mapnik/include/mapnik/offset_converter.hpp
Mickey Rose e11f3a660a offset_converter: minor refactoring
DRY: extract method for `joint_angle` calculation.
2018-07-14 12:46:53 +02:00

671 lines
19 KiB
C++

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2017 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_OFFSET_CONVERTER_HPP
#define MAPNIK_OFFSET_CONVERTER_HPP
#ifdef MAPNIK_LOG
#include <mapnik/debug.hpp>
#endif
#include <mapnik/global.hpp>
#include <mapnik/config.hpp>
#include <mapnik/util/math.hpp>
#include <mapnik/vertex.hpp>
#include <mapnik/vertex_cache.hpp>
// stl
#include <cmath>
#include <vector>
#include <cstddef>
#include <algorithm>
namespace mapnik
{
static constexpr double offset_converter_default_threshold = 5.0;
template <typename Geometry>
struct offset_converter
{
using size_type = std::size_t;
offset_converter(Geometry & geom)
: geom_(geom)
, offset_(0.0)
, threshold_(offset_converter_default_threshold)
, half_turn_segments_(16)
, status_(initial)
, pre_first_(vertex2d::no_init)
, pre_(vertex2d::no_init)
, cur_(vertex2d::no_init)
{}
enum status
{
initial,
process
};
unsigned type() const
{
return static_cast<unsigned>(geom_.type());
}
double get_offset() const
{
return offset_;
}
double get_threshold() const
{
return threshold_;
}
void set_offset(double val)
{
if (offset_ != val)
{
offset_ = val;
reset();
}
}
void set_threshold(double val)
{
threshold_ = val;
// no need to reset(), since threshold doesn't affect
// offset vertices' computation, it only controls how
// far will we be looking for self-intersections
}
unsigned vertex(double * x, double * y)
{
if (offset_ == 0.0)
{
return geom_.vertex(x, y);
}
if (status_ == initial)
{
init_vertices();
}
if (pos_ >= vertices_.size())
{
return SEG_END;
}
pre_ = (pos_ ? cur_ : pre_first_);
cur_ = vertices_.at(pos_++);
if (pos_ == vertices_.size())
{
return output_vertex(x, y);
}
double const check_dist = offset_ * threshold_;
double const check_dist2 = check_dist * check_dist;
double t = 1.0;
double vt, ut;
for (size_t i = pos_; i+1 < vertices_.size(); ++i)
{
//break; // uncomment this to see all the curls
vertex2d const& u0 = vertices_[i];
// End or beginning of a line or ring must not be filtered out
// to not to join lines or rings together.
if (u0.cmd == SEG_CLOSE || u0.cmd == SEG_MOVETO)
{
break;
}
vertex2d const& u1 = vertices_[i+1];
double const dx = u0.x - cur_.x;
double const dy = u0.y - cur_.y;
if (dx*dx + dy*dy > check_dist2)
{
break;
}
if (!intersection(pre_, cur_, &vt, u0, u1, &ut))
{
continue;
}
if (vt < 0.0 || vt > t || ut < 0.0 || ut > 1.0)
{
continue;
}
t = vt;
pos_ = i+1;
}
cur_.x = pre_.x + t * (cur_.x - pre_.x);
cur_.y = pre_.y + t * (cur_.y - pre_.y);
return output_vertex(x, y);
}
void reset()
{
geom_.rewind(0);
vertices_.clear();
status_ = initial;
pos_ = 0;
}
void rewind(unsigned)
{
pos_ = 0;
}
private:
static double explement_reflex_angle(double angle)
{
if (angle > M_PI)
{
return angle - 2 * M_PI;
}
else if (angle < -M_PI)
{
return angle + 2 * M_PI;
}
else
{
return angle;
}
}
static bool intersection(vertex2d const& u1, vertex2d const& u2, double* ut,
vertex2d const& v1, vertex2d const& v2, double* vt)
{
double const dx = v1.x - u1.x;
