1062 lines
37 KiB
C++
1062 lines
37 KiB
C++
/*****************************************************************************
|
|
*
|
|
* This file is part of Mapnik (c++ mapping toolkit)
|
|
*
|
|
* Copyright (C) 2011 Artem Pavlenko
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*****************************************************************************/
|
|
|
|
//mapnik
|
|
#include <mapnik/placement_finder.hpp>
|
|
#include <mapnik/geometry.hpp>
|
|
#include <mapnik/text_path.hpp>
|
|
#include <mapnik/fastmath.hpp>
|
|
#include <mapnik/text_placements/base.hpp>
|
|
|
|
// agg
|
|
#include "agg_path_length.h"
|
|
|
|
// boost
|
|
#include <boost/shared_ptr.hpp>
|
|
#include <boost/utility.hpp>
|
|
#include <boost/ptr_container/ptr_vector.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/foreach.hpp>
|
|
|
|
//stl
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
namespace mapnik
|
|
{
|
|
|
|
template<typename T>
|
|
std::pair<double, double> get_position_at_distance(double target_distance, T & shape_path)
|
|
{
|
|
double x1 = 0.0;
|
|
double y1 = 0.0;
|
|
double x2 = 0.0;
|
|
double y2 = 0.0;
|
|
double distance = 0.0;
|
|
bool first = true;
|
|
unsigned cmd;
|
|
double x = 0.0;
|
|
double y = 0.0;
|
|
shape_path.rewind(0);
|
|
while (!agg::is_stop(cmd = shape_path.vertex(&x2,&y2)))
|
|
{
|
|
if (first || agg::is_move_to(cmd))
|
|
{
|
|
first = false;
|
|
}
|
|
else
|
|
{
|
|
double dx = x2-x1;
|
|
double dy = y2-y1;
|
|
|
|
double segment_length = std::sqrt(dx*dx + dy*dy);
|
|
distance +=segment_length;
|
|
|
|
if (distance > target_distance)
|
|
{
|
|
x = x2 - dx * (distance - target_distance)/segment_length;
|
|
y = y2 - dy * (distance - target_distance)/segment_length;
|
|
break;
|
|
}
|
|
}
|
|
x1 = x2;
|
|
y1 = y2;
|
|
}
|
|
return std::pair<double, double>(x, y);
|
|
}
|
|
|
|
template<typename T>
|
|
double get_total_distance(T & shape_path)
|
|
{
|
|
return agg::path_length(shape_path);
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
placement_finder<DetectorT>::placement_finder(Feature const& feature,
|
|
text_placement_info const& placement_info,
|
|
string_info const& info,
|
|
DetectorT & detector,
|
|
box2d<double> const& extent)
|
|
: detector_(detector),
|
|
dimensions_(extent),
|
|
info_(info),
|
|
p(placement_info.properties),
|
|
pi(placement_info),
|
|
string_width_(0),
|
|
string_height_(0),
|
|
first_line_space_(0),
|
|
valign_(V_AUTO),
|
|
halign_(H_AUTO),
|
|
line_breaks_(),
|
|
line_sizes_(),
|
|
collect_extents_(false)
|
|
{
|
|
init_string_size();
|
|
init_alignment();
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
template <typename T>
|
|
void placement_finder<DetectorT>::find_point_placements(T & shape_path)
|
|
{
|
|
unsigned cmd;
|
|
double new_x = 0.0;
|
|
double new_y = 0.0;
|
|
double old_x = 0.0;
|
|
double old_y = 0.0;
|
|
bool first = true;
|
|
|
|
double total_distance = get_total_distance<T>(shape_path);
|
|
shape_path.rewind(0);
|
|
|
|
if (distance == 0) //Point data, not a line
|
|
{
|
|
double x, y;
|
|
shape_path.vertex(&x,&y);
|
|
find_point_placement(x, y);
|
|
return;
|
|
}
|
|
|
|
int num_labels = 1;
|
|
if (p.label_spacing > 0)
|
|
num_labels = static_cast<int> (floor(total_distance / pi.get_actual_label_spacing()));
|
|
|
|
if (p.force_odd_labels && num_labels % 2 == 0)
|
|
num_labels--;
|
|
if (num_labels <= 0)
|
|
num_labels = 1;
|
|
|
|
double distance = 0.0; // distance from last label
|
|
double spacing = total_distance / num_labels;
|
|
double target_distance = spacing / 2; // first label should be placed at half the spacing
|
|
|
|
while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y))) //For each node in the shape
|
|
{
|
|
|
|
if (first || agg::is_move_to(cmd)) //Don't do any processing if it is the first node
|
|
{
|
|
first = false;
|
|
}
|
|
else
|
|
{
|
|
//Add the length of this segment to the total we have saved up
|
|
double segment_length = std::sqrt(std::pow(old_x-new_x,2) + std::pow(old_y-new_y,2)); //Pythagoras
|
|
distance += segment_length;
|
|
|
|
//While we have enough distance to place text in
|
|
while (distance > target_distance)
|
|
{
|
|
//Try place at the specified place
|
|
double new_weight = (segment_length - (distance - target_distance))/segment_length;
|
|
find_point_placement(old_x + (new_x-old_x)*new_weight, old_y + (new_y-old_y)*new_weight);
|
|
|
|
distance -= target_distance; //Consume the spacing gap we have used up
|
|
target_distance = spacing; //Need to reset the target_distance as it is spacing/2 for the first label.
