)
{
start_vertex_ = vtx;
break;
}
else
{
throw std::runtime_error("Unknown vertex command");
}
}
previous_vertex_ = vtx;
*x = vtx.x;
*y = vtx.y;
return vtx.cmd;
}
template <typename Iterator>
bool fit_sleeve(Iterator itr, Iterator end, vertex2d const& v)
{
sleeve s(*itr,v,tolerance_);
++itr; // skip first vertex
for (; itr != end; ++itr)
{
if (!s.inside(*itr))
{
return false;
}
}
return true;
}
unsigned output_vertex_sleeve(double* x, double* y)
{
vertex2d vtx(vertex2d::no_init);
std::size_t min_size = 1;
while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
{
//if ((std::fabs(vtx.x - previous_vertex_.x) < 0.5) &&
// (std::fabs(vtx.y - previous_vertex_.y) < 0.5))
// continue;
if (status_ == cache &&
vertices_.size() >= min_size)
status_ = process;
if (vtx.cmd == SEG_MOVETO)
{
if (sleeve_cont_.size() > 1)
{
vertices_.push_back(sleeve_cont_.back());
sleeve_cont_.clear();
}
vertices_.push_back(vtx);
sleeve_cont_.push_back(vtx);
start_vertex_ = vtx;
if (status_ == process) break;
}
else if (vtx.cmd == SEG_LINETO)
{
if (sleeve_cont_.size() > 1 && !fit_sleeve(sleeve_cont_.begin(), sleeve_cont_.end(), vtx))
{
vertex2d last = vtx;
vtx = sleeve_cont_.back();
sleeve_cont_.clear();
sleeve_cont_.push_back(vtx);
sleeve_cont_.push_back(last);
vertices_.push_back(vtx);
if (status_ == process) break;
}
else
{
sleeve_cont_.push_back(vtx);
}
}
else if (vtx.cmd == SEG_CLOSE)
{
if (sleeve_cont_.size() > 1)
{
vertices_.push_back(sleeve_cont_.back());
sleeve_cont_.clear();
}
vtx.x = start_vertex_.x;
vtx.y = start_vertex_.y;
vertices_.push_back(vtx);
if (status_ == process) break;
}
}
if (status_ == cache)
{
if (vertices_.size() < min_size)
return SEG_END;
status_ = process;
}
if (vtx.cmd == SEG_END)
{
if (sleeve_cont_.size() > 1)
{
vertices_.push_back(sleeve_cont_.back());
}
sleeve_cont_.clear();
vertices_.push_back(vtx);
}
if (vertices_.size() > 0)
{
vertex2d v = vertices_.front();
vertices_.pop_front();
if (v.cmd == SEG_CLOSE)
{
*x = *y = 0.0; // restore SEG_CLOSE command
}
else
{
*x = v.x;
*y = v.y;
}
return v.cmd;
}
return SEG_END;
}
double distance_to_previous(vertex2d const& vtx)
{
double dx = previous_vertex_.x - vtx.x;
double dy = previous_vertex_.y - vtx.y;
return dx * dx + dy * dy;
}
status init_vertices()
{
if (status_ != initial) // already initialized
return status_;
reset();
switch (algorithm_) {
case visvalingam_whyatt:
return init_vertices_visvalingam_whyatt();
case radial_distance:
// Use
vertices_.push_back(vertex2d(vertex2d::no_init));
return status_ = process;
case zhao_saalfeld:
return status_ = cache;
case douglas_peucker:
return init_vertices_RDP();
default:
throw std::runtime_error("simplification algorithm not yet implemented");
}
}
status init_vertices_visvalingam_whyatt()
{
using VertexSet = std::set<weighted_vertex *, weighted_vertex::ascending_sort>;
using VertexList = std::vector<weighted_vertex *>;
std::vector<weighted_vertex *> v_list;
vertex2d vtx(vertex2d::no_init);
while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
{
if (vtx.cmd == SEG_MOVETO)
{
start_vertex_ = vtx;
}
else if (vtx.cmd == SEG_CLOSE)
{
vtx.x = start_vertex_.x;
vtx.y = start_vertex_.y;
}
v_list.push_back(new weighted_vertex(vtx));
}
if (v_list.empty())
{
return status_ = process;
}
// Connect the vertices in a linked list and insert them into the set.
