mapnik/test/catch.hpp
2024-05-18 10:22:29 +02:00

20453 lines
698 KiB
C++

/*
* Catch v2.13.7
* Generated: 2021-07-28 20:29:27.753164
* ----------------------------------------------------------
* This file has been merged from multiple headers. Please don't edit it directly
* Copyright (c) 2021 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef TWOBLUECUBES_SINGLE_INCLUDE_CATCH_HPP_INCLUDED
#define TWOBLUECUBES_SINGLE_INCLUDE_CATCH_HPP_INCLUDED
// start catch.hpp
#define CATCH_VERSION_MAJOR 2
#define CATCH_VERSION_MINOR 13
#define CATCH_VERSION_PATCH 7
#ifdef __clang__
#pragma clang system_header
#elif defined __GNUC__
#pragma GCC system_header
#endif
// start catch_suppress_warnings.h
#ifdef __clang__
#ifdef __ICC // icpc defines the __clang__ macro
#pragma warning(push)
#pragma warning(disable: 161 1682)
#else // __ICC
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
#pragma clang diagnostic ignored "-Wswitch-enum"
#pragma clang diagnostic ignored "-Wcovered-switch-default"
#endif
#elif defined __GNUC__
// Because REQUIREs trigger GCC's -Wparentheses, and because still
// supported version of g++ have only buggy support for _Pragmas,
// Wparentheses have to be suppressed globally.
#pragma GCC diagnostic ignored "-Wparentheses" // See #674 for details
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#pragma GCC diagnostic ignored "-Wpadded"
#endif
// end catch_suppress_warnings.h
#if defined(CATCH_CONFIG_MAIN) || defined(CATCH_CONFIG_RUNNER)
#define CATCH_IMPL
#define CATCH_CONFIG_ALL_PARTS
#endif
// In the impl file, we want to have access to all parts of the headers
// Can also be used to sanely support PCHs
#if defined(CATCH_CONFIG_ALL_PARTS)
#define CATCH_CONFIG_EXTERNAL_INTERFACES
#if defined(CATCH_CONFIG_DISABLE_MATCHERS)
#undef CATCH_CONFIG_DISABLE_MATCHERS
#endif
#if !defined(CATCH_CONFIG_ENABLE_CHRONO_STRINGMAKER)
#define CATCH_CONFIG_ENABLE_CHRONO_STRINGMAKER
#endif
#endif
#if !defined(CATCH_CONFIG_IMPL_ONLY)
// start catch_platform.h
// See e.g.:
// https://opensource.apple.com/source/CarbonHeaders/CarbonHeaders-18.1/TargetConditionals.h.auto.html
#ifdef __APPLE__
#include <TargetConditionals.h>
#if (defined(TARGET_OS_OSX) && TARGET_OS_OSX == 1) || (defined(TARGET_OS_MAC) && TARGET_OS_MAC == 1)
#define CATCH_PLATFORM_MAC
#elif (defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE == 1)
#define CATCH_PLATFORM_IPHONE
#endif
#elif defined(linux) || defined(__linux) || defined(__linux__)
#define CATCH_PLATFORM_LINUX
#elif defined(WIN32) || defined(__WIN32__) || defined(_WIN32) || defined(_MSC_VER) || defined(__MINGW32__)
#define CATCH_PLATFORM_WINDOWS
#endif
// end catch_platform.h
#ifdef CATCH_IMPL
#ifndef CLARA_CONFIG_MAIN
#define CLARA_CONFIG_MAIN_NOT_DEFINED
#define CLARA_CONFIG_MAIN
#endif
#endif
// start catch_user_interfaces.h
namespace Catch {
unsigned int rngSeed();
}
// end catch_user_interfaces.h
// start catch_tag_alias_autoregistrar.h
// start catch_common.h
// start catch_compiler_capabilities.h
// Detect a number of compiler features - by compiler
// The following features are defined:
//
// CATCH_CONFIG_COUNTER : is the __COUNTER__ macro supported?
// CATCH_CONFIG_WINDOWS_SEH : is Windows SEH supported?
// CATCH_CONFIG_POSIX_SIGNALS : are POSIX signals supported?
// CATCH_CONFIG_DISABLE_EXCEPTIONS : Are exceptions enabled?
// ****************
// Note to maintainers: if new toggles are added please document them
// in configuration.md, too
// ****************
// In general each macro has a _NO_<feature name> form
// (e.g. CATCH_CONFIG_NO_POSIX_SIGNALS) which disables the feature.
// Many features, at point of detection, define an _INTERNAL_ macro, so they
// can be combined, en-mass, with the _NO_ forms later.
#ifdef __cplusplus
#if (__cplusplus >= 201402L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 201402L)
#define CATCH_CPP14_OR_GREATER
#endif
#if (__cplusplus >= 201703L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define CATCH_CPP17_OR_GREATER
#endif
#endif
// Only GCC compiler should be used in this block, so other compilers trying to
// mask themselves as GCC should be ignored.
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && !defined(__CUDACC__) && !defined(__LCC__)
#define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION _Pragma("GCC diagnostic push")
#define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION _Pragma("GCC diagnostic pop")
#define CATCH_INTERNAL_IGNORE_BUT_WARN(...) (void)__builtin_constant_p(__VA_ARGS__)
#endif
#if defined(__clang__)
#define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION _Pragma("clang diagnostic push")
#define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION _Pragma("clang diagnostic pop")
// As of this writing, IBM XL's implementation of __builtin_constant_p has a bug
// which results in calls to destructors being emitted for each temporary,
// without a matching initialization. In practice, this can result in something
// like `std::string::~string` being called on an uninitialized value.
//
// For example, this code will likely segfault under IBM XL:
// ```
// REQUIRE(std::string("12") + "34" == "1234")
// ```
//
// Therefore, `CATCH_INTERNAL_IGNORE_BUT_WARN` is not implemented.
#if !defined(__ibmxl__) && !defined(__CUDACC__)
#define CATCH_INTERNAL_IGNORE_BUT_WARN(...) \
(void)__builtin_constant_p(__VA_ARGS__) /* NOLINT(cppcoreguidelines-pro-type-vararg, hicpp-vararg) */
#endif
#define CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
_Pragma("clang diagnostic ignored \"-Wexit-time-destructors\"") \
_Pragma("clang diagnostic ignored \"-Wglobal-constructors\"")
#define CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS _Pragma("clang diagnostic ignored \"-Wparentheses\"")
#define CATCH_INTERNAL_SUPPRESS_UNUSED_WARNINGS _Pragma("clang diagnostic ignored \"-Wunused-variable\"")
#define CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS \
_Pragma("clang diagnostic ignored \"-Wgnu-zero-variadic-macro-arguments\"")
#define CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS _Pragma("clang diagnostic ignored \"-Wunused-template\"")
#endif // __clang__
////////////////////////////////////////////////////////////////////////////////
// Assume that non-Windows platforms support posix signals by default
#if !defined(CATCH_PLATFORM_WINDOWS)
#define CATCH_INTERNAL_CONFIG_POSIX_SIGNALS
#endif
////////////////////////////////////////////////////////////////////////////////
// We know some environments not to support full POSIX signals
#if defined(__CYGWIN__) || defined(__QNX__) || defined(__EMSCRIPTEN__) || defined(__DJGPP__)
#define CATCH_INTERNAL_CONFIG_NO_POSIX_SIGNALS
#endif
#ifdef __OS400__
#define CATCH_INTERNAL_CONFIG_NO_POSIX_SIGNALS
#define CATCH_CONFIG_COLOUR_NONE
#endif
////////////////////////////////////////////////////////////////////////////////
// Android somehow still does not support std::to_string
#if defined(__ANDROID__)
#define CATCH_INTERNAL_CONFIG_NO_CPP11_TO_STRING
#define CATCH_INTERNAL_CONFIG_ANDROID_LOGWRITE
#endif
////////////////////////////////////////////////////////////////////////////////
// Not all Windows environments support SEH properly
#if defined(__MINGW32__)
#define CATCH_INTERNAL_CONFIG_NO_WINDOWS_SEH
#endif
////////////////////////////////////////////////////////////////////////////////
// PS4
#if defined(__ORBIS__)
#define CATCH_INTERNAL_CONFIG_NO_NEW_CAPTURE
#endif
////////////////////////////////////////////////////////////////////////////////
// Cygwin
#ifdef __CYGWIN__
// Required for some versions of Cygwin to declare gettimeofday
// see: http://stackoverflow.com/questions/36901803/gettimeofday-not-declared-in-this-scope-cygwin
#define _BSD_SOURCE
// some versions of cygwin (most) do not support std::to_string. Use the libstd check.
// https://gcc.gnu.org/onlinedocs/gcc-4.8.2/libstdc++/api/a01053_source.html line 2812-2813
#if !((__cplusplus >= 201103L) && defined(_GLIBCXX_USE_C99) && !defined(_GLIBCXX_HAVE_BROKEN_VSWPRINTF))
#define CATCH_INTERNAL_CONFIG_NO_CPP11_TO_STRING
#endif
#endif // __CYGWIN__
////////////////////////////////////////////////////////////////////////////////
// Visual C++
#if defined(_MSC_VER)
#define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION __pragma(warning(push))
#define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION __pragma(warning(pop))
// Universal Windows platform does not support SEH
// Or console colours (or console at all...)
#if defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_APP)
#define CATCH_CONFIG_COLOUR_NONE
#else
#define CATCH_INTERNAL_CONFIG_WINDOWS_SEH
#endif
// MSVC traditional preprocessor needs some workaround for __VA_ARGS__
// _MSVC_TRADITIONAL == 0 means new conformant preprocessor
// _MSVC_TRADITIONAL == 1 means old traditional non-conformant preprocessor
#if !defined(__clang__) // Handle Clang masquerading for msvc
#if !defined(_MSVC_TRADITIONAL) || (defined(_MSVC_TRADITIONAL) && _MSVC_TRADITIONAL)
#define CATCH_INTERNAL_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#endif // MSVC_TRADITIONAL
#endif // __clang__
#endif // _MSC_VER
#if defined(_REENTRANT) || defined(_MSC_VER)
// Enable async processing, as -pthread is specified or no additional linking is required
#define CATCH_INTERNAL_CONFIG_USE_ASYNC
#endif // _MSC_VER
////////////////////////////////////////////////////////////////////////////////
// Check if we are compiled with -fno-exceptions or equivalent
#if defined(__EXCEPTIONS) || defined(__cpp_exceptions) || defined(_CPPUNWIND)
#define CATCH_INTERNAL_CONFIG_EXCEPTIONS_ENABLED
#endif
////////////////////////////////////////////////////////////////////////////////
// DJGPP
#ifdef __DJGPP__
#define CATCH_INTERNAL_CONFIG_NO_WCHAR
#endif // __DJGPP__
////////////////////////////////////////////////////////////////////////////////
// Embarcadero C++Build
#if defined(__BORLANDC__)
#define CATCH_INTERNAL_CONFIG_POLYFILL_ISNAN
#endif
////////////////////////////////////////////////////////////////////////////////
// Use of __COUNTER__ is suppressed during code analysis in
// CLion/AppCode 2017.2.x and former, because __COUNTER__ is not properly
// handled by it.
// Otherwise all supported compilers support COUNTER macro,
// but user still might want to turn it off
#if (!defined(__JETBRAINS_IDE__) || __JETBRAINS_IDE__ >= 20170300L)
#define CATCH_INTERNAL_CONFIG_COUNTER
#endif
////////////////////////////////////////////////////////////////////////////////
// RTX is a special version of Windows that is real time.
// This means that it is detected as Windows, but does not provide
// the same set of capabilities as real Windows does.
#if defined(UNDER_RTSS) || defined(RTX64_BUILD)
#define CATCH_INTERNAL_CONFIG_NO_WINDOWS_SEH
#define CATCH_INTERNAL_CONFIG_NO_ASYNC
#define CATCH_CONFIG_COLOUR_NONE
#endif
#if !defined(_GLIBCXX_USE_C99_MATH_TR1)
#define CATCH_INTERNAL_CONFIG_GLOBAL_NEXTAFTER
#endif
// Various stdlib support checks that require __has_include
#if defined(__has_include)
// Check if string_view is available and usable
#if __has_include(<string_view>) && defined(CATCH_CPP17_OR_GREATER)
#define CATCH_INTERNAL_CONFIG_CPP17_STRING_VIEW
#endif
// Check if optional is available and usable
#if __has_include(<optional>) && defined(CATCH_CPP17_OR_GREATER)
#define CATCH_INTERNAL_CONFIG_CPP17_OPTIONAL
#endif // __has_include(<optional>) && defined(CATCH_CPP17_OR_GREATER)
// Check if byte is available and usable
#if __has_include(<cstddef>) && defined(CATCH_CPP17_OR_GREATER)
#include <cstddef>
#if defined(__cpp_lib_byte) && (__cpp_lib_byte > 0)
#define CATCH_INTERNAL_CONFIG_CPP17_BYTE
#endif
#endif // __has_include(<cstddef>) && defined(CATCH_CPP17_OR_GREATER)
// Check if variant is available and usable
#if __has_include(<variant>) && defined(CATCH_CPP17_OR_GREATER)
#if defined(__clang__) && (__clang_major__ < 8)
// work around clang bug with libstdc++ https://bugs.llvm.org/show_bug.cgi?id=31852
// fix should be in clang 8, workaround in libstdc++ 8.2
#include <ciso646>
#if defined(__GLIBCXX__) && defined(_GLIBCXX_RELEASE) && (_GLIBCXX_RELEASE < 9)
#define CATCH_CONFIG_NO_CPP17_VARIANT
#else
#define CATCH_INTERNAL_CONFIG_CPP17_VARIANT
#endif // defined(__GLIBCXX__) && defined(_GLIBCXX_RELEASE) && (_GLIBCXX_RELEASE < 9)
#else
#define CATCH_INTERNAL_CONFIG_CPP17_VARIANT
#endif // defined(__clang__) && (__clang_major__ < 8)
#endif // __has_include(<variant>) && defined(CATCH_CPP17_OR_GREATER)
#endif // defined(__has_include)
#if defined(CATCH_INTERNAL_CONFIG_COUNTER) && !defined(CATCH_CONFIG_NO_COUNTER) && !defined(CATCH_CONFIG_COUNTER)
#define CATCH_CONFIG_COUNTER
#endif
#if defined(CATCH_INTERNAL_CONFIG_WINDOWS_SEH) && !defined(CATCH_CONFIG_NO_WINDOWS_SEH) && \
!defined(CATCH_CONFIG_WINDOWS_SEH) && !defined(CATCH_INTERNAL_CONFIG_NO_WINDOWS_SEH)
#define CATCH_CONFIG_WINDOWS_SEH
#endif
// This is set by default, because we assume that unix compilers are posix-signal-compatible by default.
#if defined(CATCH_INTERNAL_CONFIG_POSIX_SIGNALS) && !defined(CATCH_INTERNAL_CONFIG_NO_POSIX_SIGNALS) && \
!defined(CATCH_CONFIG_NO_POSIX_SIGNALS) && !defined(CATCH_CONFIG_POSIX_SIGNALS)
#define CATCH_CONFIG_POSIX_SIGNALS
#endif
// This is set by default, because we assume that compilers with no wchar_t support are just rare exceptions.
#if !defined(CATCH_INTERNAL_CONFIG_NO_WCHAR) && !defined(CATCH_CONFIG_NO_WCHAR) && !defined(CATCH_CONFIG_WCHAR)
#define CATCH_CONFIG_WCHAR
#endif
#if !defined(CATCH_INTERNAL_CONFIG_NO_CPP11_TO_STRING) && !defined(CATCH_CONFIG_NO_CPP11_TO_STRING) && \
!defined(CATCH_CONFIG_CPP11_TO_STRING)
#define CATCH_CONFIG_CPP11_TO_STRING
#endif
#if defined(CATCH_INTERNAL_CONFIG_CPP17_OPTIONAL) && !defined(CATCH_CONFIG_NO_CPP17_OPTIONAL) && \
!defined(CATCH_CONFIG_CPP17_OPTIONAL)
#define CATCH_CONFIG_CPP17_OPTIONAL
#endif
#if defined(CATCH_INTERNAL_CONFIG_CPP17_STRING_VIEW) && !defined(CATCH_CONFIG_NO_CPP17_STRING_VIEW) && \
!defined(CATCH_CONFIG_CPP17_STRING_VIEW)
#define CATCH_CONFIG_CPP17_STRING_VIEW
#endif
#if defined(CATCH_INTERNAL_CONFIG_CPP17_VARIANT) && !defined(CATCH_CONFIG_NO_CPP17_VARIANT) && \
!defined(CATCH_CONFIG_CPP17_VARIANT)
#define CATCH_CONFIG_CPP17_VARIANT
#endif
#if defined(CATCH_INTERNAL_CONFIG_CPP17_BYTE) && !defined(CATCH_CONFIG_NO_CPP17_BYTE) && \
!defined(CATCH_CONFIG_CPP17_BYTE)
#define CATCH_CONFIG_CPP17_BYTE
#endif
#if defined(CATCH_CONFIG_EXPERIMENTAL_REDIRECT)
#define CATCH_INTERNAL_CONFIG_NEW_CAPTURE
#endif
#if defined(CATCH_INTERNAL_CONFIG_NEW_CAPTURE) && !defined(CATCH_INTERNAL_CONFIG_NO_NEW_CAPTURE) && \
!defined(CATCH_CONFIG_NO_NEW_CAPTURE) && !defined(CATCH_CONFIG_NEW_CAPTURE)
#define CATCH_CONFIG_NEW_CAPTURE
#endif
#if !defined(CATCH_INTERNAL_CONFIG_EXCEPTIONS_ENABLED) && !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
#define CATCH_CONFIG_DISABLE_EXCEPTIONS
#endif
#if defined(CATCH_INTERNAL_CONFIG_POLYFILL_ISNAN) && !defined(CATCH_CONFIG_NO_POLYFILL_ISNAN) && \
!defined(CATCH_CONFIG_POLYFILL_ISNAN)
#define CATCH_CONFIG_POLYFILL_ISNAN
#endif
#if defined(CATCH_INTERNAL_CONFIG_USE_ASYNC) && !defined(CATCH_INTERNAL_CONFIG_NO_ASYNC) && \
!defined(CATCH_CONFIG_NO_USE_ASYNC) && !defined(CATCH_CONFIG_USE_ASYNC)
#define CATCH_CONFIG_USE_ASYNC
#endif
#if defined(CATCH_INTERNAL_CONFIG_ANDROID_LOGWRITE) && !defined(CATCH_CONFIG_NO_ANDROID_LOGWRITE) && \
!defined(CATCH_CONFIG_ANDROID_LOGWRITE)
#define CATCH_CONFIG_ANDROID_LOGWRITE
#endif
#if defined(CATCH_INTERNAL_CONFIG_GLOBAL_NEXTAFTER) && !defined(CATCH_CONFIG_NO_GLOBAL_NEXTAFTER) && \
!defined(CATCH_CONFIG_GLOBAL_NEXTAFTER)
#define CATCH_CONFIG_GLOBAL_NEXTAFTER
#endif
// Even if we do not think the compiler has that warning, we still have
// to provide a macro that can be used by the code.