double const dy = v1.y - u1.y;
double const ux = u2.x - u1.x;
double const uy = u2.y - u1.y;
double const vx = v2.x - v1.x;
double const vy = v2.y - v1.y;
// the first line is not vertical
if (ux < -1e-6 || ux > 1e-6)
{
double const up = ux * dy - dx * uy;
double const dn = vx * uy - ux * vy;
if (dn > -1e-6 && dn < 1e-6)
{
return false; // they are parallel
}
*vt = up / dn;
*ut = (*vt * vx + dx) / ux;
return true;
}
// the first line is not horizontal
if (uy < -1e-6 || uy > 1e-6)
{
double const up = uy * dx - dy * ux;
double const dn = vy * ux - uy * vx;
if (dn > -1e-6 && dn < 1e-6)
{
return false; // they are parallel
}
*vt = up / dn;
*ut = (*vt * vy + dy) / uy;
return true;
}
// the first line is too short
return false;
}
double joint_angle(double x1x0, double y1y0, double x1x2, double y1y2) const
{
double dot = x1x0 * x1x2 + y1y0 * y1y2; // dot product
double det = x1x0 * y1y2 - y1y0 * x1x2; // determinant
double angle = std::atan2(det, dot); // atan2(y, x) or atan2(sin, cos)
// angle in [-tau/2; tau/2]
if (offset_ > 0.0)
{
angle = util::tau - angle; // angle in [tau/2; tau*3/2]
}
else if (angle < 0)
{
angle += util::tau; // angle in [tau/2; tau]
// angle may now be equal to tau, because if the original angle
// is very small, the addition cancels it (epsilon + tau == tau)
}
if (angle >= util::tau)
{
angle -= util::tau;
}
return angle;
}
/**
* @brief Translate (vx, vy) by rotated (dx, dy).
*/
static void displace(vertex2d & v, double dx, double dy, double a)
{
v.x += dx * std::cos(a) - dy * std::sin(a);
v.y += dx * std::sin(a) + dy * std::cos(a);
}
/**
* @brief Translate (vx, vy) by rotated (0, -offset).
*/
void displace(vertex2d & v, double a) const
{
v.x -= offset_ * std::sin(a);
v.y += offset_ * std::cos(a);
}
/**
* @brief (vx, vy) := (ux, uy) + rotated (0, -offset)
*/
void displace(vertex2d & v, vertex2d const& u, double a) const
{
v.x = u.x - offset_ * std::sin(a);
v.y = u.y + offset_ * std::cos(a);
v.cmd = u.cmd;
}
int point_line_position(vertex2d const& a, vertex2d const& b, vertex2d const& point) const
{
double position = (b.x - a.x) * (point.y - a.y) - (b.y - a.y) * (point.x - a.x);
if (position > 1e-6) return 1;
if (position < -1e-6) return -1;
return 0;
}
void displace2(vertex2d & v1, vertex2d const& v0, vertex2d const& v2, double a, double b) const
{
double sa = offset_ * std::sin(a);
double ca = offset_ * std::cos(a);
double h = std::tan(0.5 * (b - a));
double hsa = h * sa;
double hca = h * ca;
double abs_offset = std::abs(offset_);
double hsaca = ca-hsa;
double hcasa = -sa-hca;
double abs_hsaca = std::abs(hsaca);
double abs_hcasa = std::abs(hcasa);
double abs_hsa = std::abs(hsa);
double abs_hca = std::abs(hca);
vertex2d v_tmp(vertex2d::no_init);
v_tmp.x = v1.x - sa - hca;
v_tmp.y = v1.y + ca - hsa;
v_tmp.cmd = v1.cmd;
int same = point_line_position(v0, v2, v_tmp)*point_line_position(v0, v2, v1);
if (same >= 0 && std::abs(h) < 10)
{
v1.x = v_tmp.x;
v1.y = v_tmp.y;
}
else if ((v0.x-v1.x)*(v0.x-v1.x) + (v0.y-v1.y)*(v0.y-v1.y) +
(v0.x-v2.x)*(v0.x-v2.x) + (v0.y-v2.y)*(v0.y-v2.y) > offset_*offset_)
{
if (abs_hsa > abs_offset || abs_hca > abs_offset)
{
double scale = std::max(abs_hsa,abs_hca);