VertexSet v;
for (VertexList::iterator i = v_list.begin(); i != v_list.end(); ++i)
{
(*i)->prev = i == v_list.begin() ? nullptr : *(i - 1);
(*i)->next = i + 1 == v_list.end() ? nullptr : *(i + 1);
(*i)->weight = (*i)->nominalWeight();
v.insert(*i);
}
// Use Visvalingam-Whyatt algorithm to calculate each point's weight.
while (v.size() > 0)
{
VertexSet::iterator lowest = v.begin();
weighted_vertex *removed = *lowest;
if (removed->weight >= tolerance_)
{
break;
}
v.erase(lowest);
// Connect adjacent vertices with each other
if (removed->prev) removed->prev->next = removed->next;
if (removed->next) removed->next->prev = removed->prev;
// Adjust weight and reinsert prev/next to move them to their correct position.
if (removed->prev)
{
v.erase(removed->prev);
removed->prev->weight = std::max(removed->weight, removed->prev->nominalWeight());
v.insert(removed->prev);
}
if (removed->next)
{
v.erase(removed->next);
removed->next->weight = std::max(removed->weight, removed->next->nominalWeight());
v.insert(removed->next);
}
}
v.clear();
// Traverse the remaining list and insert them into the vertex cache.
for (VertexList::iterator i = v_list.begin(); i != v_list.end(); ++i)
{
if ((*i)->weight >= tolerance_)
{
vertices_.push_back((*i)->coord);
}
delete *i;
}
// Initialization finished.
return status_ = process;
}
void RDP(std::vector<vertex2d>& vertices, const size_t first, const size_t last)
{
// Squared length of a vector
auto sqlen = [] (vertex2d const& vec) { return vec.x*vec.x + vec.y*vec.y; };
// Compute square distance of p to a line segment
auto segment_distance = [&sqlen] (vertex2d const& p, vertex2d const& a, vertex2d const& b, vertex2d const& dir, double dir_sq_len)
{
// Special case where segment has same first and last point at which point we are just doing a radius check
if (dir_sq_len == 0)
{
return sqlen(vertex2d(p.x - b.x, p.y - b.y, SEG_END));
}
// Project p onto dir by ((p dot dir / dir dot dir) * dir)
double scale = ((p.x - a.x) * dir.x + (p.y - a.y) * dir.y) / dir_sq_len;
double projected_x = dir.x * scale;
double projected_y = dir.y * scale;
double projected_origin_distance = projected_x * projected_x + projected_y * projected_y;
// Projected point doesn't lie on the segment
if (projected_origin_distance > dir_sq_len)
{
// Projected point lies past the end of the segment
if (scale > 0)
{
return sqlen(vertex2d(p.x - b.x, p.y - b.y, SEG_END));
}// Projected point lies before the beginning of the segment
else
{
return sqlen(vertex2d(p.x - a.x, p.y - a.y, SEG_END));
}
}// Projected point lies on the segment
else
{
return sqlen(vertex2d(p.x - (projected_x + a.x), p.y - (projected_y + a.y), SEG_END));
}
};
// Compute the directional vector along the segment
vertex2d dir = vertex2d(vertices[last].x - vertices[first].x, vertices[last].y - vertices[first].y, SEG_END);
double dir_sq_len = sqlen(dir);
// Find the point with the maximum distance from this line segment
double max = std::numeric_limits<double>::min();
size_t keeper = 0;
for (size_t i = first + 1; i < last; ++i)
{
double d = segment_distance(vertices[i], vertices[first], vertices[last], dir, dir_sq_len);
if (d > max)
{
keeper = i;
max = d;
}
}
// Split at the vertex that is furthest outside of the tolerance
// NOTE: we work in square distances to avoid sqrt so we sqaure tolerance accordingly
if (max > tolerance_ * tolerance_)
{
// Make sure not to smooth out the biggest outlier (keeper)
if (keeper - first != 1)
{
RDP(vertices, first, keeper);
}
if (last - keeper != 1)
{
RDP(vertices, keeper, last);
}
}// Everyone between the first and the last was close enough to the line
else
{
// Mark each of them as discarded
for (size_t i = first + 1; i < last; ++i)
{
vertices[i].cmd = SEG_END;
}
}
}
status init_vertices_RDP()
{
// Slurp out the original vertices
std::vector<vertex2d> vertices;
//vertices.reserve(geom_.size());
vertex2d vtx(vertex2d::no_init);
while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
{
if (vtx.cmd == SEG_MOVETO)
{
start_vertex_ = vtx;
}
else if (vtx.cmd == SEG_CLOSE)
{
vtx.x = start_vertex_.x;
vtx.y = start_vertex_.y;
}
vertices.push_back(vtx);
}
// Run ramer douglas peucker on it
if (vertices.size() > 2)
{
RDP(vertices, 0, vertices.size() - 1);
}
// Slurp the points back out that haven't been marked as discarded
for (vertex2d const& v : vertices)
{
if (v.cmd != SEG_END)
{
vertices_.emplace_back(v);
}
}
return status_ = process;
}
Geometry & geom_;
double tolerance_;
status status_;
simplify_algorithm_e algorithm_;
std::deque<vertex2d> vertices_;
std::deque<vertex2d> sleeve_cont_;
vertex2d previous_vertex_;
vertex2d start_vertex_;
mutable size_t pos_;
};
}
#endif // MAPNIK_SIMPLIFY_CONVERTER_HPP