#if !defined(CATCH_INTERNAL_START_WARNINGS_SUPPRESSION)
#define CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
#endif
#if !defined(CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION)
#define CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS)
#define CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS)
#define CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_UNUSED_WARNINGS)
#define CATCH_INTERNAL_SUPPRESS_UNUSED_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS)
#define CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS
#endif
// The goal of this macro is to avoid evaluation of the arguments, but
// still have the compiler warn on problems inside...
#if !defined(CATCH_INTERNAL_IGNORE_BUT_WARN)
#define CATCH_INTERNAL_IGNORE_BUT_WARN(...)
#endif
#if defined(__APPLE__) && defined(__apple_build_version__) && (__clang_major__ < 10)
#undef CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS
#elif defined(__clang__) && (__clang_major__ < 5)
#undef CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS
#endif
#if !defined(CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS)
#define CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS
#endif
#if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
#define CATCH_TRY if ((true))
#define CATCH_CATCH_ALL if ((false))
#define CATCH_CATCH_ANON(type) if ((false))
#else
#define CATCH_TRY try
#define CATCH_CATCH_ALL catch (...)
#define CATCH_CATCH_ANON(type) catch (type)
#endif
#if defined(CATCH_INTERNAL_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR) && \
!defined(CATCH_CONFIG_NO_TRADITIONAL_MSVC_PREPROCESSOR) && !defined(CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR)
#define CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#endif
// end catch_compiler_capabilities.h
#define INTERNAL_CATCH_UNIQUE_NAME_LINE2(name, line) name##line
#define INTERNAL_CATCH_UNIQUE_NAME_LINE(name, line) INTERNAL_CATCH_UNIQUE_NAME_LINE2(name, line)
#ifdef CATCH_CONFIG_COUNTER
#define INTERNAL_CATCH_UNIQUE_NAME(name) INTERNAL_CATCH_UNIQUE_NAME_LINE(name, __COUNTER__)
#else
#define INTERNAL_CATCH_UNIQUE_NAME(name) INTERNAL_CATCH_UNIQUE_NAME_LINE(name, __LINE__)
#endif
#include <iosfwd>
#include <string>
#include <cstdint>
// We need a dummy global operator<< so we can bring it into Catch namespace later
struct Catch_global_namespace_dummy
{};
std::ostream& operator<<(std::ostream&, Catch_global_namespace_dummy);
namespace Catch {
struct CaseSensitive
{
enum Choice { Yes, No };
};
class NonCopyable
{
NonCopyable(NonCopyable const&) = delete;
NonCopyable(NonCopyable&&) = delete;
NonCopyable& operator=(NonCopyable const&) = delete;
NonCopyable& operator=(NonCopyable&&) = delete;
protected:
NonCopyable();
virtual ~NonCopyable();
};
struct SourceLineInfo
{
SourceLineInfo() = delete;
SourceLineInfo(char const* _file, std::size_t _line) noexcept
: file(_file)
, line(_line)
{}
SourceLineInfo(SourceLineInfo const& other) = default;
SourceLineInfo& operator=(SourceLineInfo const&) = default;
SourceLineInfo(SourceLineInfo&&) noexcept = default;
SourceLineInfo& operator=(SourceLineInfo&&) noexcept = default;
bool empty() const noexcept { return file[0] == '\0'; }
bool operator==(SourceLineInfo const& other) const noexcept;
bool operator<(SourceLineInfo const& other) const noexcept;
char const* file;
std::size_t line;
};
std::ostream& operator<<(std::ostream& os, SourceLineInfo const& info);
// Bring in operator<< from global namespace into Catch namespace
// This is necessary because the overload of operator<< above makes
// lookup stop at namespace Catch
using ::operator<<;
// Use this in variadic streaming macros to allow
// >> +StreamEndStop
// as well as
// >> stuff +StreamEndStop
struct StreamEndStop
{
std::string operator+() const;
};
template<typename T>
T const& operator+(T const& value, StreamEndStop)
{
return value;
}
} // namespace Catch
#define CATCH_INTERNAL_LINEINFO ::Catch::SourceLineInfo(__FILE__, static_cast<std::size_t>(__LINE__))
// end catch_common.h
namespace Catch {
struct RegistrarForTagAliases
{
RegistrarForTagAliases(char const* alias, char const* tag, SourceLineInfo const& lineInfo);
};
} // end namespace Catch
#define CATCH_REGISTER_TAG_ALIAS(alias, spec) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
namespace { \
Catch::RegistrarForTagAliases \
INTERNAL_CATCH_UNIQUE_NAME(AutoRegisterTagAlias)(alias, spec, CATCH_INTERNAL_LINEINFO); \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
// end catch_tag_alias_autoregistrar.h
// start catch_test_registry.h
// start catch_interfaces_testcase.h
#include <vector>
namespace Catch {
class TestSpec;
struct ITestInvoker
{
virtual void invoke() const = 0;
virtual ~ITestInvoker();
};
class TestCase;
struct IConfig;
struct ITestCaseRegistry
{
virtual ~ITestCaseRegistry();
virtual std::vector<TestCase> const& getAllTests() const = 0;
virtual std::vector<TestCase> const& getAllTestsSorted(IConfig const& config) const = 0;
};
bool isThrowSafe(TestCase const& testCase, IConfig const& config);
bool matchTest(TestCase const& testCase, TestSpec const& testSpec, IConfig const& config);
std::vector<TestCase>
filterTests(std::vector<TestCase> const& testCases, TestSpec const& testSpec, IConfig const& config);
std::vector<TestCase> const& getAllTestCasesSorted(IConfig const& config);
} // namespace Catch
// end catch_interfaces_testcase.h
// start catch_stringref.h
#include <cstddef>
#include <string>
#include <iosfwd>
#include <cassert>
namespace Catch {
/// A non-owning string class (similar to the forthcoming std::string_view)
/// Note that, because a StringRef may be a substring of another string,
/// it may not be null terminated.
class StringRef
{
public:
using size_type = std::size_t;
using const_iterator = const char*;
private:
static constexpr char const* const s_empty = "";
char const* m_start = s_empty;
size_type m_size = 0;
public: // construction
constexpr StringRef() noexcept = default;
StringRef(char const* rawChars) noexcept;
constexpr StringRef(char const* rawChars, size_type size) noexcept
: m_start(rawChars)
, m_size(size)
{}
StringRef(std::string const& stdString) noexcept
: m_start(stdString.c_str())
, m_size(stdString.size())
{}
explicit operator std::string() const { return std::string(m_start, m_size); }
public: // operators
auto operator==(StringRef const& other) const noexcept -> bool;
auto operator!=(StringRef const& other) const noexcept -> bool { return !(*this == other); }
auto operator[](size_type index) const noexcept -> char
{
assert(index < m_size);
return m_start[index];
}
public: // named queries
constexpr auto empty() const noexcept -> bool { return m_size == 0; }
constexpr auto size() const noexcept -> size_type { return m_size; }
// Returns the current start pointer. If the StringRef is not
// null-terminated, throws std::domain_exception
auto c_str() const -> char const*;
public: // substrings and searches
// Returns a substring of [start, start + length).
// If start + length > size(), then the substring is [start, size()).
// If start > size(), then the substring is empty.
auto substr(size_type start, size_type length) const noexcept -> StringRef;
// Returns the current start pointer. May not be null-terminated.
auto data() const noexcept -> char const*;
constexpr auto isNullTerminated() const noexcept -> bool { return m_start[m_size] == '\0'; }
public: // iterators
constexpr const_iterator begin() const { return m_start; }
constexpr const_iterator end() const { return m_start + m_size; }
};
auto operator+=(std::string& lhs, StringRef const& sr) -> std::string&;
auto operator<<(std::ostream& os, StringRef const& sr) -> std::ostream&;
constexpr auto operator"" _sr(char const* rawChars, std::size_t size) noexcept -> StringRef
{
return StringRef(rawChars, size);
}
} // namespace Catch
constexpr auto operator"" _catch_sr(char const* rawChars, std::size_t size) noexcept -> Catch::StringRef
{
return Catch::StringRef(rawChars, size);
}
// end catch_stringref.h
// start catch_preprocessor.hpp
#define CATCH_RECURSION_LEVEL0(...) __VA_ARGS__
#define CATCH_RECURSION_LEVEL1(...) CATCH_RECURSION_LEVEL0(CATCH_RECURSION_LEVEL0(CATCH_RECURSION_LEVEL0(__VA_ARGS__)))
#define CATCH_RECURSION_LEVEL2(...) CATCH_RECURSION_LEVEL1(CATCH_RECURSION_LEVEL1(CATCH_RECURSION_LEVEL1(__VA_ARGS__)))
#define CATCH_RECURSION_LEVEL3(...) CATCH_RECURSION_LEVEL2(CATCH_RECURSION_LEVEL2(CATCH_RECURSION_LEVEL2(__VA_ARGS__)))
#define CATCH_RECURSION_LEVEL4(...) CATCH_RECURSION_LEVEL3(CATCH_RECURSION_LEVEL3(CATCH_RECURSION_LEVEL3(__VA_ARGS__)))
#define CATCH_RECURSION_LEVEL5(...) CATCH_RECURSION_LEVEL4(CATCH_RECURSION_LEVEL4(CATCH_RECURSION_LEVEL4(__VA_ARGS__)))
#ifdef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_EXPAND_VARGS(...) __VA_ARGS__
// MSVC needs more evaluations
#define CATCH_RECURSION_LEVEL6(...) CATCH_RECURSION_LEVEL5(CATCH_RECURSION_LEVEL5(CATCH_RECURSION_LEVEL5(__VA_ARGS__)))
#define CATCH_RECURSE(...) CATCH_RECURSION_LEVEL6(CATCH_RECURSION_LEVEL6(__VA_ARGS__))
#else
#define CATCH_RECURSE(...) CATCH_RECURSION_LEVEL5(__VA_ARGS__)
#endif
#define CATCH_REC_END(...)
#define CATCH_REC_OUT
#define CATCH_EMPTY()
#define CATCH_DEFER(id) id CATCH_EMPTY()
#define CATCH_REC_GET_END2() 0, CATCH_REC_END
#define CATCH_REC_GET_END1(...) CATCH_REC_GET_END2
#define CATCH_REC_GET_END(...) CATCH_REC_GET_END1
#define CATCH_REC_NEXT0(test, next, ...) next CATCH_REC_OUT
#define CATCH_REC_NEXT1(test, next) CATCH_DEFER(CATCH_REC_NEXT0)(test, next, 0)
#define CATCH_REC_NEXT(test, next) CATCH_REC_NEXT1(CATCH_REC_GET_END test, next)
#define CATCH_REC_LIST0(f, x, peek, ...) , f(x) CATCH_DEFER(CATCH_REC_NEXT(peek, CATCH_REC_LIST1))(f, peek, __VA_ARGS__)
#define CATCH_REC_LIST1(f, x, peek, ...) , f(x) CATCH_DEFER(CATCH_REC_NEXT(peek, CATCH_REC_LIST0))(f, peek, __VA_ARGS__)
#define CATCH_REC_LIST2(f, x, peek, ...) f(x) CATCH_DEFER(CATCH_REC_NEXT(peek, CATCH_REC_LIST1))(f, peek, __VA_ARGS__)
#define CATCH_REC_LIST0_UD(f, userdata, x, peek, ...) \
, f(userdata, x) CATCH_DEFER(CATCH_REC_NEXT(peek, CATCH_REC_LIST1_UD))(f, userdata, peek, __VA_ARGS__)
#define CATCH_REC_LIST1_UD(f, userdata, x, peek, ...) \
, f(userdata, x) CATCH_DEFER(CATCH_REC_NEXT(peek, CATCH_REC_LIST0_UD))(f, userdata, peek, __VA_ARGS__)
#define CATCH_REC_LIST2_UD(f, userdata, x, peek, ...) \
f(userdata, x) CATCH_DEFER(CATCH_REC_NEXT(peek, CATCH_REC_LIST1_UD))(f, userdata, peek, __VA_ARGS__)
// Applies the function macro `f` to each of the remaining parameters, inserts commas between the results,
// and passes userdata as the first parameter to each invocation,
// e.g. CATCH_REC_LIST_UD(f, x, a, b, c) evaluates to f(x, a), f(x, b), f(x, c)
#define CATCH_REC_LIST_UD(f, userdata, ...) \
CATCH_RECURSE(CATCH_REC_LIST2_UD(f, userdata, __VA_ARGS__, ()()(), ()()(), ()()(), 0))
#define CATCH_REC_LIST(f, ...) CATCH_RECURSE(CATCH_REC_LIST2(f, __VA_ARGS__, ()()(), ()()(), ()()(), 0))
#define INTERNAL_CATCH_EXPAND1(param) INTERNAL_CATCH_EXPAND2(param)
#define INTERNAL_CATCH_EXPAND2(...) INTERNAL_CATCH_NO##__VA_ARGS__
#define INTERNAL_CATCH_DEF(...) INTERNAL_CATCH_DEF __VA_ARGS__
#define INTERNAL_CATCH_NOINTERNAL_CATCH_DEF
#define INTERNAL_CATCH_STRINGIZE(...) INTERNAL_CATCH_STRINGIZE2(__VA_ARGS__)
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_STRINGIZE2(...) #__VA_ARGS__
#define INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS(param) INTERNAL_CATCH_STRINGIZE(INTERNAL_CATCH_REMOVE_PARENS(param))
#else
// MSVC is adding extra space and needs another indirection to expand INTERNAL_CATCH_NOINTERNAL_CATCH_DEF
#define INTERNAL_CATCH_STRINGIZE2(...) INTERNAL_CATCH_STRINGIZE3(__VA_ARGS__)
#define INTERNAL_CATCH_STRINGIZE3(...) #__VA_ARGS__
#define INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS(param) \
(INTERNAL_CATCH_STRINGIZE(INTERNAL_CATCH_REMOVE_PARENS(param)) + 1)
#endif
#define INTERNAL_CATCH_MAKE_NAMESPACE2(...) ns_##__VA_ARGS__
#define INTERNAL_CATCH_MAKE_NAMESPACE(name) INTERNAL_CATCH_MAKE_NAMESPACE2(name)
#define INTERNAL_CATCH_REMOVE_PARENS(...) INTERNAL_CATCH_EXPAND1(INTERNAL_CATCH_DEF __VA_ARGS__)
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_MAKE_TYPE_LIST2(...) decltype(get_wrapper<INTERNAL_CATCH_REMOVE_PARENS_GEN(__VA_ARGS__)>())
#define INTERNAL_CATCH_MAKE_TYPE_LIST(...) INTERNAL_CATCH_MAKE_TYPE_LIST2(INTERNAL_CATCH_REMOVE_PARENS(__VA_ARGS__))
#else
#define INTERNAL_CATCH_MAKE_TYPE_LIST2(...) \
INTERNAL_CATCH_EXPAND_VARGS(decltype(get_wrapper<INTERNAL_CATCH_REMOVE_PARENS_GEN(__VA_ARGS__)>()))
#define INTERNAL_CATCH_MAKE_TYPE_LIST(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_MAKE_TYPE_LIST2(INTERNAL_CATCH_REMOVE_PARENS(__VA_ARGS__)))
#endif
#define INTERNAL_CATCH_MAKE_TYPE_LISTS_FROM_TYPES(...) CATCH_REC_LIST(INTERNAL_CATCH_MAKE_TYPE_LIST, __VA_ARGS__)
#define INTERNAL_CATCH_REMOVE_PARENS_1_ARG(_0) INTERNAL_CATCH_REMOVE_PARENS(_0)
#define INTERNAL_CATCH_REMOVE_PARENS_2_ARG(_0, _1) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_1_ARG(_1)
#define INTERNAL_CATCH_REMOVE_PARENS_3_ARG(_0, _1, _2) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_2_ARG(_1, _2)
#define INTERNAL_CATCH_REMOVE_PARENS_4_ARG(_0, _1, _2, _3) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_3_ARG(_1, _2, _3)
#define INTERNAL_CATCH_REMOVE_PARENS_5_ARG(_0, _1, _2, _3, _4) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_4_ARG(_1, _2, _3, _4)
#define INTERNAL_CATCH_REMOVE_PARENS_6_ARG(_0, _1, _2, _3, _4, _5) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_5_ARG(_1, _2, _3, _4, _5)
#define INTERNAL_CATCH_REMOVE_PARENS_7_ARG(_0, _1, _2, _3, _4, _5, _6) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_6_ARG(_1, _2, _3, _4, _5, _6)
#define INTERNAL_CATCH_REMOVE_PARENS_8_ARG(_0, _1, _2, _3, _4, _5, _6, _7) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_7_ARG(_1, _2, _3, _4, _5, _6, _7)
#define INTERNAL_CATCH_REMOVE_PARENS_9_ARG(_0, _1, _2, _3, _4, _5, _6, _7, _8) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_8_ARG(_1, _2, _3, _4, _5, _6, _7, _8)
#define INTERNAL_CATCH_REMOVE_PARENS_10_ARG(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_9_ARG(_1, _2, _3, _4, _5, _6, _7, _8, _9)
#define INTERNAL_CATCH_REMOVE_PARENS_11_ARG(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10) \
INTERNAL_CATCH_REMOVE_PARENS(_0), INTERNAL_CATCH_REMOVE_PARENS_10_ARG(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10)
#define INTERNAL_CATCH_VA_NARGS_IMPL(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
#define INTERNAL_CATCH_TYPE_GEN \
template<typename...> \
struct TypeList \
{}; \
template<typename... Ts> \
constexpr auto get_wrapper() noexcept -> TypeList<Ts...> \
{ \
return {}; \
} \
template<template<typename...> class...> \
struct TemplateTypeList \
{}; \
template<template<typename...> class... Cs> \
constexpr auto get_wrapper() noexcept -> TemplateTypeList<Cs...> \
{ \
return {}; \
} \
template<typename...> \
struct append; \
template<typename...> \
struct rewrap; \
template<template<typename...> class, typename...> \
struct create; \
template<template<typename...> class, typename> \
struct convert; \
\
template<typename T> \
struct append<T> \
{ \
using type = T; \
}; \
template<template<typename...> class L1, \
typename... E1, \
template<typename...> \
class L2, \
typename... E2, \
typename... Rest> \
struct append<L1<E1...>, L2<E2...>, Rest...> \
{ \
using type = typename append<L1<E1..., E2...>, Rest...>::type; \
}; \
template<template<typename...> class L1, typename... E1, typename... Rest> \
struct append<L1<E1...>, TypeList<mpl_::na>, Rest...> \
{ \
using type = L1<E1...>; \
}; \
\
template<template<typename...> class Container, template<typename...> class List, typename... elems> \
struct rewrap<TemplateTypeList<Container>, List<elems...>> \
{ \
using type = TypeList<Container<elems...>>; \
}; \
template<template<typename...> class Container, \
template<typename...> \
class List, \
class... Elems, \
typename... Elements> \
struct rewrap<TemplateTypeList<Container>, List<Elems...>, Elements...> \
{ \
using type = typename append<TypeList<Container<Elems...>>, \
typename rewrap<TemplateTypeList<Container>, Elements...>::type>::type; \
}; \
\
template<template<typename...> class Final, template<typename...> class... Containers, typename... Types> \
struct create<Final, TemplateTypeList<Containers...>, TypeList<Types...>> \
{ \
using type = typename append<Final<>, typename rewrap<TemplateTypeList<Containers>, Types...>::type...>::type; \
}; \
template<template<typename...> class Final, template<typename...> class List, typename... Ts> \
struct convert<Final, List<Ts...>> \
{ \
using type = typename append<Final<>, TypeList<Ts>...>::type; \
};
#define INTERNAL_CATCH_NTTP_1(signature, ...) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
struct Nttp \
{}; \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
constexpr auto get_wrapper() noexcept -> Nttp<__VA_ARGS__> \
{ \
return {}; \
} \
template<template<INTERNAL_CATCH_REMOVE_PARENS(signature)> class...> \
struct NttpTemplateTypeList \