scale = scale < 1e-6 ? 1. : abs_offset / scale;
// interpolate hsa, hca to <0,abs_offset>
hsa = hsa * scale;
sa = sa * scale;
hca = hca * scale;
ca = ca * scale;
}
v1.x = v1.x - sa - hca;
v1.y = v1.y + ca - hsa;
}
else
{
if (abs_hsaca*abs_hsaca + abs_hcasa*abs_hcasa > abs_offset*abs_offset)
{
double d = (abs_hsaca*abs_hsaca + abs_hcasa*abs_hcasa);
d = d < 1e-6 ? 1. : d;
double scale = (abs_offset*abs_offset)/d;
v1.x = v1.x + hcasa*scale;
v1.y = v1.y + hsaca*scale;
}
else
{
v1.x = v1.x + hcasa;
v1.y = v1.y + hsaca;
}
}
}
status init_vertices()
{
if (status_ != initial) // already initialized
{
return status_;
}
vertex2d v0(vertex2d::no_init);
vertex2d v1(vertex2d::no_init);
vertex2d v2(vertex2d::no_init);
vertex2d w(vertex2d::no_init);
vertex2d start(vertex2d::no_init);
vertex2d start_v2(vertex2d::no_init);
std::vector<vertex2d> points;
std::vector<vertex2d> close_points;
bool is_polygon = false;
std::size_t cpt = 0;
v0.cmd = geom_.vertex(&v0.x, &v0.y);
v1 = v0;
// PUSH INITIAL
points.push_back(v0);
if (v0.cmd == SEG_END) // not enough vertices in source
{
return status_ = process;
}
start = v0;
while ((v0.cmd = geom_.vertex(&v0.x, &v0.y)) != SEG_END)
{
if (v0.cmd == SEG_CLOSE)
{
is_polygon = true;
auto & prev = points.back();
if (prev.x == start.x && prev.y == start.y)
{
prev.x = v0.x; // hack
prev.y = v0.y;
prev.cmd = SEG_CLOSE; // account for dupes (line_to(move_to) + close_path) in agg poly clipper
std::size_t size = points.size();
if (size > 1) close_points.push_back(points[size - 2]);
else close_points.push_back(prev);
continue;
}
else
{
close_points.push_back(v1);
}
}
else if (v0.cmd == SEG_MOVETO)
{
start = v0;
}
v1 = v0;
points.push_back(v0);
}
// Push SEG_END
points.push_back(vertex2d(v0.x,v0.y,SEG_END));
std::size_t i = 0;
v1 = points[i++];
v2 = points[i++];
v0.cmd = v1.cmd;
v0.x = v1.x;
v0.y = v1.y;
if (v2.cmd == SEG_END) // not enough vertices in source
{
return status_ = process;
}
double angle_a = 0;
// The vector parts from v1 to v0.
double v_x1x0 = 0;
double v_y1y0 = 0;
// The vector parts from v1 to v2;
double v_x1x2 = v2.x - v1.x;
double v_y1y2 = v2.y - v1.y;
if (is_polygon)
{
v_x1x0 = close_points[cpt].x - v1.x;
v_y1y0 = close_points[cpt].y - v1.y;
cpt++;
angle_a = std::atan2(-v_y1y0, -v_x1x0);
}
double angle_b = std::atan2(v_y1y2, v_x1x2);
// Angle between the two vectors
double curve_angle;
if (!is_polygon)
{
// first vertex
displace(v1, angle_b);
push_vertex(v1);
}
else
{
double joint_angle = this->joint_angle(v_x1x0, v_y1y0, v_x1x2, v_y1y2);
int bulge_steps = 0;
if (std::abs(joint_angle) > M_PI)
{
curve_angle = explement_reflex_angle(angle_b - angle_a);
// Bulge steps should be determined by the inverse of the joint angle.
double half_turns = half_turn_segments_ * std::fabs(curve_angle);
bulge_steps = 1 + static_cast<int>(std::floor(half_turns / M_PI));
}
if (bulge_steps == 0)
{
displace2(v1, v0, v2, angle_a, angle_b);
push_vertex(v1);
}
else
{
displace(v1, angle_b);
push_vertex(v1);
}
}
// Sometimes when the first segment is too short, it causes ugly
// curls at the beginning of the line. To avoid this, we make up
// a fake vertex two offset-lengths before the first, and expect
// intersection detection smoothes it out.