|
|
}
|
|
}
|
|
|
|
old_x = new_x;
|
|
old_y = new_y;
|
|
}
|
|
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::init_string_size()
|
|
{
|
|
// Get total string size
|
|
if (!info_.num_characters()) return; //At least one character is required
|
|
for (unsigned i = 0; i < info_.num_characters(); i++)
|
|
{
|
|
char_info const& ci = info_.at(i);
|
|
if (!ci.width || !ci.line_height) continue; //Skip empty chars (add no character_spacing for them)
|
|
string_width_ += ci.width + ci.format->character_spacing;
|
|
string_height_ = std::max(string_height_, ci.line_height+ci.format->line_spacing);
|
|
first_line_space_ = std::max(first_line_space_, ci.line_height-ci.avg_height);
|
|
}
|
|
string_width_ -= info_.at(info_.num_characters()-1).format->character_spacing; //Remove last space
|
|
string_height_ -= first_line_space_; //First line is a bit smaller
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::find_line_breaks()
|
|
{
|
|
if (!line_sizes_.empty()) return;
|
|
bool first_line = true;
|
|
// check if we need to wrap the string
|
|
double wrap_at = string_width_ + 1.0;
|
|
if (p.wrap_width && string_width_ > p.wrap_width)
|
|
{
|
|
if (p.text_ratio)
|
|
{
|
|
for (double i = 1.0; ((wrap_at = string_width_/i)/(string_height_*i)) > p.text_ratio && (string_width_/i) > p.wrap_width; i += 1.0) ;
|
|
}
|
|
else
|
|
{
|
|
wrap_at = p.wrap_width;
|
|
}
|
|
}
|
|
|
|
// work out where our line breaks need to be and the resultant width to the 'wrapped' string
|
|
if ((wrap_at < string_width_) || info_.has_line_breaks())
|
|
{
|
|
first_line_space_ = 0.0;
|
|
int last_wrap_char_pos = 0; //Position of last char where wrapping is possible
|
|
double last_char_spacing = 0.0;
|
|
double last_wrap_char_width = 0.0; //Include char_spacing before and after
|
|
string_width_ = 0.0;
|
|
string_height_ = 0.0;
|
|
double line_width = 0.0;
|
|
double line_height = 0.0; //Height of tallest char in line
|
|
double word_width = 0.0; //Current unfinished word width
|
|
double word_height = 0.0;
|
|
//line_width and word_width include char width + spacing, but not the spacing after the last char
|
|
|
|
for (unsigned int ii = 0; ii < info_.num_characters(); ii++)
|
|
{
|
|
char_info const& ci = info_.at(ii);
|
|
unsigned c = ci.c;
|
|
|
|
if ((c == ci.format->wrap_char) || (c == '\n'))
|
|
{
|
|
last_wrap_char_pos = ii;
|
|
//No wrap at previous position
|
|
line_width += word_width + last_wrap_char_width;
|
|
line_height = std::max(line_height, word_height);
|
|
last_wrap_char_width = last_char_spacing + ci.width + ci.format->character_spacing;
|
|
last_char_spacing = 0.0; //Current one is included in last_wrap_char_width
|
|
word_width = 0.0;
|
|
word_height = 0.0;
|
|
} else {
|
|
//No wrap char
|
|
word_width += last_char_spacing + ci.width;
|
|
last_char_spacing = ci.format->character_spacing;
|
|
word_height = std::max(word_height, ci.line_height + ci.format->line_spacing);
|
|
//TODO: I think this calculation could be wrong if height changes for the first word in the second line
|
|
if (first_line) first_line_space_ = std::max(first_line_space_, ci.line_height-ci.avg_height);
|
|
}
|
|
|
|
// wrap text at first wrap_char after (default) the wrap width or immediately before the current word
|
|
if ((c == '\n') ||
|
|
(line_width > 0 &&
|
|
((line_width > wrap_at && !ci.format->wrap_before) ||
|
|
((line_width + last_wrap_char_width + word_width) > wrap_at && ci.format->wrap_before)) )
|
|
)
|
|
{
|
|
add_line(line_width, line_height, first_line);
|
|
line_breaks_.push_back(last_wrap_char_pos);
|
|
line_width = 0.0;
|
|
line_height = 0.0;
|
|
last_wrap_char_width = 0; //Wrap char supressed
|
|
first_line = false;
|
|
}
|
|
}
|
|
line_width += last_wrap_char_width + word_width;
|
|
line_height = std::max(line_height, word_height);
|
|
add_line(line_width, line_height, first_line);
|
|
} else {
|
|