{}; \
template<template<INTERNAL_CATCH_REMOVE_PARENS(signature)> class... Cs> \
constexpr auto get_wrapper() noexcept -> NttpTemplateTypeList<Cs...> \
{ \
return {}; \
} \
\
template<template<INTERNAL_CATCH_REMOVE_PARENS(signature)> class Container, \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
class List, \
INTERNAL_CATCH_REMOVE_PARENS(signature)> \
struct rewrap<NttpTemplateTypeList<Container>, List<__VA_ARGS__>> \
{ \
using type = TypeList<Container<__VA_ARGS__>>; \
}; \
template<template<INTERNAL_CATCH_REMOVE_PARENS(signature)> class Container, \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
class List, \
INTERNAL_CATCH_REMOVE_PARENS(signature), \
typename... Elements> \
struct rewrap<NttpTemplateTypeList<Container>, List<__VA_ARGS__>, Elements...> \
{ \
using type = typename append<TypeList<Container<__VA_ARGS__>>, \
typename rewrap<NttpTemplateTypeList<Container>, Elements...>::type>::type; \
}; \
template<template<typename...> class Final, \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
class... Containers, \
typename... Types> \
struct create<Final, NttpTemplateTypeList<Containers...>, TypeList<Types...>> \
{ \
using type = \
typename append<Final<>, typename rewrap<NttpTemplateTypeList<Containers>, Types...>::type...>::type; \
};
#define INTERNAL_CATCH_DECLARE_SIG_TEST0(TestName)
#define INTERNAL_CATCH_DECLARE_SIG_TEST1(TestName, signature) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
static void TestName()
#define INTERNAL_CATCH_DECLARE_SIG_TEST_X(TestName, signature, ...) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
static void TestName()
#define INTERNAL_CATCH_DEFINE_SIG_TEST0(TestName)
#define INTERNAL_CATCH_DEFINE_SIG_TEST1(TestName, signature) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
static void TestName()
#define INTERNAL_CATCH_DEFINE_SIG_TEST_X(TestName, signature, ...) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
static void TestName()
#define INTERNAL_CATCH_NTTP_REGISTER0(TestFunc, signature) \
template<typename Type> \
void reg_test(TypeList<Type>, Catch::NameAndTags nameAndTags) \
{ \
Catch::AutoReg(Catch::makeTestInvoker(&TestFunc<Type>), \
CATCH_INTERNAL_LINEINFO, \
Catch::StringRef(), \
nameAndTags); \
}
#define INTERNAL_CATCH_NTTP_REGISTER(TestFunc, signature, ...) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
void reg_test(Nttp<__VA_ARGS__>, Catch::NameAndTags nameAndTags) \
{ \
Catch::AutoReg(Catch::makeTestInvoker(&TestFunc<__VA_ARGS__>), \
CATCH_INTERNAL_LINEINFO, \
Catch::StringRef(), \
nameAndTags); \
}
#define INTERNAL_CATCH_NTTP_REGISTER_METHOD0(TestName, signature, ...) \
template<typename Type> \
void reg_test(TypeList<Type>, Catch::StringRef className, Catch::NameAndTags nameAndTags) \
{ \
Catch::AutoReg(Catch::makeTestInvoker(&TestName<Type>::test), \
CATCH_INTERNAL_LINEINFO, \
className, \
nameAndTags); \
}
#define INTERNAL_CATCH_NTTP_REGISTER_METHOD(TestName, signature, ...) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
void reg_test(Nttp<__VA_ARGS__>, Catch::StringRef className, Catch::NameAndTags nameAndTags) \
{ \
Catch::AutoReg(Catch::makeTestInvoker(&TestName<__VA_ARGS__>::test), \
CATCH_INTERNAL_LINEINFO, \
className, \
nameAndTags); \
}
#define INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD0(TestName, ClassName)
#define INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD1(TestName, ClassName, signature) \
template<typename TestType> \
struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName)<TestType> \
{ \
void test(); \
}
#define INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X(TestName, ClassName, signature, ...) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName)<__VA_ARGS__> \
{ \
void test(); \
}
#define INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD0(TestName)
#define INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD1(TestName, signature) \
template<typename TestType> \
void INTERNAL_CATCH_MAKE_NAMESPACE(TestName)::TestName<TestType>::test()
#define INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X(TestName, signature, ...) \
template<INTERNAL_CATCH_REMOVE_PARENS(signature)> \
void INTERNAL_CATCH_MAKE_NAMESPACE(TestName)::TestName<__VA_ARGS__>::test()
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_NTTP_0
#define INTERNAL_CATCH_NTTP_GEN(...) \
INTERNAL_CATCH_VA_NARGS_IMPL(__VA_ARGS__, \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_1(__VA_ARGS__), \
INTERNAL_CATCH_NTTP_0)
#define INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD(TestName, ...) \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD1, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD0) \
(TestName, __VA_ARGS__)
#define INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD(TestName, ClassName, ...) \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD1, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD0) \
(TestName, ClassName, __VA_ARGS__)
#define INTERNAL_CATCH_NTTP_REG_METHOD_GEN(TestName, ...) \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD0, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD0) \
(TestName, __VA_ARGS__)
#define INTERNAL_CATCH_NTTP_REG_GEN(TestFunc, ...) \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER0, \
INTERNAL_CATCH_NTTP_REGISTER0) \
(TestFunc, __VA_ARGS__)
#define INTERNAL_CATCH_DEFINE_SIG_TEST(TestName, ...) \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST1, \
INTERNAL_CATCH_DEFINE_SIG_TEST0) \
(TestName, __VA_ARGS__)
#define INTERNAL_CATCH_DECLARE_SIG_TEST(TestName, ...) \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST1, \
INTERNAL_CATCH_DECLARE_SIG_TEST0) \
(TestName, __VA_ARGS__)
#define INTERNAL_CATCH_REMOVE_PARENS_GEN(...) \
INTERNAL_CATCH_VA_NARGS_IMPL(__VA_ARGS__, \
INTERNAL_CATCH_REMOVE_PARENS_11_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_10_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_9_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_8_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_7_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_6_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_5_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_4_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_3_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_2_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_1_ARG) \
(__VA_ARGS__)
#else
#define INTERNAL_CATCH_NTTP_0(signature)
#define INTERNAL_CATCH_NTTP_GEN(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_VA_NARGS_IMPL(__VA_ARGS__, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_1, \
INTERNAL_CATCH_NTTP_0)(__VA_ARGS__))
#define INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD(TestName, ...) \
INTERNAL_CATCH_EXPAND_VARGS( \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD1, \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD0)(TestName, __VA_ARGS__))
#define INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD(TestName, ClassName, ...) \
INTERNAL_CATCH_EXPAND_VARGS( \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD1, \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD0)(TestName, ClassName, __VA_ARGS__))
#define INTERNAL_CATCH_NTTP_REG_METHOD_GEN(TestName, ...) \
INTERNAL_CATCH_EXPAND_VARGS( \
INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD0, \
INTERNAL_CATCH_NTTP_REGISTER_METHOD0)(TestName, __VA_ARGS__))
#define INTERNAL_CATCH_NTTP_REG_GEN(TestFunc, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER, \
INTERNAL_CATCH_NTTP_REGISTER0, \
INTERNAL_CATCH_NTTP_REGISTER0)(TestFunc, __VA_ARGS__))
#define INTERNAL_CATCH_DEFINE_SIG_TEST(TestName, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST1, \
INTERNAL_CATCH_DEFINE_SIG_TEST0)(TestName, __VA_ARGS__))
#define INTERNAL_CATCH_DECLARE_SIG_TEST(TestName, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_VA_NARGS_IMPL("dummy", \
__VA_ARGS__, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DEFINE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST_X, \
INTERNAL_CATCH_DECLARE_SIG_TEST1, \
INTERNAL_CATCH_DECLARE_SIG_TEST0)(TestName, __VA_ARGS__))
#define INTERNAL_CATCH_REMOVE_PARENS_GEN(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_VA_NARGS_IMPL(__VA_ARGS__, \
INTERNAL_CATCH_REMOVE_PARENS_11_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_10_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_9_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_8_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_7_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_6_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_5_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_4_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_3_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_2_ARG, \
INTERNAL_CATCH_REMOVE_PARENS_1_ARG)(__VA_ARGS__))
#endif
// end catch_preprocessor.hpp
// start catch_meta.hpp
#include <type_traits>
namespace Catch {
template<typename T>
struct always_false : std::false_type
{};
template<typename>
struct true_given : std::true_type
{};
struct is_callable_tester
{
template<typename Fun, typename... Args>
true_given<decltype(std::declval<Fun>()(std::declval<Args>()...))> static test(int);
template<typename...>
std::false_type static test(...);
};
template<typename T>
struct is_callable;
template<typename Fun, typename... Args>
struct is_callable<Fun(Args...)> : decltype(is_callable_tester::test<Fun, Args...>(0))
{};
#if defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703
// std::result_of is deprecated in C++17 and removed in C++20. Hence, it is
// replaced with std::invoke_result here.
template<typename Func, typename... U>
using FunctionReturnType = std::remove_reference_t<std::remove_cv_t<std::invoke_result_t<Func, U...>>>;
#else
// Keep ::type here because we still support C++11
template<typename Func, typename... U>
using FunctionReturnType =
typename std::remove_reference<typename std::remove_cv<typename std::result_of<Func(U...)>::type>::type>::type;
#endif
} // namespace Catch
namespace mpl_ {
struct na;
}
// end catch_meta.hpp
namespace Catch {
template<typename C>
class TestInvokerAsMethod : public ITestInvoker
{
void (C::*m_testAsMethod)();
public:
TestInvokerAsMethod(void (C::*testAsMethod)()) noexcept
: m_testAsMethod(testAsMethod)
{}
void invoke() const override
{
C obj;
(obj.*m_testAsMethod)();
}
};
auto makeTestInvoker(void (*testAsFunction)()) noexcept -> ITestInvoker*;
template<typename C>
auto makeTestInvoker(void (C::*testAsMethod)()) noexcept -> ITestInvoker*
{
return new (std::nothrow) TestInvokerAsMethod<C>(testAsMethod);
}
struct NameAndTags
{
NameAndTags(StringRef const& name_ = StringRef(), StringRef const& tags_ = StringRef()) noexcept;
StringRef name;
StringRef tags;
};
struct AutoReg : NonCopyable
{
AutoReg(ITestInvoker* invoker,
SourceLineInfo const& lineInfo,
StringRef const& classOrMethod,
NameAndTags const& nameAndTags) noexcept;
~AutoReg();
};
} // end namespace Catch
#if defined(CATCH_CONFIG_DISABLE)
#define INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(TestName, ...) static void TestName()
#define INTERNAL_CATCH_TESTCASE_METHOD_NO_REGISTRATION(TestName, ClassName, ...) \
namespace { \
struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName) \
{ \
void test(); \
}; \
} \
void TestName::test()
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION_2(TestName, TestFunc, Name, Tags, Signature, ...) \
INTERNAL_CATCH_DEFINE_SIG_TEST(TestFunc, INTERNAL_CATCH_REMOVE_PARENS(Signature))
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION_2(TestNameClass, \
TestName, \
ClassName, \
Name, \
Tags, \
Signature, \
...) \
namespace { \
namespace INTERNAL_CATCH_MAKE_NAMESPACE(TestName) { \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD(TestName, ClassName, INTERNAL_CATCH_REMOVE_PARENS(Signature)); \
} \
} \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD(TestName, INTERNAL_CATCH_REMOVE_PARENS(Signature))
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION(Name, Tags, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
typename TestType, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION(Name, Tags, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
typename TestType, \
__VA_ARGS__))
#endif
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG_NO_REGISTRATION(Name, Tags, Signature, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
Signature, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG_NO_REGISTRATION(Name, Tags, Signature, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
Signature, \
__VA_ARGS__))
#endif
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION(ClassName, Name, Tags, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
typename T, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION(ClassName, Name, Tags, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
typename T, \
__VA_ARGS__))
#endif
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG_NO_REGISTRATION(ClassName, Name, Tags, Signature, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
Signature, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG_NO_REGISTRATION(ClassName, Name, Tags, Signature, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
Signature, \
__VA_ARGS__))
#endif
#endif
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_TESTCASE2(TestName, ...) \
static void TestName(); \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
namespace { \
Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME(autoRegistrar)(Catch::makeTestInvoker(&TestName), \
CATCH_INTERNAL_LINEINFO, \
Catch::StringRef(), \
Catch::NameAndTags{__VA_ARGS__}); \
} /* NOLINT */ \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
static void TestName()
#define INTERNAL_CATCH_TESTCASE(...) \
INTERNAL_CATCH_TESTCASE2(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____), __VA_ARGS__)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_METHOD_AS_TEST_CASE(QualifiedMethod, ...) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
namespace { \
Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME(autoRegistrar)(Catch::makeTestInvoker(&QualifiedMethod), \
CATCH_INTERNAL_LINEINFO, \
"&" #QualifiedMethod, \
Catch::NameAndTags{__VA_ARGS__}); \
} /* NOLINT */ \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_TEST_CASE_METHOD2(TestName, ClassName, ...) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
namespace { \
struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName) \
{ \
void test(); \
}; \
Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME(autoRegistrar)(Catch::makeTestInvoker(&TestName::test), \
CATCH_INTERNAL_LINEINFO, \
#ClassName, \
Catch::NameAndTags{__VA_ARGS__}); /* NOLINT */ \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
void TestName::test()
#define INTERNAL_CATCH_TEST_CASE_METHOD(ClassName, ...) \
INTERNAL_CATCH_TEST_CASE_METHOD2(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____), ClassName, __VA_ARGS__)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_REGISTER_TESTCASE(Function, ...) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
Catch::AutoReg INTERNAL_CATCH_UNIQUE_NAME(autoRegistrar)(Catch::makeTestInvoker(Function), \
CATCH_INTERNAL_LINEINFO, \
Catch::StringRef(), \
Catch::NameAndTags{__VA_ARGS__}); /* NOLINT */ \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_2(TestName, TestFunc, Name, Tags, Signature, ...) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS \
CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS \
INTERNAL_CATCH_DECLARE_SIG_TEST(TestFunc, INTERNAL_CATCH_REMOVE_PARENS(Signature)); \
namespace { \
namespace INTERNAL_CATCH_MAKE_NAMESPACE(TestName) { \
INTERNAL_CATCH_TYPE_GEN \
INTERNAL_CATCH_NTTP_GEN(INTERNAL_CATCH_REMOVE_PARENS(Signature)) \
INTERNAL_CATCH_NTTP_REG_GEN(TestFunc, INTERNAL_CATCH_REMOVE_PARENS(Signature)) \
template<typename... Types> \
struct TestName \
{ \
TestName() \
{ \
int index = 0; \
constexpr char const* tmpl_types[] = { \
CATCH_REC_LIST(INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS, __VA_ARGS__)}; \
using expander = int[]; \
(void)expander{(reg_test(Types{}, Catch::NameAndTags{Name " - " + std::string(tmpl_types[index]), Tags}), \
index++)...}; /* NOLINT */ \
} \
}; \
static int INTERNAL_CATCH_UNIQUE_NAME(globalRegistrar) = []() { \
TestName<INTERNAL_CATCH_MAKE_TYPE_LISTS_FROM_TYPES(__VA_ARGS__)>(); \
return 0; \
}(); \
} \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
INTERNAL_CATCH_DEFINE_SIG_TEST(TestFunc, INTERNAL_CATCH_REMOVE_PARENS(Signature))
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE(Name, Tags, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
typename TestType, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE(Name, Tags, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
typename TestType, \
__VA_ARGS__))
#endif
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG(Name, Tags, Signature, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