if (!is_polygon)
{
pre_first_ = v1;
displace(pre_first_, -2 * std::fabs(offset_), 0, angle_b);
start_ = pre_first_;
}
else
{
pre_first_ = v0;
start_ = pre_first_;
}
start_v2.x = v2.x;
start_v2.y = v2.y;
vertex2d tmp_prev(vertex2d::no_init);
while (i < points.size())
{
v1 = v2;
v2 = points[i++];
if (v1.cmd == SEG_MOVETO)
{
if (is_polygon)
{
v1.x = start_.x;
v1.y = start_.y;
if (cpt < close_points.size())
{
v_x1x2 = v1.x - close_points[cpt].x;
v_y1y2 = v1.y - close_points[cpt].y;
cpt++;
}
start_v2.x = v2.x;
start_v2.y = v2.y;
}
}
if (is_polygon && v2.cmd == SEG_MOVETO)
{
start_.x = v2.x;
start_.y = v2.y;
v2.x = start_v2.x;
v2.y = start_v2.y;
}
else if (v2.cmd == SEG_END)
{
if (!is_polygon) break;
v2.x = start_v2.x;
v2.y = start_v2.y;
}
else if (v2.cmd == SEG_CLOSE)
{
v2.x = start_.x;
v2.y = start_.y;
}
// Switch the previous vector's direction as the origin has changed
v_x1x0 = -v_x1x2;
v_y1y0 = -v_y1y2;
// Calculate new angle_a
angle_a = std::atan2(v_y1y2, v_x1x2);
// Calculate the new vector
v_x1x2 = v2.x - v1.x;
v_y1y2 = v2.y - v1.y;
// Calculate the new angle_b
angle_b = std::atan2(v_y1y2, v_x1x2);
double joint_angle = this->joint_angle(v_x1x0, v_y1y0, v_x1x2, v_y1y2);
int bulge_steps = 0;
if (std::abs(joint_angle) > M_PI)
{
curve_angle = explement_reflex_angle(angle_b - angle_a);
// Bulge steps should be determined by the inverse of the joint angle.
double half_turns = half_turn_segments_ * std::fabs(curve_angle);
bulge_steps = 1 + static_cast<int>(std::floor(half_turns / M_PI));
}
#ifdef MAPNIK_LOG
if (bulge_steps == 0)
{
// inside turn (sharp/obtuse angle)
MAPNIK_LOG_DEBUG(ctrans) << "offset_converter:"
<< " Sharp joint [<< inside turn "
<< static_cast<int>(util::degrees(joint_angle))
<< " degrees >>]";
}
else
{
// outside turn (reflex angle)
MAPNIK_LOG_DEBUG(ctrans) << "offset_converter:"
<< " Bulge joint >)) outside turn "
<< static_cast<int>(util::degrees(joint_angle))
<< " degrees ((< with " << bulge_steps << " segments";
}
#endif
tmp_prev.cmd = v1.cmd;
tmp_prev.x = v1.x;
tmp_prev.y = v1.y;
if (v1.cmd == SEG_MOVETO)
{
if (bulge_steps == 0)
{
displace2(v1, v0, v2, angle_a, angle_b);
push_vertex(v1);
}
else
{
displace(v1, angle_b);
push_vertex(v1);
}
}
else
{
if (bulge_steps == 0)
{
displace2(v1, v0, v2, angle_a, angle_b);
push_vertex(v1);
}
else
{
displace(w, v1, angle_a);
w.cmd = SEG_LINETO;
push_vertex(w);
for (int s = 0; ++s < bulge_steps;)
{
displace(w, v1, angle_a + (curve_angle * s) / bulge_steps);
w.cmd = SEG_LINETO;
push_vertex(w);
}
displace(v1, angle_b);
push_vertex(v1);
}
}
v0.cmd = tmp_prev.cmd;
v0.x = tmp_prev.x;
v0.y = tmp_prev.y;
}
// last vertex
if (!is_polygon)
{
displace(v1, angle_b);
push_vertex(v1);
}
// initialization finished
return status_ = process;
}
unsigned output_vertex(double* px, double* py)
{
if (cur_.cmd == SEG_CLOSE) *px = *py = 0.0;
else
{
*px = cur_.x;
*py = cur_.y;
}
return cur_.cmd;
}
void push_vertex(vertex2d const& v)
{
vertices_.push_back(v);
}
Geometry & geom_;
double offset_;
double threshold_;
unsigned half_turn_segments_;
status status_;
size_t pos_;
std::vector<vertex2d> vertices_;
vertex2d start_;
vertex2d pre_first_;
vertex2d pre_;
vertex2d cur_;
};
}
#endif // MAPNIK_OFFSET_CONVERTER_HPP