//No linebreaks
|
|
line_sizes_.push_back(std::make_pair(string_width_, string_height_));
|
|
}
|
|
line_breaks_.push_back(info_.num_characters());
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::add_line(double width, double height, bool first_line)
|
|
{
|
|
if (first_line) height -= first_line_space_;
|
|
string_width_ = std::max(string_width_, width); //Total width is the longest line
|
|
string_height_ += height;
|
|
line_sizes_.push_back(std::make_pair(width, height));
|
|
}
|
|
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::init_alignment()
|
|
{
|
|
valign_ = p.valign;
|
|
if (valign_ == V_AUTO)
|
|
{
|
|
if (p.displacement.second > 0.0)
|
|
{
|
|
valign_ = V_BOTTOM;
|
|
} else if (p.displacement.second < 0.0)
|
|
{
|
|
valign_ = V_TOP;
|
|
} else
|
|
{
|
|
valign_ = V_MIDDLE;
|
|
}
|
|
}
|
|
|
|
halign_ = p.halign;
|
|
if (halign_ == H_AUTO)
|
|
{
|
|
if (p.displacement.first > 0.0)
|
|
{
|
|
halign_ = H_RIGHT;
|
|
} else if (p.displacement.first < 0.0)
|
|
{
|
|
halign_ = H_LEFT;
|
|
} else
|
|
{
|
|
halign_ = H_MIDDLE;
|
|
}
|
|
}
|
|
|
|
jalign_ = p.jalign;
|
|
if (jalign_ == J_AUTO)
|
|
{
|
|
if (p.displacement.first > 0.0)
|
|
{
|
|
jalign_ = J_LEFT;
|
|
} else if (p.displacement.first < 0.0)
|
|
{
|
|
jalign_ = J_RIGHT;
|
|
} else {
|
|
jalign_ = J_MIDDLE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::adjust_position(text_path *current_placement)
|
|
{
|
|
// if needed, adjust for desired vertical alignment
|
|
if (valign_ == V_TOP)
|
|
{
|
|
current_placement->center.y -= 0.5 * string_height_; // move center up by 1/2 the total height
|
|
} else if (valign_ == V_BOTTOM)
|
|
{
|
|
current_placement->center.y += 0.5 * string_height_; // move center down by the 1/2 the total height
|
|
}
|
|
|
|
// set horizontal position to middle of text
|
|
if (halign_ == H_LEFT)
|
|
{
|
|
current_placement->center.x -= 0.5 * string_width_; // move center left by 1/2 the string width
|
|
} else if (halign_ == H_RIGHT)
|
|
{
|
|
current_placement->center.x += 0.5 * string_width_; // move center right by 1/2 the string width
|
|
}
|
|
|
|
// adjust text envelope position by user's x-y displacement (dx, dy)
|
|
current_placement->center.x += pi.get_scale_factor() * p.displacement.first;
|
|
current_placement->center.y += pi.get_scale_factor() * p.displacement.second;
|
|
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::find_point_placement(double label_x,
|
|
double label_y,
|
|
double angle)
|
|
{
|
|
find_line_breaks();
|
|
|
|
double rad = M_PI * angle/180.0;
|
|
double cosa = std::cos(rad);
|
|
double sina = std::sin(rad);
|
|
|
|
double x, y;
|
|
std::auto_ptr<text_path> current_placement(new text_path(label_x, label_y));
|
|
|
|
adjust_position(current_placement.get());
|
|
|
|
// presets for first line
|
|
unsigned int line_number = 0;
|
|
unsigned int index_to_wrap_at = line_breaks_[0];
|
|
double line_width = line_sizes_[0].first;
|
|
double line_height = line_sizes_[0].second;
|
|
|
|
/* IMPORTANT NOTE:
|
|
x and y are relative to the center of the text
|
|
coordinate system:
|
|
x: grows from left to right
|
|
y: grows from bottom to top (opposite of normal computer graphics)
|
|
*/
|
|
|
|
// set for upper left corner of text envelope for the first line, bottom left of first character
|
|
y = string_height_ / 2.0 - line_height;
|
|
// RTL text is converted to a mirrored representation in get_string_info()
|
|
// so we have to fix line break order here
|
|
if (info_.get_rtl()) y = -y;
|
|
|
|
// adjust for desired justification
|
|
if (jalign_ == J_LEFT)
|
|
x = -(string_width_ / 2.0);
|
|
else if (jalign_ == J_RIGHT)
|
|
x = (string_width_ / 2.0) - line_width;
|
|
else /* J_MIDDLE */
|
|
x = -(line_width / 2.0);
|
|
|
|
// save each character rendering position and build envelope as go thru loop
|
|
std::queue< box2d<double> > c_envelopes;
|
|
|
|