Signature, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG(Name, Tags, Signature, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
Signature, \
__VA_ARGS__))
#endif
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE2(TestName, \
TestFuncName, \
Name, \
Tags, \
Signature, \
TmplTypes, \
TypesList) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS \
CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS \
template<typename TestType> \
static void TestFuncName(); \
namespace { \
namespace INTERNAL_CATCH_MAKE_NAMESPACE(TestName) { \
INTERNAL_CATCH_TYPE_GEN \
INTERNAL_CATCH_NTTP_GEN(INTERNAL_CATCH_REMOVE_PARENS(Signature)) \
template<typename... Types> \
struct TestName \
{ \
void reg_tests() \
{ \
int index = 0; \
using expander = int[]; \
constexpr char const* tmpl_types[] = { \
CATCH_REC_LIST(INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS, INTERNAL_CATCH_REMOVE_PARENS(TmplTypes))}; \
constexpr char const* types_list[] = { \
CATCH_REC_LIST(INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS, INTERNAL_CATCH_REMOVE_PARENS(TypesList))}; \
constexpr auto num_types = sizeof(types_list) / sizeof(types_list[0]); \
(void)expander{ \
(Catch::AutoReg(Catch::makeTestInvoker(&TestFuncName<Types>), \
CATCH_INTERNAL_LINEINFO, \
Catch::StringRef(), \
Catch::NameAndTags{Name " - " + std::string(tmpl_types[index / num_types]) + "<" + \
std::string(types_list[index % num_types]) + ">", \
Tags}), \
index++)...}; /* NOLINT */ \
} \
}; \
static int INTERNAL_CATCH_UNIQUE_NAME(globalRegistrar) = []() { \
using TestInit = typename create< \
TestName, \
decltype(get_wrapper<INTERNAL_CATCH_REMOVE_PARENS(TmplTypes)>()), \
TypeList<INTERNAL_CATCH_MAKE_TYPE_LISTS_FROM_TYPES(INTERNAL_CATCH_REMOVE_PARENS(TypesList))>>::type; \
TestInit t; \
t.reg_tests(); \
return 0; \
}(); \
} \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
template<typename TestType> \
static void TestFuncName()
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE(Name, Tags, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
typename T, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE(Name, Tags, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
typename T, \
__VA_ARGS__))
#endif
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(Name, Tags, Signature, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
Signature, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(Name, Tags, Signature, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
Signature, \
__VA_ARGS__))
#endif
#define INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE_2(TestName, TestFunc, Name, Tags, TmplList) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS \
template<typename TestType> \
static void TestFunc(); \
namespace { \
namespace INTERNAL_CATCH_MAKE_NAMESPACE(TestName) { \
INTERNAL_CATCH_TYPE_GEN \
template<typename... Types> \
struct TestName \
{ \
void reg_tests() \
{ \
int index = 0; \
using expander = int[]; \
(void)expander{ \
(Catch::AutoReg(Catch::makeTestInvoker(&TestFunc<Types>), \
CATCH_INTERNAL_LINEINFO, \
Catch::StringRef(), \
Catch::NameAndTags{Name " - " + std::string(INTERNAL_CATCH_STRINGIZE(TmplList)) + \
" - " + std::to_string(index), \
Tags}), \
index++)...}; /* NOLINT */ \
} \
}; \
static int INTERNAL_CATCH_UNIQUE_NAME(globalRegistrar) = []() { \
using TestInit = typename convert<TestName, TmplList>::type; \
TestInit t; \
t.reg_tests(); \
return 0; \
}(); \
} \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
template<typename TestType> \
static void TestFunc()
#define INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE(Name, Tags, TmplList) \
INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
Name, \
Tags, \
TmplList)
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_2(TestNameClass, TestName, ClassName, Name, Tags, Signature, ...) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS \
CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS \
namespace { \
namespace INTERNAL_CATCH_MAKE_NAMESPACE(TestName) { \
INTERNAL_CATCH_TYPE_GEN \
INTERNAL_CATCH_NTTP_GEN(INTERNAL_CATCH_REMOVE_PARENS(Signature)) \
INTERNAL_CATCH_DECLARE_SIG_TEST_METHOD(TestName, ClassName, INTERNAL_CATCH_REMOVE_PARENS(Signature)); \
INTERNAL_CATCH_NTTP_REG_METHOD_GEN(TestName, INTERNAL_CATCH_REMOVE_PARENS(Signature)) \
template<typename... Types> \
struct TestNameClass \
{ \
TestNameClass() \
{ \
int index = 0; \
constexpr char const* tmpl_types[] = { \
CATCH_REC_LIST(INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS, __VA_ARGS__)}; \
using expander = int[]; \
(void)expander{ \
(reg_test(Types{}, #ClassName, Catch::NameAndTags{Name " - " + std::string(tmpl_types[index]), Tags}), \
index++)...}; /* NOLINT */ \
} \
}; \
static int INTERNAL_CATCH_UNIQUE_NAME(globalRegistrar) = []() { \
TestNameClass<INTERNAL_CATCH_MAKE_TYPE_LISTS_FROM_TYPES(__VA_ARGS__)>(); \
return 0; \
}(); \
} \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
INTERNAL_CATCH_DEFINE_SIG_TEST_METHOD(TestName, INTERNAL_CATCH_REMOVE_PARENS(Signature))
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD(ClassName, Name, Tags, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
typename T, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD(ClassName, Name, Tags, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
typename T, \
__VA_ARGS__))
#endif
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(ClassName, Name, Tags, Signature, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
Signature, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(ClassName, Name, Tags, Signature, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____C_L_A_S_S____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
ClassName, \
Name, \
Tags, \
Signature, \
__VA_ARGS__))
#endif
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_2(TestNameClass, \
TestName, \
ClassName, \
Name, \
Tags, \
Signature, \
TmplTypes, \
TypesList) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
CATCH_INTERNAL_SUPPRESS_ZERO_VARIADIC_WARNINGS \
CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS \
template<typename TestType> \
struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName<TestType>) \
{ \
void test(); \
}; \
namespace { \
namespace INTERNAL_CATCH_MAKE_NAMESPACE(TestNameClass) { \
INTERNAL_CATCH_TYPE_GEN \
INTERNAL_CATCH_NTTP_GEN(INTERNAL_CATCH_REMOVE_PARENS(Signature)) \
template<typename... Types> \
struct TestNameClass \
{ \
void reg_tests() \
{ \
int index = 0; \
using expander = int[]; \
constexpr char const* tmpl_types[] = { \
CATCH_REC_LIST(INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS, INTERNAL_CATCH_REMOVE_PARENS(TmplTypes))}; \
constexpr char const* types_list[] = { \
CATCH_REC_LIST(INTERNAL_CATCH_STRINGIZE_WITHOUT_PARENS, INTERNAL_CATCH_REMOVE_PARENS(TypesList))}; \
constexpr auto num_types = sizeof(types_list) / sizeof(types_list[0]); \
(void)expander{ \
(Catch::AutoReg(Catch::makeTestInvoker(&TestName<Types>::test), \
CATCH_INTERNAL_LINEINFO, \
#ClassName, \
Catch::NameAndTags{Name " - " + std::string(tmpl_types[index / num_types]) + "<" + \
std::string(types_list[index % num_types]) + ">", \
Tags}), \
index++)...}; /* NOLINT */ \
} \
}; \
static int INTERNAL_CATCH_UNIQUE_NAME(globalRegistrar) = []() { \
using TestInit = typename create< \
TestNameClass, \
decltype(get_wrapper<INTERNAL_CATCH_REMOVE_PARENS(TmplTypes)>()), \
TypeList<INTERNAL_CATCH_MAKE_TYPE_LISTS_FROM_TYPES(INTERNAL_CATCH_REMOVE_PARENS(TypesList))>>::type; \
TestInit t; \
t.reg_tests(); \
return 0; \
}(); \
} \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
template<typename TestType> \
void TestName<TestType>::test()
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(ClassName, Name, Tags, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
ClassName, \
Name, \
Tags, \
typename T, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(ClassName, Name, Tags, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
ClassName, \
Name, \
Tags, \
typename T, \
__VA_ARGS__))
#endif
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(ClassName, Name, Tags, Signature, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
ClassName, \
Name, \
Tags, \
Signature, \
__VA_ARGS__)
#else
#define INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(ClassName, Name, Tags, Signature, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
ClassName, \
Name, \
Tags, \
Signature, \
__VA_ARGS__))
#endif
#define INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE_METHOD_2(TestNameClass, TestName, ClassName, Name, Tags, TmplList) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
CATCH_INTERNAL_SUPPRESS_UNUSED_TEMPLATE_WARNINGS \
template<typename TestType> \
struct TestName : INTERNAL_CATCH_REMOVE_PARENS(ClassName<TestType>) \
{ \
void test(); \
}; \
namespace { \
namespace INTERNAL_CATCH_MAKE_NAMESPACE(TestName) { \
INTERNAL_CATCH_TYPE_GEN \
template<typename... Types> \
struct TestNameClass \
{ \
void reg_tests() \
{ \
int index = 0; \
using expander = int[]; \
(void)expander{ \
(Catch::AutoReg(Catch::makeTestInvoker(&TestName<Types>::test), \
CATCH_INTERNAL_LINEINFO, \
#ClassName, \
Catch::NameAndTags{Name " - " + std::string(INTERNAL_CATCH_STRINGIZE(TmplList)) + \
" - " + std::to_string(index), \
Tags}), \
index++)...}; /* NOLINT */ \
} \
}; \
static int INTERNAL_CATCH_UNIQUE_NAME(globalRegistrar) = []() { \
using TestInit = typename convert<TestNameClass, TmplList>::type; \
TestInit t; \
t.reg_tests(); \
return 0; \
}(); \
} \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
template<typename TestType> \
void TestName<TestType>::test()
#define INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE_METHOD(ClassName, Name, Tags, TmplList) \
INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE_METHOD_2( \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____), \
INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_M_P_L_A_T_E____T_E_S_T____F_U_N_C____), \
ClassName, \
Name, \
Tags, \
TmplList)
// end catch_test_registry.h
// start catch_capture.hpp
// start catch_assertionhandler.h
// start catch_assertioninfo.h
// start catch_result_type.h
namespace Catch {
// ResultWas::OfType enum
struct ResultWas
{
enum OfType {
Unknown = -1,
Ok = 0,
Info = 1,
Warning = 2,
FailureBit = 0x10,
ExpressionFailed = FailureBit | 1,
ExplicitFailure = FailureBit | 2,
Exception = 0x100 | FailureBit,
ThrewException = Exception | 1,
DidntThrowException = Exception | 2,
FatalErrorCondition = 0x200 | FailureBit
};
};
bool isOk(ResultWas::OfType resultType);
bool isJustInfo(int flags);
// ResultDisposition::Flags enum
struct ResultDisposition
{
enum Flags {
Normal = 0x01,
ContinueOnFailure = 0x02, // Failures fail test, but execution continues
FalseTest = 0x04, // Prefix expression with !
SuppressFail = 0x08 // Failures are reported but do not fail the test
};
};
ResultDisposition::Flags operator|(ResultDisposition::Flags lhs, ResultDisposition::Flags rhs);
bool shouldContinueOnFailure(int flags);
inline bool isFalseTest(int flags)
{
return (flags & ResultDisposition::FalseTest) != 0;
}
bool shouldSuppressFailure(int flags);
} // end namespace Catch
// end catch_result_type.h
namespace Catch {
struct AssertionInfo
{
StringRef macroName;
SourceLineInfo lineInfo;
StringRef capturedExpression;
ResultDisposition::Flags resultDisposition;
// We want to delete this constructor but a compiler bug in 4.8 means
// the struct is then treated as non-aggregate
// AssertionInfo() = delete;
};
} // end namespace Catch
// end catch_assertioninfo.h
// start catch_decomposer.h
// start catch_tostring.h
#include <vector>
#include <cstddef>
#include <type_traits>
#include <string>
// start catch_stream.h
#include <iosfwd>
#include <cstddef>
#include <ostream>
namespace Catch {
std::ostream& cout();
std::ostream& cerr();
std::ostream& clog();
class StringRef;
struct IStream
{
virtual ~IStream();
virtual std::ostream& stream() const = 0;
};
auto makeStream(StringRef const& filename) -> IStream const*;
class ReusableStringStream : NonCopyable
{
std::size_t m_index;
std::ostream* m_oss;
public:
ReusableStringStream();
~ReusableStringStream();
auto str() const -> std::string;
template<typename T>
auto operator<<(T const& value) -> ReusableStringStream&
{
*m_oss << value;
return *this;
}
auto get() -> std::ostream& { return *m_oss; }
};
} // namespace Catch
// end catch_stream.h
// start catch_interfaces_enum_values_registry.h
#include <vector>
namespace Catch {
namespace Detail {
struct EnumInfo
{
StringRef m_name;
std::vector<std::pair<int, StringRef>> m_values;
~EnumInfo();
StringRef lookup(int value) const;
};
} // namespace Detail
struct IMutableEnumValuesRegistry
{
virtual ~IMutableEnumValuesRegistry();
virtual Detail::EnumInfo const&
registerEnum(StringRef enumName, StringRef allEnums, std::vector<int> const& values) = 0;
template<typename E>
Detail::EnumInfo const& registerEnum(StringRef enumName, StringRef allEnums, std::initializer_list<E> values)
{
static_assert(sizeof(int) >= sizeof(E), "Cannot serialize enum to int");
std::vector<int> intValues;
intValues.reserve(values.size());
for (auto enumValue : values)
intValues.push_back(static_cast<int>(enumValue));
return registerEnum(enumName, allEnums, intValues);
}
};
} // namespace Catch
// end catch_interfaces_enum_values_registry.h
#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
#include <string_view>
#endif
#ifdef __OBJC__
// start catch_objc_arc.hpp
#import <Foundation/Foundation.h>
#ifdef __has_feature
#define CATCH_ARC_ENABLED __has_feature(objc_arc)
#else
#define CATCH_ARC_ENABLED 0
#endif
void arcSafeRelease(NSObject* obj);
id performOptionalSelector(id obj, SEL sel);
#if !CATCH_ARC_ENABLED
inline void arcSafeRelease(NSObject* obj)
{
[obj release];
}
inline id performOptionalSelector(id obj, SEL sel)
{
if ([obj respondsToSelector:sel])
return [obj performSelector:sel];
return nil;
}
#define CATCH_UNSAFE_UNRETAINED
#define CATCH_ARC_STRONG
#else
inline void arcSafeRelease(NSObject*) {}
inline id performOptionalSelector(id obj, SEL sel)
{
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Warc-performSelector-leaks"
#endif
if ([obj respondsToSelector:sel])
return [obj performSelector:sel];
#ifdef __clang__
#pragma clang diagnostic pop
#endif
return nil;
}
#define CATCH_UNSAFE_UNRETAINED __unsafe_unretained
#define CATCH_ARC_STRONG __strong
#endif
// end catch_objc_arc.hpp
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning( \
disable: 4180) // We attempt to stream a function (address) by const&, which MSVC complains about but is harmless
#endif
namespace Catch {
namespace Detail {
extern const std::string unprintableString;
std::string rawMemoryToString(const void* object, std::size_t size);
template<typename T>
std::string rawMemoryToString(const T& object)
{
return rawMemoryToString(&object, sizeof(object));
}
template<typename T>
class IsStreamInsertable
{
template<typename Stream, typename U>
static auto test(int) -> decltype(std::declval<Stream&>() << std::declval<U>(), std::true_type());
template<typename, typename>
static auto test(...) -> std::false_type;
public:
static const bool value = decltype(test<std::ostream, const T&>(0))::value;
};
template<typename E>
std::string convertUnknownEnumToString(E e);
template<typename T>
typename std::enable_if<!std::is_enum<T>::value && !std::is_base_of<std::exception, T>::value, std::string>::type
convertUnstreamable(T const&)
{
return Detail::unprintableString;
}
template<typename T>
typename std::enable_if<!std::is_enum<T>::value && std::is_base_of<std::exception, T>::value, std::string>::type
convertUnstreamable(T const& ex)
{
return ex.what();
}
template<typename T>
typename std::enable_if<std::is_enum<T>::value, std::string>::type convertUnstreamable(T const& value)
{
return convertUnknownEnumToString(value);
}
#if defined(_MANAGED)
//! Convert a CLR string to a utf8 std::string
template<typename T>
std::string clrReferenceToString(T ^ ref)
{
if (ref == nullptr)
return std::string("null");
auto bytes = System::Text::Encoding::UTF8->GetBytes(ref->ToString());
cli::pin_ptr<System::Byte> p = &bytes[0];
return std::string(reinterpret_cast<char const*>(p), bytes->Length);
}
#endif
} // namespace Detail
// If we decide for C++14, change these to enable_if_ts
template<typename T, typename = void>
struct StringMaker
{
template<typename Fake = T>
static typename std::enable_if<::Catch::Detail::IsStreamInsertable<Fake>::value, std::string>::type
convert(const Fake& value)
{
ReusableStringStream rss;
// NB: call using the function-like syntax to avoid ambiguity with
// user-defined templated operator<< under clang.
rss.operator<<(value);
return rss.str();
}
template<typename Fake = T>
static typename std::enable_if<!::Catch::Detail::IsStreamInsertable<Fake>::value, std::string>::type
convert(const Fake& value)
{
#if !defined(CATCH_CONFIG_FALLBACK_STRINGIFIER)
return Detail::convertUnstreamable(value);
#else
return CATCH_CONFIG_FALLBACK_STRINGIFIER(value);
#endif
}
};
namespace Detail {
// This function dispatches all stringification requests inside of Catch.
// Should be preferably called fully qualified, like ::Catch::Detail::stringify
template<typename T>
std::string stringify(const T& e)
{
return ::Catch::StringMaker<typename std::remove_cv<typename std::remove_reference<T>::type>::type>::convert(e);
}
template<typename E>
std::string convertUnknownEnumToString(E e)
{
return ::Catch::Detail::stringify(static_cast<typename std::underlying_type<E>::type>(e));
}
#if defined(_MANAGED)
template<typename T>
std::string stringify(T ^ e)
{
return ::Catch::StringMaker<T ^>::convert(e);
}
#endif
} // namespace Detail
// Some predefined specializations
template<>
struct StringMaker<std::string>
{
static std::string convert(const std::string& str);
};
#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
template<>
struct StringMaker<std::string_view>
{
static std::string convert(std::string_view str);
};
#endif
template<>
struct StringMaker<char const*>
{
static std::string convert(char const* str);
};
template<>
struct StringMaker<char*>
{
static std::string convert(char* str);
};
#ifdef CATCH_CONFIG_WCHAR
template<>
struct StringMaker<std::wstring>
{
static std::string convert(const std::wstring& wstr);
};
#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
template<>
struct StringMaker<std::wstring_view>
{
static std::string convert(std::wstring_view str);
};
#endif
template<>
struct StringMaker<wchar_t const*>
{
static std::string convert(wchar_t const* str);
};
template<>
struct StringMaker<wchar_t*>
{
static std::string convert(wchar_t* str);
};
#endif
// TBD: Should we use `strnlen` to ensure that we don't go out of the buffer,
// while keeping string semantics?
template<int SZ>
struct StringMaker<char[SZ]>
{
static std::string convert(char const* str) { return ::Catch::Detail::stringify(std::string{str}); }
};
template<int SZ>
struct StringMaker<signed char[SZ]>
{
static std::string convert(signed char const* str)
{
return ::Catch::Detail::stringify(std::string{reinterpret_cast<char const*>(str)});
}
};
template<int SZ>
struct StringMaker<unsigned char[SZ]>
{
static std::string convert(unsigned char const* str)
{
return ::Catch::Detail::stringify(std::string{reinterpret_cast<char const*>(str)});
}
};
#if defined(CATCH_CONFIG_CPP17_BYTE)
template<>
struct StringMaker<std::byte>
{
static std::string convert(std::byte value);
};
#endif // defined(CATCH_CONFIG_CPP17_BYTE)
template<>
struct StringMaker<int>
{
static std::string convert(int value);
};
template<>
struct StringMaker<long>
{
static std::string convert(long value);
};
template<>
struct StringMaker<long long>
{
static std::string convert(long long value);
};
template<>
struct StringMaker<unsigned int>
{
static std::string convert(unsigned int value);
};
template<>
struct StringMaker<unsigned long>
{
static std::string convert(unsigned long value);
};
template<>
struct StringMaker<unsigned long long>
{
static std::string convert(unsigned long long value);
};
template<>
struct StringMaker<bool>
{
static std::string convert(bool b);
};
template<>
struct StringMaker<char>
{
static std::string convert(char c);
};
template<>
struct StringMaker<signed char>
{
static std::string convert(signed char c);
};
template<>
struct StringMaker<unsigned char>
{
static std::string convert(unsigned char c);
};
template<>
struct StringMaker<std::nullptr_t>
{
static std::string convert(std::nullptr_t);
};
template<>
struct StringMaker<float>
{
static std::string convert(float value);
static int precision;
};
template<>
struct StringMaker<double>
{
static std::string convert(double value);
static int precision;
};
template<typename T>
struct StringMaker<T*>
{
template<typename U>
static std::string convert(U* p)
{
if (p)
{
return ::Catch::Detail::rawMemoryToString(p);
}
else
{
return "nullptr";
}
}
};
template<typename R, typename C>
struct StringMaker<R C::*>
{
static std::string convert(R C::*p)
{
if (p)
{
return ::Catch::Detail::rawMemoryToString(p);
}
else
{
return "nullptr";
}
}
};
#if defined(_MANAGED)
template<typename T>
struct StringMaker<T ^>
{
static std::string convert(T ^ ref) { return ::Catch::Detail::clrReferenceToString(ref); }
};
#endif
namespace Detail {
template<typename InputIterator, typename Sentinel = InputIterator>
std::string rangeToString(InputIterator first, Sentinel last)
{
ReusableStringStream rss;
rss << "{ ";
if (first != last)
{
rss << ::Catch::Detail::stringify(*first);
for (++first; first != last; ++first)
rss << ", " << ::Catch::Detail::stringify(*first);
}
rss << " }";
return rss.str();
}
} // namespace Detail
#ifdef __OBJC__
template<>
struct StringMaker<NSString*>
{
static std::string convert(NSString* nsstring)
{
if (!nsstring)
return "nil";
return std::string("@") + [nsstring UTF8String];
}
};
template<>
struct StringMaker<NSObject*>
{
static std::string convert(NSObject* nsObject) { return ::Catch::Detail::stringify([nsObject description]); }
};
namespace Detail {
inline std::string stringify(NSString* nsstring)
{
return StringMaker<NSString*>::convert(nsstring);
}
} // namespace Detail
#endif // __OBJC__
} // namespace Catch
//////////////////////////////////////////////////////
// Separate std-lib types stringification, so it can be selectively enabled
// This means that we do not bring in
#if defined(CATCH_CONFIG_ENABLE_ALL_STRINGMAKERS)
#define CATCH_CONFIG_ENABLE_PAIR_STRINGMAKER
#define CATCH_CONFIG_ENABLE_TUPLE_STRINGMAKER
#define CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER
#define CATCH_CONFIG_ENABLE_CHRONO_STRINGMAKER
#define CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER
#endif
// Separate std::pair specialization
#if defined(CATCH_CONFIG_ENABLE_PAIR_STRINGMAKER)
#include <utility>
namespace Catch {
template<typename T1, typename T2>
struct StringMaker<std::pair<T1, T2>>
{
static std::string convert(const std::pair<T1, T2>& pair)
{
ReusableStringStream rss;
rss << "{ " << ::Catch::Detail::stringify(pair.first) << ", " << ::Catch::Detail::stringify(pair.second)
<< " }";
return rss.str();
}
};
} // namespace Catch
#endif // CATCH_CONFIG_ENABLE_PAIR_STRINGMAKER
#if defined(CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER) && defined(CATCH_CONFIG_CPP17_OPTIONAL)
#include <optional>
namespace Catch {
template<typename T>
struct StringMaker<std::optional<T>>
{
static std::string convert(const std::optional<T>& optional)
{
ReusableStringStream rss;
if (optional.has_value())
{
rss << ::Catch::Detail::stringify(*optional);
}
else
{
rss << "{ }";
}
return rss.str();
}
};
} // namespace Catch
#endif // CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER
// Separate std::tuple specialization
#if defined(CATCH_CONFIG_ENABLE_TUPLE_STRINGMAKER)
#include <tuple>
namespace Catch {
namespace Detail {
template<typename Tuple, std::size_t N = 0, bool = (N < std::tuple_size<Tuple>::value)>
struct TupleElementPrinter
{
static void print(const Tuple& tuple, std::ostream& os)
{
os << (N ? ", " : " ") << ::Catch::Detail::stringify(std::get<N>(tuple));
TupleElementPrinter<Tuple, N + 1>::print(tuple, os);
}
};
template<typename Tuple, std::size_t N>
struct TupleElementPrinter<Tuple, N, false>
{
static void print(const Tuple&, std::ostream&) {}
};
} // namespace Detail
template<typename... Types>
struct StringMaker<std::tuple<Types...>>
{
static std::string convert(const std::tuple<Types...>& tuple)
{
ReusableStringStream rss;
rss << '{';
Detail::TupleElementPrinter<std::tuple<Types...>>::print(tuple, rss.get());
rss << " }";
return rss.str();
}
};
} // namespace Catch
#endif // CATCH_CONFIG_ENABLE_TUPLE_STRINGMAKER
#if defined(CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER) && defined(CATCH_CONFIG_CPP17_VARIANT)
#include <variant>
namespace Catch {
template<>
struct StringMaker<std::monostate>
{
static std::string convert(const std::monostate&) { return "{ }"; }
};
template<typename... Elements>
struct StringMaker<std::variant<Elements...>>
{
static std::string convert(const std::variant<Elements...>& variant)
{
if (variant.valueless_by_exception())
{
return "{valueless variant}";
}
else
{
return std::visit([](const auto& value) { return ::Catch::Detail::stringify(value); }, variant);
}
}
};
} // namespace Catch
#endif // CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER
namespace Catch {
// Import begin/ end from std here
using std::begin;
using std::end;
namespace detail {
template<typename...>
struct void_type
{
using type = void;
};
template<typename T, typename = void>
struct is_range_impl : std::false_type
{};
template<typename T>
struct is_range_impl<T, typename void_type<decltype(begin(std::declval<T>()))>::type> : std::true_type
{};
} // namespace detail
template<typename T>
struct is_range : detail::is_range_impl<T>
{};
#if defined(_MANAGED) // Managed types are never ranges
template<typename T>
struct is_range<T ^>
{
static const bool value = false;
};
#endif
template<typename Range>
std::string rangeToString(Range const& range)
{
return ::Catch::Detail::rangeToString(begin(range), end(range));
}
// Handle vector<bool> specially
template<typename Allocator>
std::string rangeToString(std::vector<bool, Allocator> const& v)
{
ReusableStringStream rss;
rss << "{ ";
bool first = true;
for (bool b : v)
{
if (first)
first = false;
else
rss << ", ";
rss << ::Catch::Detail::stringify(b);
}
rss << " }";
return rss.str();
}
template<typename R>
struct StringMaker<R,
typename std::enable_if<is_range<R>::value && !::Catch::Detail::IsStreamInsertable<R>::value>::type>
{
static std::string convert(R const& range) { return rangeToString(range); }
};
template<typename T, int SZ>
struct StringMaker<T[SZ]>
{
static std::string convert(T const (&arr)[SZ]) { return rangeToString(arr); }
};
} // namespace Catch
// Separate std::chrono::duration specialization
#if defined(CATCH_CONFIG_ENABLE_CHRONO_STRINGMAKER)
#include <ctime>
#include <ratio>
#include <chrono>
namespace Catch {
template<class Ratio>
struct ratio_string
{
static std::string symbol();
};
template<class Ratio>
std::string ratio_string<Ratio>::symbol()
{
Catch::ReusableStringStream rss;
rss << '[' << Ratio::num << '/' << Ratio::den << ']';
return rss.str();
}
template<>
struct ratio_string<std::atto>
{
static std::string symbol();
};
template<>
struct ratio_string<std::femto>
{
static std::string symbol();
};
template<>
struct ratio_string<std::pico>
{
static std::string symbol();
};
template<>
struct ratio_string<std::nano>
{
static std::string symbol();
};
template<>
struct ratio_string<std::micro>
{
static std::string symbol();
};
template<>
struct ratio_string<std::milli>
{
static std::string symbol();
};
////////////
// std::chrono::duration specializations
template<typename Value, typename Ratio>
struct StringMaker<std::chrono::duration<Value, Ratio>>
{
static std::string convert(std::chrono::duration<Value, Ratio> const& duration)
{
ReusableStringStream rss;
rss << duration.count() << ' ' << ratio_string<Ratio>::symbol() << 's';
return rss.str();
}
};
template<typename Value>
struct StringMaker<std::chrono::duration<Value, std::ratio<1>>>
{
static std::string convert(std::chrono::duration<Value, std::ratio<1>> const& duration)
{
ReusableStringStream rss;
rss << duration.count() << " s";
return rss.str();
}
};
template<typename Value>
struct StringMaker<std::chrono::duration<Value, std::ratio<60>>>
{
static std::string convert(std::chrono::duration<Value, std::ratio<60>> const& duration)
{
ReusableStringStream rss;
rss << duration.count() << " m";
return rss.str();
}
};
template<typename Value>
struct StringMaker<std::chrono::duration<Value, std::ratio<3600>>>
{
static std::string convert(std::chrono::duration<Value, std::ratio<3600>> const& duration)
{
ReusableStringStream rss;
rss << duration.count() << " h";
return rss.str();
}
};
////////////
// std::chrono::time_point specialization
// Generic time_point cannot be specialized, only std::chrono::time_point<system_clock>
template<typename Clock, typename Duration>
struct StringMaker<std::chrono::time_point<Clock, Duration>>
{
static std::string convert(std::chrono::time_point<Clock, Duration> const& time_point)
{
return ::Catch::Detail::stringify(time_point.time_since_epoch()) + " since epoch";
}
};
// std::chrono::time_point<system_clock> specialization
template<typename Duration>
struct StringMaker<std::chrono::time_point<std::chrono::system_clock, Duration>>
{
static std::string convert(std::chrono::time_point<std::chrono::system_clock, Duration> const& time_point)
{
auto converted = std::chrono::system_clock::to_time_t(time_point);
#ifdef _MSC_VER
std::tm timeInfo = {};
gmtime_s(&timeInfo, &converted);
#else
std::tm* timeInfo = std::gmtime(&converted);
#endif
auto const timeStampSize = sizeof("2017-01-16T17:06:45Z");
char timeStamp[timeStampSize];
const char* const fmt = "%Y-%m-%dT%H:%M:%SZ";
#ifdef _MSC_VER
std::strftime(timeStamp, timeStampSize, fmt, &timeInfo);
#else
std::strftime(timeStamp, timeStampSize, fmt, timeInfo);
#endif
return std::string(timeStamp);
}
};
} // namespace Catch
#endif // CATCH_CONFIG_ENABLE_CHRONO_STRINGMAKER
#define INTERNAL_CATCH_REGISTER_ENUM(enumName, ...) \
namespace Catch { \
template<> \
struct StringMaker<enumName> \
{ \
static std::string convert(enumName value) \
{ \
static const auto& enumInfo = \
::Catch::getMutableRegistryHub().getMutableEnumValuesRegistry().registerEnum(#enumName, \
#__VA_ARGS__, \
{__VA_ARGS__}); \
return static_cast<std::string>(enumInfo.lookup(static_cast<int>(value))); \
} \
}; \
}
#define CATCH_REGISTER_ENUM(enumName, ...) INTERNAL_CATCH_REGISTER_ENUM(enumName, __VA_ARGS__)
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// end catch_tostring.h
#include <iosfwd>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4389) // '==' : signed/unsigned mismatch
#pragma warning(disable: 4018) // more "signed/unsigned mismatch"
#pragma warning(disable: 4312) // Converting int to T* using reinterpret_cast (issue on x64 platform)
#pragma warning(disable: 4180) // qualifier applied to function type has no meaning
#pragma warning(disable: 4800) // Forcing result to true or false
#endif
namespace Catch {
struct ITransientExpression
{
auto isBinaryExpression() const -> bool { return m_isBinaryExpression; }
auto getResult() const -> bool { return m_result; }
virtual void streamReconstructedExpression(std::ostream& os) const = 0;
ITransientExpression(bool isBinaryExpression, bool result)
: m_isBinaryExpression(isBinaryExpression)
, m_result(result)
{}
// We don't actually need a virtual destructor, but many static analysers
// complain if it's not here :-(
virtual ~ITransientExpression();
bool m_isBinaryExpression;
bool m_result;
};
void formatReconstructedExpression(std::ostream& os, std::string const& lhs, StringRef op, std::string const& rhs);
template<typename LhsT, typename RhsT>
class BinaryExpr : public ITransientExpression
{
LhsT m_lhs;
StringRef m_op;
RhsT m_rhs;
void streamReconstructedExpression(std::ostream& os) const override
{
formatReconstructedExpression(os, Catch::Detail::stringify(m_lhs), m_op, Catch::Detail::stringify(m_rhs));
}
public:
BinaryExpr(bool comparisonResult, LhsT lhs, StringRef op, RhsT rhs)
: ITransientExpression{true, comparisonResult}
, m_lhs(lhs)
, m_op(op)
, m_rhs(rhs)
{}
template<typename T>
auto operator&&(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename T>
auto operator||(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename T>
auto operator==(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename T>
auto operator!=(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename T>
auto operator>(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename T>
auto operator<(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename T>
auto operator>=(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename T>
auto operator<=(T) const -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<T>::value,
"chained comparisons are not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
};
template<typename LhsT>
class UnaryExpr : public ITransientExpression
{
LhsT m_lhs;
void streamReconstructedExpression(std::ostream& os) const override { os << Catch::Detail::stringify(m_lhs); }
public:
explicit UnaryExpr(LhsT lhs)
: ITransientExpression{false, static_cast<bool>(lhs)}
, m_lhs(lhs)
{}
};
// Specialised comparison functions to handle equality comparisons between ints and pointers (NULL deduces as an int)
template<typename LhsT, typename RhsT>
auto compareEqual(LhsT const& lhs, RhsT const& rhs) -> bool
{
return static_cast<bool>(lhs == rhs);
}
template<typename T>
auto compareEqual(T* const& lhs, int rhs) -> bool
{
return lhs == reinterpret_cast<void const*>(rhs);
}
template<typename T>
auto compareEqual(T* const& lhs, long rhs) -> bool
{
return lhs == reinterpret_cast<void const*>(rhs);
}
template<typename T>
auto compareEqual(int lhs, T* const& rhs) -> bool
{
return reinterpret_cast<void const*>(lhs) == rhs;
}
template<typename T>
auto compareEqual(long lhs, T* const& rhs) -> bool
{
return reinterpret_cast<void const*>(lhs) == rhs;
}
template<typename LhsT, typename RhsT>
auto compareNotEqual(LhsT const& lhs, RhsT&& rhs) -> bool
{
return static_cast<bool>(lhs != rhs);
}
template<typename T>
auto compareNotEqual(T* const& lhs, int rhs) -> bool
{
return lhs != reinterpret_cast<void const*>(rhs);
}
template<typename T>
auto compareNotEqual(T* const& lhs, long rhs) -> bool
{
return lhs != reinterpret_cast<void const*>(rhs);
}
template<typename T>
auto compareNotEqual(int lhs, T* const& rhs) -> bool
{
return reinterpret_cast<void const*>(lhs) != rhs;