for (unsigned i = 0; i < info_.num_characters(); i++)
|
|
{
|
|
char_info const& ci = info_.at(i);
|
|
|
|
double cwidth = ci.width + ci.format->character_spacing;
|
|
|
|
if (i == index_to_wrap_at)
|
|
{
|
|
index_to_wrap_at = line_breaks_[++line_number];
|
|
line_width = line_sizes_[line_number].first;
|
|
line_height= line_sizes_[line_number].second;
|
|
|
|
if (info_.get_rtl())
|
|
{
|
|
y += line_height;
|
|
} else
|
|
{
|
|
y -= line_height; // move position down to line start
|
|
}
|
|
|
|
// reset to begining of line position
|
|
if (jalign_ == J_LEFT)
|
|
x = -(string_width_ / 2.0);
|
|
else if (jalign_ == J_RIGHT)
|
|
x = (string_width_ / 2.0) - line_width;
|
|
else
|
|
x = -(line_width / 2.0);
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// place the character relative to the center of the string envelope
|
|
double dx = x * cosa - y*sina;
|
|
double dy = x * sina + y*cosa;
|
|
|
|
current_placement->add_node(&ci, dx, dy, rad);
|
|
|
|
// compute the Bounding Box for each character and test for:
|
|
// overlap, minimum distance or edge avoidance - exit if condition occurs
|
|
box2d<double> e;
|
|
/*x axis: left to right, y axis: top to bottom (negative values higher)*/
|
|
e.init(current_placement->center.x + dx, // Bottom Left
|
|
current_placement->center.y - dy - ci.ymin, // ymin usually <0
|
|
current_placement->center.x + dx + ci.width, // Top Right
|
|
current_placement->center.y - dy - ci.ymax);
|
|
|
|
// if there is an overlap with existing envelopes, then exit - no placement
|
|
|
|
if (!detector_.extent().intersects(e) ||
|
|
(!p.allow_overlap &&
|
|
!detector_.has_point_placement(e, pi.get_actual_minimum_distance())))
|
|
{
|
|
return;
|
|
}
|
|
|
|
// if avoid_edges test dimensions contains e
|
|
if (p.avoid_edges && !dimensions_.contains(e))
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (p.minimum_padding > 0)
|
|
{
|
|
double min_pad = pi.get_actual_minimum_padding();
|
|
box2d<double> epad(e.minx()-min_pad,
|
|
e.miny()-min_pad,
|
|
e.maxx()+min_pad,
|
|
e.maxy()+min_pad);
|
|
if (!dimensions_.contains(epad))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
c_envelopes.push(e); // add character's envelope to temp storage
|
|
}
|
|
x += cwidth; // move position to next character
|
|
}
|
|
|
|
// check the placement of any additional envelopes
|
|
if (!p.allow_overlap && !additional_boxes_.empty())
|
|
{
|
|
BOOST_FOREACH(box2d<double> const& box, additional_boxes_)
|
|
{
|
|
box2d<double> pt(box.minx() + current_placement->center.x,
|
|
box.miny() + current_placement->center.y,
|
|
box.maxx() + current_placement->center.x,
|
|
box.maxy() + current_placement->center.y);
|
|
|
|
// abort the whole placement if the additional envelopes can't be placed.
|
|
if (!detector_.has_point_placement(pt, p.minimum_distance)) return;
|
|
|
|
c_envelopes.push(pt);
|
|
}
|
|
}
|
|
|
|
// since there was no early exit, add the character envelopes to the placements' envelopes
|
|
while (!c_envelopes.empty())
|
|
{
|
|
envelopes_.push(c_envelopes.front());
|
|
c_envelopes.pop();
|
|
}
|
|
|
|
placements_.push_back(current_placement.release());
|
|
}
|
|
|
|
|
|
template <typename DetectorT>
|
|
template <typename PathT>
|
|
void placement_finder<DetectorT>::find_line_placements(PathT & shape_path)
|
|
{
|
|
#ifdef MAPNIK_LOG
|
|
if (! line_sizes_.empty())
|
|
{
|
|
MAPNIK_LOG_WARN(placement_finder) << "Internal error. Text contains line breaks, but line placement is used. Please file a bug report!";
|
|
}
|
|
#endif
|
|
|
|
unsigned cmd;
|
|
double new_x = 0.0;
|
|
double new_y = 0.0;
|
|
double old_x = 0.0;
|
|
double old_y = 0.0;
|
|
bool first = true;
|
|
|
|
//Pre-Cache all the path_positions and path_distances
|
|
//This stops the PathT from having to do multiple re-projections if we need to reposition ourself
|
|
// and lets us know how many points are in the shape.