}
template<typename T>
auto compareNotEqual(long lhs, T* const& rhs) -> bool
{
return reinterpret_cast<void const*>(lhs) != rhs;
}
template<typename LhsT>
class ExprLhs
{
LhsT m_lhs;
public:
explicit ExprLhs(LhsT lhs)
: m_lhs(lhs)
{}
template<typename RhsT>
auto operator==(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {compareEqual(m_lhs, rhs), m_lhs, "==", rhs};
}
auto operator==(bool rhs) -> BinaryExpr<LhsT, bool> const { return {m_lhs == rhs, m_lhs, "==", rhs}; }
template<typename RhsT>
auto operator!=(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {compareNotEqual(m_lhs, rhs), m_lhs, "!=", rhs};
}
auto operator!=(bool rhs) -> BinaryExpr<LhsT, bool> const { return {m_lhs != rhs, m_lhs, "!=", rhs}; }
template<typename RhsT>
auto operator>(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {static_cast<bool>(m_lhs > rhs), m_lhs, ">", rhs};
}
template<typename RhsT>
auto operator<(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {static_cast<bool>(m_lhs < rhs), m_lhs, "<", rhs};
}
template<typename RhsT>
auto operator>=(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {static_cast<bool>(m_lhs >= rhs), m_lhs, ">=", rhs};
}
template<typename RhsT>
auto operator<=(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {static_cast<bool>(m_lhs <= rhs), m_lhs, "<=", rhs};
}
template<typename RhsT>
auto operator|(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {static_cast<bool>(m_lhs | rhs), m_lhs, "|", rhs};
}
template<typename RhsT>
auto operator&(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {static_cast<bool>(m_lhs & rhs), m_lhs, "&", rhs};
}
template<typename RhsT>
auto operator^(RhsT const& rhs) -> BinaryExpr<LhsT, RhsT const&> const
{
return {static_cast<bool>(m_lhs ^ rhs), m_lhs, "^", rhs};
}
template<typename RhsT>
auto operator&&(RhsT const&) -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<RhsT>::value,
"operator&& is not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
template<typename RhsT>
auto operator||(RhsT const&) -> BinaryExpr<LhsT, RhsT const&> const
{
static_assert(always_false<RhsT>::value,
"operator|| is not supported inside assertions, "
"wrap the expression inside parentheses, or decompose it");
}
auto makeUnaryExpr() const -> UnaryExpr<LhsT> { return UnaryExpr<LhsT>{m_lhs}; }
};
void handleExpression(ITransientExpression const& expr);
template<typename T>
void handleExpression(ExprLhs<T> const& expr)
{
handleExpression(expr.makeUnaryExpr());
}
struct Decomposer
{
template<typename T>
auto operator<=(T const& lhs) -> ExprLhs<T const&>
{
return ExprLhs<T const&>{lhs};
}
auto operator<=(bool value) -> ExprLhs<bool> { return ExprLhs<bool>{value}; }
};
} // end namespace Catch
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// end catch_decomposer.h
// start catch_interfaces_capture.h
#include <string>
#include <chrono>
namespace Catch {
class AssertionResult;
struct AssertionInfo;
struct SectionInfo;
struct SectionEndInfo;
struct MessageInfo;
struct MessageBuilder;
struct Counts;
struct AssertionReaction;
struct SourceLineInfo;
struct ITransientExpression;
struct IGeneratorTracker;
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
struct BenchmarkInfo;
template<typename Duration = std::chrono::duration<double, std::nano>>
struct BenchmarkStats;
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
struct IResultCapture
{
virtual ~IResultCapture();
virtual bool sectionStarted(SectionInfo const& sectionInfo, Counts& assertions) = 0;
virtual void sectionEnded(SectionEndInfo const& endInfo) = 0;
virtual void sectionEndedEarly(SectionEndInfo const& endInfo) = 0;
virtual auto acquireGeneratorTracker(StringRef generatorName,
SourceLineInfo const& lineInfo) -> IGeneratorTracker& = 0;
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
virtual void benchmarkPreparing(std::string const& name) = 0;
virtual void benchmarkStarting(BenchmarkInfo const& info) = 0;
virtual void benchmarkEnded(BenchmarkStats<> const& stats) = 0;
virtual void benchmarkFailed(std::string const& error) = 0;
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
virtual void pushScopedMessage(MessageInfo const& message) = 0;
virtual void popScopedMessage(MessageInfo const& message) = 0;
virtual void emplaceUnscopedMessage(MessageBuilder const& builder) = 0;
virtual void handleFatalErrorCondition(StringRef message) = 0;
virtual void
handleExpr(AssertionInfo const& info, ITransientExpression const& expr, AssertionReaction& reaction) = 0;
virtual void handleMessage(AssertionInfo const& info,
ResultWas::OfType resultType,
StringRef const& message,
AssertionReaction& reaction) = 0;
virtual void handleUnexpectedExceptionNotThrown(AssertionInfo const& info, AssertionReaction& reaction) = 0;
virtual void handleUnexpectedInflightException(AssertionInfo const& info,
std::string const& message,
AssertionReaction& reaction) = 0;
virtual void handleIncomplete(AssertionInfo const& info) = 0;
virtual void
handleNonExpr(AssertionInfo const& info, ResultWas::OfType resultType, AssertionReaction& reaction) = 0;
virtual bool lastAssertionPassed() = 0;
virtual void assertionPassed() = 0;
// Deprecated, do not use:
virtual std::string getCurrentTestName() const = 0;
virtual const AssertionResult* getLastResult() const = 0;
virtual void exceptionEarlyReported() = 0;
};
IResultCapture& getResultCapture();
} // namespace Catch
// end catch_interfaces_capture.h
namespace Catch {
struct TestFailureException
{};
struct AssertionResultData;
struct IResultCapture;
class RunContext;
class LazyExpression
{
friend class AssertionHandler;
friend struct AssertionStats;
friend class RunContext;
ITransientExpression const* m_transientExpression = nullptr;
bool m_isNegated;
public:
LazyExpression(bool isNegated);
LazyExpression(LazyExpression const& other);
LazyExpression& operator=(LazyExpression const&) = delete;
explicit operator bool() const;
friend auto operator<<(std::ostream& os, LazyExpression const& lazyExpr) -> std::ostream&;
};
struct AssertionReaction
{
bool shouldDebugBreak = false;
bool shouldThrow = false;
};
class AssertionHandler
{
AssertionInfo m_assertionInfo;
AssertionReaction m_reaction;
bool m_completed = false;
IResultCapture& m_resultCapture;
public:
AssertionHandler(StringRef const& macroName,
SourceLineInfo const& lineInfo,
StringRef capturedExpression,
ResultDisposition::Flags resultDisposition);
~AssertionHandler()
{
if (!m_completed)
{
m_resultCapture.handleIncomplete(m_assertionInfo);
}
}
template<typename T>
void handleExpr(ExprLhs<T> const& expr)
{
handleExpr(expr.makeUnaryExpr());
}
void handleExpr(ITransientExpression const& expr);
void handleMessage(ResultWas::OfType resultType, StringRef const& message);
void handleExceptionThrownAsExpected();
void handleUnexpectedExceptionNotThrown();
void handleExceptionNotThrownAsExpected();
void handleThrowingCallSkipped();
void handleUnexpectedInflightException();
void complete();
void setCompleted();
// query
auto allowThrows() const -> bool;
};
void handleExceptionMatchExpr(AssertionHandler& handler, std::string const& str, StringRef const& matcherString);
} // namespace Catch
// end catch_assertionhandler.h
// start catch_message.h
#include <string>
#include <vector>
namespace Catch {
struct MessageInfo
{
MessageInfo(StringRef const& _macroName, SourceLineInfo const& _lineInfo, ResultWas::OfType _type);
StringRef macroName;
std::string message;
SourceLineInfo lineInfo;
ResultWas::OfType type;
unsigned int sequence;
bool operator==(MessageInfo const& other) const;
bool operator<(MessageInfo const& other) const;
private:
static unsigned int globalCount;
};
struct MessageStream
{
template<typename T>
MessageStream& operator<<(T const& value)
{
m_stream << value;
return *this;
}
ReusableStringStream m_stream;
};
struct MessageBuilder : MessageStream
{
MessageBuilder(StringRef const& macroName, SourceLineInfo const& lineInfo, ResultWas::OfType type);
template<typename T>
MessageBuilder& operator<<(T const& value)
{
m_stream << value;
return *this;
}
MessageInfo m_info;
};
class ScopedMessage
{
public:
explicit ScopedMessage(MessageBuilder const& builder);
ScopedMessage(ScopedMessage& duplicate) = delete;
ScopedMessage(ScopedMessage&& old);
~ScopedMessage();
MessageInfo m_info;
bool m_moved;
};
class Capturer
{
std::vector<MessageInfo> m_messages;
IResultCapture& m_resultCapture = getResultCapture();
size_t m_captured = 0;
public:
Capturer(StringRef macroName, SourceLineInfo const& lineInfo, ResultWas::OfType resultType, StringRef names);
~Capturer();
void captureValue(size_t index, std::string const& value);
template<typename T>
void captureValues(size_t index, T const& value)
{
captureValue(index, Catch::Detail::stringify(value));
}
template<typename T, typename... Ts>
void captureValues(size_t index, T const& value, Ts const&... values)
{
captureValue(index, Catch::Detail::stringify(value));
captureValues(index + 1, values...);
}
};
} // end namespace Catch
// end catch_message.h
#if !defined(CATCH_CONFIG_DISABLE)
#if !defined(CATCH_CONFIG_DISABLE_STRINGIFICATION)
#define CATCH_INTERNAL_STRINGIFY(...) #__VA_ARGS__
#else
#define CATCH_INTERNAL_STRINGIFY(...) "Disabled by CATCH_CONFIG_DISABLE_STRINGIFICATION"
#endif
#if defined(CATCH_CONFIG_FAST_COMPILE) || defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
///////////////////////////////////////////////////////////////////////////////
// Another way to speed-up compilation is to omit local try-catch for REQUIRE*
// macros.
#define INTERNAL_CATCH_TRY
#define INTERNAL_CATCH_CATCH(capturer)
#else // CATCH_CONFIG_FAST_COMPILE
#define INTERNAL_CATCH_TRY try
#define INTERNAL_CATCH_CATCH(handler) \
catch (...) \
{ \
handler.handleUnexpectedInflightException(); \
}
#endif
#define INTERNAL_CATCH_REACT(handler) handler.complete();
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_TEST(macroName, resultDisposition, ...) \
do \
{ \
CATCH_INTERNAL_IGNORE_BUT_WARN(__VA_ARGS__); \
Catch::AssertionHandler catchAssertionHandler(macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
CATCH_INTERNAL_STRINGIFY(__VA_ARGS__), \
resultDisposition); \
INTERNAL_CATCH_TRY \
{ \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_PARENTHESES_WARNINGS \
catchAssertionHandler.handleExpr(Catch::Decomposer() <= __VA_ARGS__); \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
} \
INTERNAL_CATCH_CATCH(catchAssertionHandler) \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while ((void)0, (false) && static_cast<bool>(!!(__VA_ARGS__)))
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_IF(macroName, resultDisposition, ...) \
INTERNAL_CATCH_TEST(macroName, resultDisposition, __VA_ARGS__); \
if (Catch::getResultCapture().lastAssertionPassed())
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_ELSE(macroName, resultDisposition, ...) \
INTERNAL_CATCH_TEST(macroName, resultDisposition, __VA_ARGS__); \
if (!Catch::getResultCapture().lastAssertionPassed())
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_NO_THROW(macroName, resultDisposition, ...) \
do \
{ \
Catch::AssertionHandler catchAssertionHandler(macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
CATCH_INTERNAL_STRINGIFY(__VA_ARGS__), \
resultDisposition); \
try \
{ \
static_cast<void>(__VA_ARGS__); \
catchAssertionHandler.handleExceptionNotThrownAsExpected(); \
} \
catch (...) \
{ \
catchAssertionHandler.handleUnexpectedInflightException(); \
} \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while (false)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_THROWS(macroName, resultDisposition, ...) \
do \
{ \
Catch::AssertionHandler catchAssertionHandler(macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
CATCH_INTERNAL_STRINGIFY(__VA_ARGS__), \
resultDisposition); \
if (catchAssertionHandler.allowThrows()) \
try \
{ \
static_cast<void>(__VA_ARGS__); \
catchAssertionHandler.handleUnexpectedExceptionNotThrown(); \
} \
catch (...) \
{ \
catchAssertionHandler.handleExceptionThrownAsExpected(); \
} \
else \
catchAssertionHandler.handleThrowingCallSkipped(); \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while (false)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_THROWS_AS(macroName, exceptionType, resultDisposition, expr) \
do \
{ \
Catch::AssertionHandler catchAssertionHandler( \
macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
CATCH_INTERNAL_STRINGIFY(expr) ", " CATCH_INTERNAL_STRINGIFY(exceptionType), \
resultDisposition); \
if (catchAssertionHandler.allowThrows()) \
try \
{ \
static_cast<void>(expr); \
catchAssertionHandler.handleUnexpectedExceptionNotThrown(); \
} \
catch (exceptionType const&) \
{ \
catchAssertionHandler.handleExceptionThrownAsExpected(); \
} \
catch (...) \
{ \
catchAssertionHandler.handleUnexpectedInflightException(); \
} \
else \
catchAssertionHandler.handleThrowingCallSkipped(); \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while (false)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_MSG(macroName, messageType, resultDisposition, ...) \
do \
{ \
Catch::AssertionHandler catchAssertionHandler(macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
Catch::StringRef(), \
resultDisposition); \
catchAssertionHandler.handleMessage( \
messageType, \
(Catch::MessageStream() << __VA_ARGS__ + ::Catch::StreamEndStop()).m_stream.str()); \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while (false)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_CAPTURE(varName, macroName, ...) \
auto varName = Catch::Capturer(macroName, CATCH_INTERNAL_LINEINFO, Catch::ResultWas::Info, #__VA_ARGS__); \
varName.captureValues(0, __VA_ARGS__)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_INFO(macroName, log) \
Catch::ScopedMessage INTERNAL_CATCH_UNIQUE_NAME(scopedMessage)( \
Catch::MessageBuilder(macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, Catch::ResultWas::Info) << log);
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_UNSCOPED_INFO(macroName, log) \
Catch::getResultCapture().emplaceUnscopedMessage( \
Catch::MessageBuilder(macroName##_catch_sr, CATCH_INTERNAL_LINEINFO, Catch::ResultWas::Info) << log)
///////////////////////////////////////////////////////////////////////////////
// Although this is matcher-based, it can be used with just a string
#define INTERNAL_CATCH_THROWS_STR_MATCHES(macroName, resultDisposition, matcher, ...) \
do \
{ \
Catch::AssertionHandler catchAssertionHandler( \
macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
CATCH_INTERNAL_STRINGIFY(__VA_ARGS__) ", " CATCH_INTERNAL_STRINGIFY(matcher), \
resultDisposition); \
if (catchAssertionHandler.allowThrows()) \
try \
{ \
static_cast<void>(__VA_ARGS__); \
catchAssertionHandler.handleUnexpectedExceptionNotThrown(); \
} \
catch (...) \
{ \
Catch::handleExceptionMatchExpr(catchAssertionHandler, matcher, #matcher##_catch_sr); \
} \
else \
catchAssertionHandler.handleThrowingCallSkipped(); \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while (false)
#endif // CATCH_CONFIG_DISABLE
// end catch_capture.hpp
// start catch_section.h
// start catch_section_info.h
// start catch_totals.h
#include <cstddef>
namespace Catch {
struct Counts
{
Counts operator-(Counts const& other) const;
Counts& operator+=(Counts const& other);
std::size_t total() const;
bool allPassed() const;
bool allOk() const;
std::size_t passed = 0;
std::size_t failed = 0;
std::size_t failedButOk = 0;
};
struct Totals
{
Totals operator-(Totals const& other) const;
Totals& operator+=(Totals const& other);
Totals delta(Totals const& prevTotals) const;
int error = 0;
Counts assertions;
Counts testCases;
};
} // namespace Catch
// end catch_totals.h
#include <string>
namespace Catch {
struct SectionInfo
{
SectionInfo(SourceLineInfo const& _lineInfo, std::string const& _name);
// Deprecated
SectionInfo(SourceLineInfo const& _lineInfo, std::string const& _name, std::string const&)
: SectionInfo(_lineInfo, _name)
{}
std::string name;
std::string description; // !Deprecated: this will always be empty
SourceLineInfo lineInfo;
};
struct SectionEndInfo
{
SectionInfo sectionInfo;
Counts prevAssertions;
double durationInSeconds;
};
} // end namespace Catch
// end catch_section_info.h
// start catch_timer.h
#include <cstdint>
namespace Catch {
auto getCurrentNanosecondsSinceEpoch() -> uint64_t;
auto getEstimatedClockResolution() -> uint64_t;
class Timer
{
uint64_t m_nanoseconds = 0;
public:
void start();
auto getElapsedNanoseconds() const -> uint64_t;
auto getElapsedMicroseconds() const -> uint64_t;
auto getElapsedMilliseconds() const -> unsigned int;
auto getElapsedSeconds() const -> double;
};
} // namespace Catch
// end catch_timer.h
#include <string>
namespace Catch {
class Section : NonCopyable
{
public:
Section(SectionInfo const& info);
~Section();
// This indicates whether the section should be executed or not
explicit operator bool() const;
private:
SectionInfo m_info;
std::string m_name;
Counts m_assertions;
bool m_sectionIncluded;
Timer m_timer;
};
} // end namespace Catch
#define INTERNAL_CATCH_SECTION(...) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_UNUSED_WARNINGS \
if (Catch::Section const& INTERNAL_CATCH_UNIQUE_NAME(catch_internal_Section) = \
Catch::SectionInfo(CATCH_INTERNAL_LINEINFO, __VA_ARGS__)) \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
#define INTERNAL_CATCH_DYNAMIC_SECTION(...) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_UNUSED_WARNINGS \
if (Catch::Section const& INTERNAL_CATCH_UNIQUE_NAME(catch_internal_Section) = \