|
|
std::vector<vertex2d> path_positions;
|
|
std::vector<double> path_distances; // distance from node x-1 to node x
|
|
double total_distance = 0;
|
|
|
|
shape_path.rewind(0);
|
|
while (!agg::is_stop(cmd = shape_path.vertex(&new_x,&new_y))) //For each node in the shape
|
|
{
|
|
if (!first && agg::is_line_to(cmd))
|
|
{
|
|
double dx = old_x - new_x;
|
|
double dy = old_y - new_y;
|
|
double distance = std::sqrt(dx*dx + dy*dy);
|
|
total_distance += distance;
|
|
path_distances.push_back(distance);
|
|
}
|
|
else
|
|
{
|
|
path_distances.push_back(0);
|
|
}
|
|
first = false;
|
|
path_positions.push_back(vertex2d(new_x, new_y, cmd));
|
|
old_x = new_x;
|
|
old_y = new_y;
|
|
}
|
|
//Now path_positions is full and total_distance is correct
|
|
//shape_path shouldn't be used from here
|
|
|
|
// Ensure lines have a minimum length.
|
|
if (total_distance < p.minimum_path_length)
|
|
return;
|
|
|
|
double distance = 0.0;
|
|
|
|
double displacement = p.displacement.second; // displace by dy
|
|
|
|
//Calculate a target_distance that will place the labels centered evenly rather than offset from the start of the linestring
|
|
if (total_distance < string_width_) //Can't place any strings
|
|
return;
|
|
|
|
//If there is no spacing then just do one label, otherwise calculate how many there should be
|
|
int num_labels = 1;
|
|
if (p.label_spacing > 0)
|
|
num_labels = static_cast<int>(floor(total_distance / (pi.get_actual_label_spacing() + string_width_)));
|
|
|
|
if (p.force_odd_labels && (num_labels % 2 == 0))
|
|
num_labels--;
|
|
if (num_labels <= 0)
|
|
num_labels = 1;
|
|
|
|
//Now we know how many labels we are going to place, calculate the spacing so that they will get placed evenly
|
|
double spacing = total_distance / num_labels;
|
|
double target_distance = (spacing - string_width_) / 2; // first label should be placed at half the spacing
|
|
|
|
//Calculate or read out the tolerance
|
|
double tolerance_delta, tolerance;
|
|
if (p.label_position_tolerance > 0)
|
|
{
|
|
tolerance = p.label_position_tolerance;
|
|
tolerance_delta = std::max ( 1.0, p.label_position_tolerance/100.0 );
|
|
}
|
|
else
|
|
{
|
|
tolerance = spacing/2.0;
|
|
tolerance_delta = std::max ( 1.0, spacing/100.0 );
|
|
}
|
|
|
|
|
|
first = true;
|
|
for (unsigned index = 0; index < path_positions.size(); index++) //For each node in the shape
|
|
{
|
|
cmd = path_positions[index].cmd;
|
|
new_x = path_positions[index].x;
|
|
new_y = path_positions[index].y;
|
|
|
|
if (first || agg::is_move_to(cmd)) //Don't do any processing if it is the first node
|
|
{
|
|
first = false;
|
|
}
|
|
else
|
|
{
|
|
//Add the length of this segment to the total we have saved up
|
|
double segment_length = path_distances[index];
|
|
distance += segment_length;
|
|
|
|
//While we have enough distance to place text in
|
|
while (distance > target_distance)
|
|
{
|
|
for (double diff = 0; diff < tolerance; diff += tolerance_delta)
|
|
{
|
|
for(int dir = -1; dir < 2; dir+=2) //-1, +1
|
|
{
|
|
//Record details for the start of the string placement
|
|
int orientation = 0;
|
|
std::auto_ptr<text_path> current_placement = get_placement_offset(path_positions, path_distances, orientation, index, segment_length - (distance - target_distance) + (diff*dir));
|
|
|
|
//We were unable to place here
|
|
if (current_placement.get() == NULL)
|
|
continue;
|
|
|
|
//Apply displacement
|
|
//NOTE: The text is centered on the line in get_placement_offset, so we are offsetting from there
|
|
if (displacement != 0)
|
|
{
|
|
//Average the angle of all characters and then offset them all by that angle
|
|
double anglesum = 0;
|
|
for (unsigned i = 0; i < current_placement->nodes_.size(); i++)
|
|
{
|
|
double angle = current_placement->nodes_[i].angle;
|
|
//Normalize angle in range -PI ... PI
|
|
while (angle > M_PI) {
|
|
angle -= 2*M_PI;
|
|
}
|
|
anglesum += angle;
|
|
}
|
|
anglesum /= current_placement->nodes_.size(); //Now it is angle average
|
|
double cosa = orientation * cos(anglesum);
|
|
double sina = orientation * sin(anglesum);
|
|
|
|
//Offset all the characters by this angle
|
|
for (unsigned i = 0; i < current_placement->nodes_.size(); i++)
|
|
{
|
|
current_placement->nodes_[i].pos.x -=
|
|
pi.get_scale_factor() * displacement * sina;
|
|
current_placement->nodes_[i].pos.y +=
|
|
pi.get_scale_factor() * displacement * cosa;
|
|
}
|
|
}
|
|
|
|
bool status = test_placement(current_placement, orientation);
|
|
|
|
if (status) //We have successfully placed one
|
|
{
|
|
placements_.push_back(current_placement.release());
|
|
update_detector();
|
|
|
|
//Totally break out of the loops
|
|
diff = tolerance;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//If we've failed to place, remove all the envelopes we've added up
|
|
while (!envelopes_.empty())
|
|
envelopes_.pop();
|
|
}
|
|
|
|
//Don't need to loop twice when diff = 0
|
|
if (diff == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
distance -= target_distance; //Consume the spacing gap we have used up
|
|
target_distance = spacing; //Need to reset the target_distance as it is spacing/2 for the first label.