Catch::SectionInfo(CATCH_INTERNAL_LINEINFO, (Catch::ReusableStringStream() << __VA_ARGS__).str())) \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
// end catch_section.h
// start catch_interfaces_exception.h
// start catch_interfaces_registry_hub.h
#include <string>
#include <memory>
namespace Catch {
class TestCase;
struct ITestCaseRegistry;
struct IExceptionTranslatorRegistry;
struct IExceptionTranslator;
struct IReporterRegistry;
struct IReporterFactory;
struct ITagAliasRegistry;
struct IMutableEnumValuesRegistry;
class StartupExceptionRegistry;
using IReporterFactoryPtr = std::shared_ptr<IReporterFactory>;
struct IRegistryHub
{
virtual ~IRegistryHub();
virtual IReporterRegistry const& getReporterRegistry() const = 0;
virtual ITestCaseRegistry const& getTestCaseRegistry() const = 0;
virtual ITagAliasRegistry const& getTagAliasRegistry() const = 0;
virtual IExceptionTranslatorRegistry const& getExceptionTranslatorRegistry() const = 0;
virtual StartupExceptionRegistry const& getStartupExceptionRegistry() const = 0;
};
struct IMutableRegistryHub
{
virtual ~IMutableRegistryHub();
virtual void registerReporter(std::string const& name, IReporterFactoryPtr const& factory) = 0;
virtual void registerListener(IReporterFactoryPtr const& factory) = 0;
virtual void registerTest(TestCase const& testInfo) = 0;
virtual void registerTranslator(const IExceptionTranslator* translator) = 0;
virtual void registerTagAlias(std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo) = 0;
virtual void registerStartupException() noexcept = 0;
virtual IMutableEnumValuesRegistry& getMutableEnumValuesRegistry() = 0;
};
IRegistryHub const& getRegistryHub();
IMutableRegistryHub& getMutableRegistryHub();
void cleanUp();
std::string translateActiveException();
} // namespace Catch
// end catch_interfaces_registry_hub.h
#if defined(CATCH_CONFIG_DISABLE)
#define INTERNAL_CATCH_TRANSLATE_EXCEPTION_NO_REG(translatorName, signature) \
static std::string translatorName(signature)
#endif
#include <exception>
#include <string>
#include <vector>
namespace Catch {
using exceptionTranslateFunction = std::string (*)();
struct IExceptionTranslator;
using ExceptionTranslators = std::vector<std::unique_ptr<IExceptionTranslator const>>;
struct IExceptionTranslator
{
virtual ~IExceptionTranslator();
virtual std::string translate(ExceptionTranslators::const_iterator it,
ExceptionTranslators::const_iterator itEnd) const = 0;
};
struct IExceptionTranslatorRegistry
{
virtual ~IExceptionTranslatorRegistry();
virtual std::string translateActiveException() const = 0;
};
class ExceptionTranslatorRegistrar
{
template<typename T>
class ExceptionTranslator : public IExceptionTranslator
{
public:
ExceptionTranslator(std::string (*translateFunction)(T&))
: m_translateFunction(translateFunction)
{}
std::string translate(ExceptionTranslators::const_iterator it,
ExceptionTranslators::const_iterator itEnd) const override
{
#if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
return "";
#else
try
{
if (it == itEnd)
std::rethrow_exception(std::current_exception());
else
return (*it)->translate(it + 1, itEnd);
}
catch (T& ex)
{
return m_translateFunction(ex);
}
#endif
}
protected:
std::string (*m_translateFunction)(T&);
};
public:
template<typename T>
ExceptionTranslatorRegistrar(std::string (*translateFunction)(T&))
{
getMutableRegistryHub().registerTranslator(new ExceptionTranslator<T>(translateFunction));
}
};
} // namespace Catch
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_TRANSLATE_EXCEPTION2(translatorName, signature) \
static std::string translatorName(signature); \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
namespace { \
Catch::ExceptionTranslatorRegistrar \
INTERNAL_CATCH_UNIQUE_NAME(catch_internal_ExceptionRegistrar)(&translatorName); \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION \
static std::string translatorName(signature)
#define INTERNAL_CATCH_TRANSLATE_EXCEPTION(signature) \
INTERNAL_CATCH_TRANSLATE_EXCEPTION2(INTERNAL_CATCH_UNIQUE_NAME(catch_internal_ExceptionTranslator), signature)
// end catch_interfaces_exception.h
// start catch_approx.h
#include <type_traits>
namespace Catch {
namespace Detail {
class Approx
{
private:
bool equalityComparisonImpl(double other) const;
// Validates the new margin (margin >= 0)
// out-of-line to avoid including stdexcept in the header
void setMargin(double margin);
// Validates the new epsilon (0 < epsilon < 1)
// out-of-line to avoid including stdexcept in the header
void setEpsilon(double epsilon);
public:
explicit Approx(double value);
static Approx custom();
Approx operator-() const;
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
Approx operator()(T const& value)
{
Approx approx(static_cast<double>(value));
approx.m_epsilon = m_epsilon;
approx.m_margin = m_margin;
approx.m_scale = m_scale;
return approx;
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
explicit Approx(T const& value)
: Approx(static_cast<double>(value))
{}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator==(const T& lhs, Approx const& rhs)
{
auto lhs_v = static_cast<double>(lhs);
return rhs.equalityComparisonImpl(lhs_v);
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator==(Approx const& lhs, const T& rhs)
{
return operator==(rhs, lhs);
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator!=(T const& lhs, Approx const& rhs)
{
return !operator==(lhs, rhs);
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator!=(Approx const& lhs, T const& rhs)
{
return !operator==(rhs, lhs);
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator<=(T const& lhs, Approx const& rhs)
{
return static_cast<double>(lhs) < rhs.m_value || lhs == rhs;
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator<=(Approx const& lhs, T const& rhs)
{
return lhs.m_value < static_cast<double>(rhs) || lhs == rhs;
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator>=(T const& lhs, Approx const& rhs)
{
return static_cast<double>(lhs) > rhs.m_value || lhs == rhs;
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
friend bool operator>=(Approx const& lhs, T const& rhs)
{
return lhs.m_value > static_cast<double>(rhs) || lhs == rhs;
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
Approx& epsilon(T const& newEpsilon)
{
double epsilonAsDouble = static_cast<double>(newEpsilon);
setEpsilon(epsilonAsDouble);
return *this;
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
Approx& margin(T const& newMargin)
{
double marginAsDouble = static_cast<double>(newMargin);
setMargin(marginAsDouble);
return *this;
}
template<typename T, typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
Approx& scale(T const& newScale)
{
m_scale = static_cast<double>(newScale);
return *this;
}
std::string toString() const;
private:
double m_epsilon;
double m_margin;
double m_scale;
double m_value;
};
} // end namespace Detail
namespace literals {
Detail::Approx operator"" _a(long double val);
Detail::Approx operator"" _a(unsigned long long val);
} // end namespace literals
template<>
struct StringMaker<Catch::Detail::Approx>
{
static std::string convert(Catch::Detail::Approx const& value);
};
} // end namespace Catch
// end catch_approx.h
// start catch_string_manip.h
#include <string>
#include <iosfwd>
#include <vector>
namespace Catch {
bool startsWith(std::string const& s, std::string const& prefix);
bool startsWith(std::string const& s, char prefix);
bool endsWith(std::string const& s, std::string const& suffix);
bool endsWith(std::string const& s, char suffix);
bool contains(std::string const& s, std::string const& infix);
void toLowerInPlace(std::string& s);
std::string toLower(std::string const& s);
//! Returns a new string without whitespace at the start/end
std::string trim(std::string const& str);
//! Returns a substring of the original ref without whitespace. Beware lifetimes!
StringRef trim(StringRef ref);
// !!! Be aware, returns refs into original string - make sure original string outlives them
std::vector<StringRef> splitStringRef(StringRef str, char delimiter);
bool replaceInPlace(std::string& str, std::string const& replaceThis, std::string const& withThis);
struct pluralise
{
pluralise(std::size_t count, std::string const& label);
friend std::ostream& operator<<(std::ostream& os, pluralise const& pluraliser);
std::size_t m_count;
std::string m_label;
};
} // namespace Catch
// end catch_string_manip.h
#ifndef CATCH_CONFIG_DISABLE_MATCHERS
// start catch_capture_matchers.h
// start catch_matchers.h
#include <string>
#include <vector>
namespace Catch {
namespace Matchers {
namespace Impl {
template<typename ArgT>
struct MatchAllOf;
template<typename ArgT>
struct MatchAnyOf;
template<typename ArgT>
struct MatchNotOf;
class MatcherUntypedBase
{
public:
MatcherUntypedBase() = default;
MatcherUntypedBase(MatcherUntypedBase const&) = default;
MatcherUntypedBase& operator=(MatcherUntypedBase const&) = delete;
std::string toString() const;
protected:
virtual ~MatcherUntypedBase();
virtual std::string describe() const = 0;
mutable std::string m_cachedToString;
};
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnon-virtual-dtor"
#endif
template<typename ObjectT>
struct MatcherMethod
{
virtual bool match(ObjectT const& arg) const = 0;
};
#if defined(__OBJC__)
// Hack to fix Catch GH issue #1661. Could use id for generic Object support.
// use of const for Object pointers is very uncommon and under ARC it causes some kind of signature mismatch that breaks
// compilation
template<>
struct MatcherMethod<NSString*>
{
virtual bool match(NSString* arg) const = 0;
};
#endif
#ifdef __clang__
#pragma clang diagnostic pop
#endif
template<typename T>
struct MatcherBase : MatcherUntypedBase,
MatcherMethod<T>
{
MatchAllOf<T> operator&&(MatcherBase const& other) const;
MatchAnyOf<T> operator||(MatcherBase const& other) const;
MatchNotOf<T> operator!() const;
};
template<typename ArgT>
struct MatchAllOf : MatcherBase<ArgT>
{
bool match(ArgT const& arg) const override
{
for (auto matcher : m_matchers)
{
if (!matcher->match(arg))
return false;
}
return true;
}
std::string describe() const override
{
std::string description;
description.reserve(4 + m_matchers.size() * 32);
description += "( ";
bool first = true;
for (auto matcher : m_matchers)
{
if (first)
first = false;
else
description += " and ";
description += matcher->toString();
}
description += " )";
return description;
}
MatchAllOf<ArgT> operator&&(MatcherBase<ArgT> const& other)
{
auto copy(*this);
copy.m_matchers.push_back(&other);
return copy;
}
std::vector<MatcherBase<ArgT> const*> m_matchers;
};
template<typename ArgT>
struct MatchAnyOf : MatcherBase<ArgT>
{
bool match(ArgT const& arg) const override
{
for (auto matcher : m_matchers)
{
if (matcher->match(arg))
return true;
}
return false;
}
std::string describe() const override
{
std::string description;
description.reserve(4 + m_matchers.size() * 32);
description += "( ";
bool first = true;
for (auto matcher : m_matchers)
{
if (first)
first = false;
else
description += " or ";
description += matcher->toString();
}
description += " )";
return description;
}
MatchAnyOf<ArgT> operator||(MatcherBase<ArgT> const& other)
{
auto copy(*this);
copy.m_matchers.push_back(&other);
return copy;
}
std::vector<MatcherBase<ArgT> const*> m_matchers;
};
template<typename ArgT>
struct MatchNotOf : MatcherBase<ArgT>
{
MatchNotOf(MatcherBase<ArgT> const& underlyingMatcher)
: m_underlyingMatcher(underlyingMatcher)
{}
bool match(ArgT const& arg) const override { return !m_underlyingMatcher.match(arg); }
std::string describe() const override { return "not " + m_underlyingMatcher.toString(); }
MatcherBase<ArgT> const& m_underlyingMatcher;
};
template<typename T>
MatchAllOf<T> MatcherBase<T>::operator&&(MatcherBase const& other) const
{
return MatchAllOf<T>() && *this && other;
}
template<typename T>
MatchAnyOf<T> MatcherBase<T>::operator||(MatcherBase const& other) const
{
return MatchAnyOf<T>() || *this || other;
}
template<typename T>
MatchNotOf<T> MatcherBase<T>::operator!() const
{
return MatchNotOf<T>(*this);
}
} // namespace Impl
} // namespace Matchers
using namespace Matchers;
using Matchers::Impl::MatcherBase;
} // namespace Catch
// end catch_matchers.h
// start catch_matchers_exception.hpp
namespace Catch {
namespace Matchers {
namespace Exception {
class ExceptionMessageMatcher : public MatcherBase<std::exception>
{
std::string m_message;
public:
ExceptionMessageMatcher(std::string const& message)
: m_message(message)
{}
bool match(std::exception const& ex) const override;
std::string describe() const override;
};
} // namespace Exception
Exception::ExceptionMessageMatcher Message(std::string const& message);
} // namespace Matchers
} // namespace Catch
// end catch_matchers_exception.hpp
// start catch_matchers_floating.h
namespace Catch {
namespace Matchers {
namespace Floating {
enum class FloatingPointKind : uint8_t;
struct WithinAbsMatcher : MatcherBase<double>
{
WithinAbsMatcher(double target, double margin);
bool match(double const& matchee) const override;
std::string describe() const override;
private:
double m_target;
double m_margin;
};
struct WithinUlpsMatcher : MatcherBase<double>
{
WithinUlpsMatcher(double target, uint64_t ulps, FloatingPointKind baseType);
bool match(double const& matchee) const override;
std::string describe() const override;
private:
double m_target;
uint64_t m_ulps;
FloatingPointKind m_type;
};
// Given IEEE-754 format for floats and doubles, we can assume
// that float -> double promotion is lossless. Given this, we can
// assume that if we do the standard relative comparison of
// |lhs - rhs| <= epsilon * max(fabs(lhs), fabs(rhs)), then we get
// the same result if we do this for floats, as if we do this for
// doubles that were promoted from floats.
struct WithinRelMatcher : MatcherBase<double>
{
WithinRelMatcher(double target, double epsilon);
bool match(double const& matchee) const override;
std::string describe() const override;
private:
double m_target;
double m_epsilon;
};
} // namespace Floating
// The following functions create the actual matcher objects.
// This allows the types to be inferred
Floating::WithinUlpsMatcher WithinULP(double target, uint64_t maxUlpDiff);
Floating::WithinUlpsMatcher WithinULP(float target, uint64_t maxUlpDiff);
Floating::WithinAbsMatcher WithinAbs(double target, double margin);
Floating::WithinRelMatcher WithinRel(double target, double eps);
// defaults epsilon to 100*numeric_limits<double>::epsilon()
Floating::WithinRelMatcher WithinRel(double target);
Floating::WithinRelMatcher WithinRel(float target, float eps);
// defaults epsilon to 100*numeric_limits<float>::epsilon()
Floating::WithinRelMatcher WithinRel(float target);
} // namespace Matchers
} // namespace Catch
// end catch_matchers_floating.h
// start catch_matchers_generic.hpp
#include <functional>
#include <string>
namespace Catch {
namespace Matchers {
namespace Generic {
namespace Detail {
std::string finalizeDescription(const std::string& desc);
}
template<typename T>
class PredicateMatcher : public MatcherBase<T>
{
std::function<bool(T const&)> m_predicate;
std::string m_description;
public:
PredicateMatcher(std::function<bool(T const&)> const& elem, std::string const& descr)
: m_predicate(std::move(elem))
, m_description(Detail::finalizeDescription(descr))
{}
bool match(T const& item) const override { return m_predicate(item); }
std::string describe() const override { return m_description; }
};
} // namespace Generic
// The following functions create the actual matcher objects.
// The user has to explicitly specify type to the function, because
// inferring std::function<bool(T const&)> is hard (but possible) and
// requires a lot of TMP.
template<typename T>
Generic::PredicateMatcher<T> Predicate(std::function<bool(T const&)> const& predicate,
std::string const& description = "")
{
return Generic::PredicateMatcher<T>(predicate, description);
}
} // namespace Matchers
} // namespace Catch
// end catch_matchers_generic.hpp
// start catch_matchers_string.h
#include <string>
namespace Catch {
namespace Matchers {
namespace StdString {
struct CasedString
{
CasedString(std::string const& str, CaseSensitive::Choice caseSensitivity);
std::string adjustString(std::string const& str) const;
std::string caseSensitivitySuffix() const;
CaseSensitive::Choice m_caseSensitivity;
std::string m_str;
};
struct StringMatcherBase : MatcherBase<std::string>
{
StringMatcherBase(std::string const& operation, CasedString const& comparator);
std::string describe() const override;
CasedString m_comparator;
std::string m_operation;
};
struct EqualsMatcher : StringMatcherBase
{
EqualsMatcher(CasedString const& comparator);
bool match(std::string const& source) const override;
};
struct ContainsMatcher : StringMatcherBase
{
ContainsMatcher(CasedString const& comparator);
bool match(std::string const& source) const override;
};
struct StartsWithMatcher : StringMatcherBase
{
StartsWithMatcher(CasedString const& comparator);
bool match(std::string const& source) const override;
};
struct EndsWithMatcher : StringMatcherBase
{
EndsWithMatcher(CasedString const& comparator);
bool match(std::string const& source) const override;
};
struct RegexMatcher : MatcherBase<std::string>
{
RegexMatcher(std::string regex, CaseSensitive::Choice caseSensitivity);
bool match(std::string const& matchee) const override;
std::string describe() const override;
private:
std::string m_regex;
CaseSensitive::Choice m_caseSensitivity;
};
} // namespace StdString
// The following functions create the actual matcher objects.