|
|
}
|
|
}
|
|
|
|
old_x = new_x;
|
|
old_y = new_y;
|
|
}
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
std::auto_ptr<text_path> placement_finder<DetectorT>::get_placement_offset(std::vector<vertex2d> const& path_positions,
|
|
std::vector<double> const& path_distances,
|
|
int & orientation,
|
|
unsigned index,
|
|
double distance)
|
|
{
|
|
//Check that the given distance is on the given index and find the correct index and distance if not
|
|
while (distance < 0 && index > 1)
|
|
{
|
|
index--;
|
|
distance += path_distances[index];
|
|
}
|
|
if (index <= 1 && distance < 0) //We've gone off the start, fail out
|
|
return std::auto_ptr<text_path>(NULL);
|
|
|
|
//Same thing, checking if we go off the end
|
|
while (index < path_distances.size() && distance > path_distances[index])
|
|
{
|
|
distance -= path_distances[index];
|
|
index++;
|
|
}
|
|
if (index >= path_distances.size())
|
|
return std::auto_ptr<text_path>(NULL);
|
|
|
|
//Keep track of the initial index,distance incase we need to re-call get_placement_offset
|
|
const unsigned initial_index = index;
|
|
const double initial_distance = distance;
|
|
|
|
double old_x = path_positions[index-1].x;
|
|
double old_y = path_positions[index-1].y;
|
|
|
|
double new_x = path_positions[index].x;
|
|
double new_y = path_positions[index].y;
|
|
|
|
double dx = new_x - old_x;
|
|
double dy = new_y - old_y;
|
|
|
|
double segment_length = path_distances[index];
|
|
if (segment_length == 0) {
|
|
// Not allowed to place across on 0 length segments or discontinuities
|
|
return std::auto_ptr<text_path>(NULL);
|
|
}
|
|
|
|
std::auto_ptr<text_path> current_placement(
|
|
new text_path((old_x + dx*distance/segment_length),
|
|
(old_y + dy*distance/segment_length)
|
|
)
|
|
);
|
|
|
|
double angle = atan2(-dy, dx);
|
|
|
|
bool orientation_forced = (orientation != 0); // Whether the orientation was set by the caller
|
|
if (!orientation_forced)
|
|
orientation = (angle > 0.55*M_PI || angle < -0.45*M_PI) ? -1 : 1;
|
|
|
|
unsigned upside_down_char_count = 0; //Count of characters that are placed upside down.
|
|
|
|
for (unsigned i = 0; i < info_.num_characters(); ++i)
|
|
{
|
|
// grab the next character according to the orientation
|
|
char_info const &ci = orientation > 0 ? info_.at(i) : info_.at(info_.num_characters() - i - 1);
|
|
double cwidth = ci.width + ci.format->character_spacing;
|
|
|
|
double last_character_angle = angle;
|
|
|
|
//Coordinates this character will start at
|
|
if (segment_length == 0) {
|
|
// Not allowed to place across on 0 length segments or discontinuities
|
|
return std::auto_ptr<text_path>(NULL);
|
|
}
|
|
double start_x = old_x + dx*distance/segment_length;
|
|
double start_y = old_y + dy*distance/segment_length;
|
|
//Coordinates this character ends at, calculated below
|
|
double end_x = 0;
|
|
double end_y = 0;
|
|
|
|
if (segment_length - distance >= cwidth)
|
|
{
|
|
//if the distance remaining in this segment is enough, we just go further along the segment
|
|
distance += cwidth;
|
|
|
|
end_x = old_x + dx*distance/segment_length;
|
|
end_y = old_y + dy*distance/segment_length;
|
|
}
|
|
else
|
|
{
|
|
//If there isn't enough distance left on this segment
|
|
// then we need to search until we find the line segment that ends further than ci.width away
|
|
do
|
|
{
|
|
old_x = new_x;
|
|
old_y = new_y;
|
|
index++;
|
|
if (index >= path_positions.size()) //Bail out if we run off the end of the shape
|
|
{
|
|
//MAPNIK_LOG_ERROR(placement_finder) << "FAIL: Out of space";
|
|
return std::auto_ptr<text_path>(NULL);
|
|
}
|
|
new_x = path_positions[index].x;
|
|
new_y = path_positions[index].y;
|
|
dx = new_x - old_x;
|
|
dy = new_y - old_y;
|
|
|
|
segment_length = path_distances[index];
|
|
}
|
|
while (std::sqrt(std::pow(start_x - new_x, 2) + std::pow(start_y - new_y, 2)) < cwidth); //Distance from start_ to new_
|
|
|
|
//Calculate the position to place the end of the character on
|
|
find_line_circle_intersection(
|
|
start_x, start_y, cwidth,
|
|
old_x, old_y, new_x, new_y,
|
|
end_x, end_y); //results are stored in end_x, end_y
|
|
|
|
//Need to calculate distance on the new segment
|
|
distance = std::sqrt(std::pow(old_x - end_x, 2) + std::pow(old_y - end_y, 2));
|
|
}
|
|
|
|
//Calculate angle from the start of the character to the end based on start_/end_ position
|
|
angle = fast_atan2(start_y-end_y, end_x-start_x);
|
|
|
|
//Test last_character_angle vs angle
|
|
// since our rendering angle has changed then check against our
|
|
// max allowable angle change.
|
|
double angle_delta = last_character_angle - angle;
|
|
// normalise between -180 and 180
|
|
while (angle_delta > M_PI)
|
|
angle_delta -= 2*M_PI;
|
|
while (angle_delta < -M_PI)
|
|
angle_delta += 2*M_PI;
|
|
if (p.max_char_angle_delta > 0 &&
|
|
fabs(angle_delta) > p.max_char_angle_delta)
|
|
{
|
|
//MAPNIK_LOG_ERROR(placement_finder) << "FAIL: Too Bendy!";
|
|
return std::auto_ptr<text_path>(NULL);
|
|
}
|
|
|
|
double render_angle = angle;
|
|
double cosa = fast_cos(angle);
|
|
double sina = fast_sin(angle);
|
|
|
|
double render_x = start_x;
|
|
double render_y = start_y;
|
|
|
|
//Center the text on the line
|
|
double char_height = ci.avg_height;
|
|
render_x += char_height/2.0*sina;
|
|
render_y += char_height/2.0*cosa;
|
|
|
|
if (orientation < 0)
|
|
{
|
|
// rotate in place
|
|
render_x += cwidth*cosa - char_height*sina;
|
|
render_y -= cwidth*sina + char_height*cosa;
|
|
render_angle += M_PI;
|
|
}
|
|
current_placement->add_node(&ci,
|
|
render_x - current_placement->center.x,
|
|
-render_y + current_placement->center.y,
|
|
render_angle);
|
|
|
|
//Normalise to 0 <= angle < 2PI
|
|
while (render_angle >= 2*M_PI)
|
|
render_angle -= 2*M_PI;
|
|
while (render_angle < 0)
|
|
render_angle += 2*M_PI;
|
|
|
|
if (render_angle > M_PI/2 && render_angle < 1.5*M_PI)
|
|
upside_down_char_count++;
|
|
}
|
|
|
|
//If we placed too many characters upside down
|
|
if (upside_down_char_count >= info_.num_characters()/2.0)
|
|
{
|
|
//if we auto-detected the orientation then retry with the opposite orientation
|
|
if (!orientation_forced)
|
|
{
|
|
orientation = -orientation;
|
|
current_placement = get_placement_offset(path_positions,
|
|
path_distances,
|
|
orientation,
|
|
initial_index,
|
|
initial_distance);
|
|
}
|
|
else
|
|
{
|
|
//Otherwise we have failed to find a placement
|
|
//MAPNIK_LOG_ERROR(placement_finder) << "FAIL: Double upside-down!";
|
|
return std::auto_ptr<text_path>(NULL);
|
|
}
|
|
}
|
|
|
|
return current_placement;
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
bool placement_finder<DetectorT>::test_placement(std::auto_ptr<text_path> const& current_placement,
|
|
int orientation)
|
|
{
|
|
//Create and test envelopes
|
|
bool status = true;
|
|
for (unsigned i = 0; i < info_.num_characters(); ++i)
|
|
{
|
|
//TODO: I think this can be simplified by taking the char_info from vertex() but this needs to be carefully tested!
|
|
// grab the next character according to the orientation
|
|
char_info const& ci = orientation > 0 ? info_.at(i) : info_.at(info_.num_characters() - i - 1);
|
|
double cwidth = ci.width + ci.format->character_spacing;
|
|
char_info_ptr c;
|
|
double x, y, angle;
|
|
current_placement->vertex(&c, &x, &y, &angle);
|
|
x = current_placement->center.x + x;
|
|
y = current_placement->center.y - y;
|
|
|
|
double sina = fast_sin(angle);
|
|
double cosa = fast_cos(angle);
|
|
if (orientation < 0)
|
|
{
|
|
// rotate in place
|
|
x += cwidth * cosa - string_height_ * sina;
|
|
y -= cwidth * sina + string_height_ * cosa;
|
|
angle += M_PI;
|
|
//sin(x+PI) = -sin(x)
|
|
sina = -sina;
|
|
cosa = -cosa;
|
|
}
|
|
|
|
box2d<double> e(x, y, x + cwidth*cosa, y - cwidth*sina);
|
|
// put four corners of the letter into envelope
|
|
e.expand_to_include(x - ci.height()*sina,
|
|
y - ci.height()*cosa);
|
|
e.expand_to_include(x + (cwidth*cosa - ci.height()*sina),
|
|
y - (cwidth*sina + ci.height()*cosa));
|
|
|
|
if (!detector_.extent().intersects(e) ||
|
|
(!p.allow_overlap &&
|
|
!detector_.has_placement(e, info_.get_string(), pi.get_actual_minimum_distance())
|
|
)
|
|
)
|
|
{
|
|
//MAPNIK_LOG_ERROR(placement_finder) << "No Intersects:" << !dimensions_.intersects(e) << ": " << e << " @ " << dimensions_;
|
|
//MAPNIK_LOG_ERROR(placement_finder) << "No Placements:" << !detector_.has_placement(e, info.get_string(), p.minimum_distance);
|
|
status = false;
|
|
break;
|
|
}
|
|
|
|
if (p.avoid_edges && !dimensions_.contains(e))
|
|
{
|
|
//MAPNIK_LOG_ERROR(placement_finder) << "Fail avoid edges";
|
|
status = false;
|
|
break;
|
|
}
|
|
if (p.minimum_padding > 0)
|
|
{
|
|
double min_pad = pi.get_actual_minimum_padding();
|
|
box2d<double> epad(e.minx()-min_pad,
|
|
e.miny()-min_pad,
|
|
e.maxx()+min_pad,
|
|
e.maxy()+min_pad);
|
|
if (!dimensions_.contains(epad))
|
|
{
|
|
status = false;
|
|
break;
|
|
}
|
|
}
|
|
envelopes_.push(e);
|
|
}
|
|
|
|
current_placement->rewind();
|
|
|
|
return status;
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::find_line_circle_intersection(
|
|
double cx, double cy, double radius,
|
|
double x1, double y1, double x2, double y2,
|
|
double & ix, double & iy)
|
|
{
|
|
double dx = x2 - x1;
|
|
double dy = y2 - y1;
|
|
|
|
double A = dx * dx + dy * dy;
|
|
double B = 2 * (dx * (x1 - cx) + dy * (y1 - cy));
|
|
double C = (x1 - cx) * (x1 - cx) + (y1 - cy) * (y1 - cy) - radius * radius;
|
|
|
|
double det = B * B - 4 * A * C;
|
|
if (A <= 0.0000001 || det < 0)
|
|
{
|
|
//Should never happen
|
|
//' No real solutions.
|
|
return;
|
|
}
|
|
else if (det == 0)
|
|
{
|
|
//Could potentially happen....
|
|
//One solution.
|
|
double t = -B / (2 * A);
|
|
ix = x1 + t * dx;
|
|
iy = y1 + t * dy;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
//Two solutions.
|
|
|
|
//Always use the 1st one
|
|
//We only really have one solution here, as we know the line segment will start in the circle and end outside
|
|
double t = (-B + std::sqrt(det)) / (2 * A);
|
|
ix = x1 + t * dx;
|
|
iy = y1 + t * dy;
|
|
|
|
//t = (-B - std::sqrt(det)) / (2 * A);
|
|
//ix = x1 + t * dx;
|
|
//iy = y1 + t * dy;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::update_detector()
|
|
{
|
|
if (collect_extents_) extents_.init(0,0,0,0);
|
|
// add the bboxes to the detector and remove from the placement
|
|
while (!envelopes_.empty())
|
|
{
|
|
box2d<double> e = envelopes_.front();
|
|
detector_.insert(e, info_.get_string());
|
|
envelopes_.pop();
|
|
|
|
if (collect_extents_)
|
|
{
|
|
extents_.expand_to_include(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DetectorT>
|
|
void placement_finder<DetectorT>::clear_placements()
|
|
{
|
|
placements_.clear();
|
|
while (!envelopes_.empty()) envelopes_.pop();
|
|
}
|
|
|
|
template class placement_finder<DetectorType>;
|
|
template void placement_finder<DetectorType>::find_point_placements<ClippedPathType>(ClippedPathType &);
|
|
template void placement_finder<DetectorType>::find_line_placements<ClippedPathType>(ClippedPathType &);
|
|
template void placement_finder<DetectorType>::find_point_placements<PathType>(PathType &);
|
|
template void placement_finder<DetectorType>::find_line_placements<PathType>(PathType &);
|
|
} // namespace
|