// This allows the types to be inferred
StdString::EqualsMatcher Equals(std::string const& str, CaseSensitive::Choice caseSensitivity = CaseSensitive::Yes);
StdString::ContainsMatcher Contains(std::string const& str, CaseSensitive::Choice caseSensitivity = CaseSensitive::Yes);
StdString::EndsWithMatcher EndsWith(std::string const& str, CaseSensitive::Choice caseSensitivity = CaseSensitive::Yes);
StdString::StartsWithMatcher StartsWith(std::string const& str,
CaseSensitive::Choice caseSensitivity = CaseSensitive::Yes);
StdString::RegexMatcher Matches(std::string const& regex, CaseSensitive::Choice caseSensitivity = CaseSensitive::Yes);
} // namespace Matchers
} // namespace Catch
// end catch_matchers_string.h
// start catch_matchers_vector.h
#include <algorithm>
namespace Catch {
namespace Matchers {
namespace Vector {
template<typename T, typename Alloc>
struct ContainsElementMatcher : MatcherBase<std::vector<T, Alloc>>
{
ContainsElementMatcher(T const& comparator)
: m_comparator(comparator)
{}
bool match(std::vector<T, Alloc> const& v) const override
{
for (auto const& el : v)
{
if (el == m_comparator)
{
return true;
}
}
return false;
}
std::string describe() const override { return "Contains: " + ::Catch::Detail::stringify(m_comparator); }
T const& m_comparator;
};
template<typename T, typename AllocComp, typename AllocMatch>
struct ContainsMatcher : MatcherBase<std::vector<T, AllocMatch>>
{
ContainsMatcher(std::vector<T, AllocComp> const& comparator)
: m_comparator(comparator)
{}
bool match(std::vector<T, AllocMatch> const& v) const override
{
// !TBD: see note in EqualsMatcher
if (m_comparator.size() > v.size())
return false;
for (auto const& comparator : m_comparator)
{
auto present = false;
for (const auto& el : v)
{
if (el == comparator)
{
present = true;
break;
}
}
if (!present)
{
return false;
}
}
return true;
}
std::string describe() const override { return "Contains: " + ::Catch::Detail::stringify(m_comparator); }
std::vector<T, AllocComp> const& m_comparator;
};
template<typename T, typename AllocComp, typename AllocMatch>
struct EqualsMatcher : MatcherBase<std::vector<T, AllocMatch>>
{
EqualsMatcher(std::vector<T, AllocComp> const& comparator)
: m_comparator(comparator)
{}
bool match(std::vector<T, AllocMatch> const& v) const override
{
// !TBD: This currently works if all elements can be compared using !=
// - a more general approach would be via a compare template that defaults
// to using !=. but could be specialised for, e.g. std::vector<T, Alloc> etc
// - then just call that directly
if (m_comparator.size() != v.size())
return false;
for (std::size_t i = 0; i < v.size(); ++i)
if (m_comparator[i] != v[i])
return false;
return true;
}
std::string describe() const override { return "Equals: " + ::Catch::Detail::stringify(m_comparator); }
std::vector<T, AllocComp> const& m_comparator;
};
template<typename T, typename AllocComp, typename AllocMatch>
struct ApproxMatcher : MatcherBase<std::vector<T, AllocMatch>>
{
ApproxMatcher(std::vector<T, AllocComp> const& comparator)
: m_comparator(comparator)
{}
bool match(std::vector<T, AllocMatch> const& v) const override
{
if (m_comparator.size() != v.size())
return false;
for (std::size_t i = 0; i < v.size(); ++i)
if (m_comparator[i] != approx(v[i]))
return false;
return true;
}
std::string describe() const override { return "is approx: " + ::Catch::Detail::stringify(m_comparator); }
template<typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
ApproxMatcher& epsilon(T const& newEpsilon)
{
approx.epsilon(newEpsilon);
return *this;
}
template<typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
ApproxMatcher& margin(T const& newMargin)
{
approx.margin(newMargin);
return *this;
}
template<typename = typename std::enable_if<std::is_constructible<double, T>::value>::type>
ApproxMatcher& scale(T const& newScale)
{
approx.scale(newScale);
return *this;
}
std::vector<T, AllocComp> const& m_comparator;
mutable Catch::Detail::Approx approx = Catch::Detail::Approx::custom();
};
template<typename T, typename AllocComp, typename AllocMatch>
struct UnorderedEqualsMatcher : MatcherBase<std::vector<T, AllocMatch>>
{
UnorderedEqualsMatcher(std::vector<T, AllocComp> const& target)
: m_target(target)
{}
bool match(std::vector<T, AllocMatch> const& vec) const override
{
if (m_target.size() != vec.size())
{
return false;
}
return std::is_permutation(m_target.begin(), m_target.end(), vec.begin());
}
std::string describe() const override { return "UnorderedEquals: " + ::Catch::Detail::stringify(m_target); }
private:
std::vector<T, AllocComp> const& m_target;
};
} // namespace Vector
// The following functions create the actual matcher objects.
// This allows the types to be inferred
template<typename T, typename AllocComp = std::allocator<T>, typename AllocMatch = AllocComp>
Vector::ContainsMatcher<T, AllocComp, AllocMatch> Contains(std::vector<T, AllocComp> const& comparator)
{
return Vector::ContainsMatcher<T, AllocComp, AllocMatch>(comparator);
}
template<typename T, typename Alloc = std::allocator<T>>
Vector::ContainsElementMatcher<T, Alloc> VectorContains(T const& comparator)
{
return Vector::ContainsElementMatcher<T, Alloc>(comparator);
}
template<typename T, typename AllocComp = std::allocator<T>, typename AllocMatch = AllocComp>
Vector::EqualsMatcher<T, AllocComp, AllocMatch> Equals(std::vector<T, AllocComp> const& comparator)
{
return Vector::EqualsMatcher<T, AllocComp, AllocMatch>(comparator);
}
template<typename T, typename AllocComp = std::allocator<T>, typename AllocMatch = AllocComp>
Vector::ApproxMatcher<T, AllocComp, AllocMatch> Approx(std::vector<T, AllocComp> const& comparator)
{
return Vector::ApproxMatcher<T, AllocComp, AllocMatch>(comparator);
}
template<typename T, typename AllocComp = std::allocator<T>, typename AllocMatch = AllocComp>
Vector::UnorderedEqualsMatcher<T, AllocComp, AllocMatch> UnorderedEquals(std::vector<T, AllocComp> const& target)
{
return Vector::UnorderedEqualsMatcher<T, AllocComp, AllocMatch>(target);
}
} // namespace Matchers
} // namespace Catch
// end catch_matchers_vector.h
namespace Catch {
template<typename ArgT, typename MatcherT>
class MatchExpr : public ITransientExpression
{
ArgT const& m_arg;
MatcherT m_matcher;
StringRef m_matcherString;
public:
MatchExpr(ArgT const& arg, MatcherT const& matcher, StringRef const& matcherString)
: ITransientExpression{true, matcher.match(arg)}
, m_arg(arg)
, m_matcher(matcher)
, m_matcherString(matcherString)
{}
void streamReconstructedExpression(std::ostream& os) const override
{
auto matcherAsString = m_matcher.toString();
os << Catch::Detail::stringify(m_arg) << ' ';
if (matcherAsString == Detail::unprintableString)
os << m_matcherString;
else
os << matcherAsString;
}
};
using StringMatcher = Matchers::Impl::MatcherBase<std::string>;
void handleExceptionMatchExpr(AssertionHandler& handler, StringMatcher const& matcher, StringRef const& matcherString);
template<typename ArgT, typename MatcherT>
auto makeMatchExpr(ArgT const& arg,
MatcherT const& matcher,
StringRef const& matcherString) -> MatchExpr<ArgT, MatcherT>
{
return MatchExpr<ArgT, MatcherT>(arg, matcher, matcherString);
}
} // namespace Catch
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CHECK_THAT(macroName, matcher, resultDisposition, arg) \
do \
{ \
Catch::AssertionHandler catchAssertionHandler( \
macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
CATCH_INTERNAL_STRINGIFY(arg) ", " CATCH_INTERNAL_STRINGIFY(matcher), \
resultDisposition); \
INTERNAL_CATCH_TRY \
{ \
catchAssertionHandler.handleExpr(Catch::makeMatchExpr(arg, matcher, #matcher##_catch_sr)); \
} \
INTERNAL_CATCH_CATCH(catchAssertionHandler) \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while (false)
///////////////////////////////////////////////////////////////////////////////
#define INTERNAL_CATCH_THROWS_MATCHES(macroName, exceptionType, resultDisposition, matcher, ...) \
do \
{ \
Catch::AssertionHandler catchAssertionHandler( \
macroName##_catch_sr, \
CATCH_INTERNAL_LINEINFO, \
CATCH_INTERNAL_STRINGIFY(__VA_ARGS__) ", " CATCH_INTERNAL_STRINGIFY( \
exceptionType) ", " CATCH_INTERNAL_STRINGIFY(matcher), \
resultDisposition); \
if (catchAssertionHandler.allowThrows()) \
try \
{ \
static_cast<void>(__VA_ARGS__); \
catchAssertionHandler.handleUnexpectedExceptionNotThrown(); \
} \
catch (exceptionType const& ex) \
{ \
catchAssertionHandler.handleExpr(Catch::makeMatchExpr(ex, matcher, #matcher##_catch_sr)); \
} \
catch (...) \
{ \
catchAssertionHandler.handleUnexpectedInflightException(); \
} \
else \
catchAssertionHandler.handleThrowingCallSkipped(); \
INTERNAL_CATCH_REACT(catchAssertionHandler) \
} while (false)
// end catch_capture_matchers.h
#endif
// start catch_generators.hpp
// start catch_interfaces_generatortracker.h
#include <memory>
namespace Catch {
namespace Generators {
class GeneratorUntypedBase
{
public:
GeneratorUntypedBase() = default;
virtual ~GeneratorUntypedBase();
// Attempts to move the generator to the next element
//
// Returns true iff the move succeeded (and a valid element
// can be retrieved).
virtual bool next() = 0;
};
using GeneratorBasePtr = std::unique_ptr<GeneratorUntypedBase>;
} // namespace Generators
struct IGeneratorTracker
{
virtual ~IGeneratorTracker();
virtual auto hasGenerator() const -> bool = 0;
virtual auto getGenerator() const -> Generators::GeneratorBasePtr const& = 0;
virtual void setGenerator(Generators::GeneratorBasePtr&& generator) = 0;
};
} // namespace Catch
// end catch_interfaces_generatortracker.h
// start catch_enforce.h
#include <exception>
namespace Catch {
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
template<typename Ex>
[[noreturn]] void throw_exception(Ex const& e)
{
throw e;
}
#else // ^^ Exceptions are enabled // Exceptions are disabled vv
[[noreturn]] void throw_exception(std::exception const& e);
#endif
[[noreturn]] void throw_logic_error(std::string const& msg);
[[noreturn]] void throw_domain_error(std::string const& msg);
[[noreturn]] void throw_runtime_error(std::string const& msg);
} // namespace Catch
#define CATCH_MAKE_MSG(...) (Catch::ReusableStringStream() << __VA_ARGS__).str()
#define CATCH_INTERNAL_ERROR(...) \
Catch::throw_logic_error(CATCH_MAKE_MSG(CATCH_INTERNAL_LINEINFO << ": Internal Catch2 error: " << __VA_ARGS__))
#define CATCH_ERROR(...) Catch::throw_domain_error(CATCH_MAKE_MSG(__VA_ARGS__))
#define CATCH_RUNTIME_ERROR(...) Catch::throw_runtime_error(CATCH_MAKE_MSG(__VA_ARGS__))
#define CATCH_ENFORCE(condition, ...) \
do \
{ \
if (!(condition)) \
CATCH_ERROR(__VA_ARGS__); \
} while (false)
// end catch_enforce.h
#include <memory>
#include <vector>
#include <cassert>
#include <utility>
#include <exception>
namespace Catch {
class GeneratorException : public std::exception
{
const char* const m_msg = "";
public:
GeneratorException(const char* msg)
: m_msg(msg)
{}
const char* what() const noexcept override final;
};
namespace Generators {
// !TBD move this into its own location?
namespace pf {
template<typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args)
{
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
} // namespace pf
template<typename T>
struct IGenerator : GeneratorUntypedBase
{
virtual ~IGenerator() = default;
// Returns the current element of the generator
//
// \Precondition The generator is either freshly constructed,
// or the last call to `next()` returned true
virtual T const& get() const = 0;
using type = T;
};
template<typename T>
class SingleValueGenerator final : public IGenerator<T>
{
T m_value;
public:
SingleValueGenerator(T&& value)
: m_value(std::move(value))
{}
T const& get() const override { return m_value; }
bool next() override { return false; }
};
template<typename T>
class FixedValuesGenerator final : public IGenerator<T>
{
static_assert(!std::is_same<T, bool>::value,
"FixedValuesGenerator does not support bools because of std::vector<bool>"
"specialization, use SingleValue Generator instead.");
std::vector<T> m_values;
size_t m_idx = 0;
public:
FixedValuesGenerator(std::initializer_list<T> values)
: m_values(values)
{}
T const& get() const override { return m_values[m_idx]; }
bool next() override
{
++m_idx;
return m_idx < m_values.size();
}
};
template<typename T>
class GeneratorWrapper final
{
std::unique_ptr<IGenerator<T>> m_generator;
public:
GeneratorWrapper(std::unique_ptr<IGenerator<T>> generator)
: m_generator(std::move(generator))
{}
T const& get() const { return m_generator->get(); }
bool next() { return m_generator->next(); }
};
template<typename T>
GeneratorWrapper<T> value(T&& value)
{
return GeneratorWrapper<T>(pf::make_unique<SingleValueGenerator<T>>(std::forward<T>(value)));
}
template<typename T>
GeneratorWrapper<T> values(std::initializer_list<T> values)
{
return GeneratorWrapper<T>(pf::make_unique<FixedValuesGenerator<T>>(values));
}
template<typename T>
class Generators : public IGenerator<T>
{
std::vector<GeneratorWrapper<T>> m_generators;
size_t m_current = 0;
void populate(GeneratorWrapper<T>&& generator) { m_generators.emplace_back(std::move(generator)); }
void populate(T&& val) { m_generators.emplace_back(value(std::forward<T>(val))); }
template<typename U>
void populate(U&& val)
{
populate(T(std::forward<U>(val)));
}
template<typename U, typename... Gs>
void populate(U&& valueOrGenerator, Gs&&... moreGenerators)
{
populate(std::forward<U>(valueOrGenerator));
populate(std::forward<Gs>(moreGenerators)...);
}
public:
template<typename... Gs>
Generators(Gs&&... moreGenerators)
{
m_generators.reserve(sizeof...(Gs));
populate(std::forward<Gs>(moreGenerators)...);
}
T const& get() const override { return m_generators[m_current].get(); }
bool next() override
{
if (m_current >= m_generators.size())
{
return false;
}
const bool current_status = m_generators[m_current].next();
if (!current_status)
{
++m_current;
}
return m_current < m_generators.size();
}
};
template<typename... Ts>
GeneratorWrapper<std::tuple<Ts...>> table(std::initializer_list<std::tuple<typename std::decay<Ts>::type...>> tuples)
{
return values<std::tuple<Ts...>>(tuples);
}
// Tag type to signal that a generator sequence should convert arguments to a specific type
template<typename T>
struct as
{};
template<typename T, typename... Gs>
auto makeGenerators(GeneratorWrapper<T>&& generator, Gs&&... moreGenerators) -> Generators<T>
{
return Generators<T>(std::move(generator), std::forward<Gs>(moreGenerators)...);
}
template<typename T>
auto makeGenerators(GeneratorWrapper<T>&& generator) -> Generators<T>
{
return Generators<T>(std::move(generator));
}
template<typename T, typename... Gs>
auto makeGenerators(T&& val, Gs&&... moreGenerators) -> Generators<T>
{
return makeGenerators(value(std::forward<T>(val)), std::forward<Gs>(moreGenerators)...);
}
template<typename T, typename U, typename... Gs>
auto makeGenerators(as<T>, U&& val, Gs&&... moreGenerators) -> Generators<T>
{
return makeGenerators(value(T(std::forward<U>(val))), std::forward<Gs>(moreGenerators)...);
}
auto acquireGeneratorTracker(StringRef generatorName, SourceLineInfo const& lineInfo) -> IGeneratorTracker&;
template<typename L>
// Note: The type after -> is weird, because VS2015 cannot parse
// the expression used in the typedef inside, when it is in
// return type. Yeah.
auto generate(StringRef generatorName,
SourceLineInfo const& lineInfo,
L const& generatorExpression) -> decltype(std::declval<decltype(generatorExpression())>().get())
{
using UnderlyingType = typename decltype(generatorExpression())::type;
IGeneratorTracker& tracker = acquireGeneratorTracker(generatorName, lineInfo);
if (!tracker.hasGenerator())
{
tracker.setGenerator(pf::make_unique<Generators<UnderlyingType>>(generatorExpression()));
}
auto const& generator = static_cast<IGenerator<UnderlyingType> const&>(*tracker.getGenerator());
return generator.get();
}
} // namespace Generators
} // namespace Catch
#define GENERATE(...) \
Catch::Generators::generate(INTERNAL_CATCH_STRINGIZE(INTERNAL_CATCH_UNIQUE_NAME(generator)), \
CATCH_INTERNAL_LINEINFO, \
[] { \
using namespace Catch::Generators; \
return makeGenerators(__VA_ARGS__); \
}) // NOLINT(google-build-using-namespace)
#define GENERATE_COPY(...) \
Catch::Generators::generate(INTERNAL_CATCH_STRINGIZE(INTERNAL_CATCH_UNIQUE_NAME(generator)), \
CATCH_INTERNAL_LINEINFO, \
[=] { \
using namespace Catch::Generators; \
return makeGenerators(__VA_ARGS__); \
}) // NOLINT(google-build-using-namespace)
#define GENERATE_REF(...) \
Catch::Generators::generate(INTERNAL_CATCH_STRINGIZE(INTERNAL_CATCH_UNIQUE_NAME(generator)), \
CATCH_INTERNAL_LINEINFO, \
[&] { \
using namespace Catch::Generators; \
return makeGenerators(__VA_ARGS__); \
}) // NOLINT(google-build-using-namespace)
// end catch_generators.hpp
// start catch_generators_generic.hpp
namespace Catch {
namespace Generators {
template<typename T>
class TakeGenerator : public IGenerator<T>
{
GeneratorWrapper<T> m_generator;
size_t m_returned = 0;
size_t m_target;
public:
TakeGenerator(size_t target, GeneratorWrapper<T>&& generator)
: m_generator(std::move(generator))
, m_target(target)
{
assert(target != 0 && "Empty generators are not allowed");
}
T const& get() const override { return m_generator.get(); }
bool next() override
{
++m_returned;
if (m_returned >= m_target)
{
return false;
}
const auto success = m_generator.next();
// If the underlying generator does not contain enough values
// then we cut short as well
if (!success)
{
m_returned = m_target;
}
return success;
}
};
template<typename T>
GeneratorWrapper<T> take(size_t target, GeneratorWrapper<T>&& generator)
{
return GeneratorWrapper<T>(pf::make_unique<TakeGenerator<T>>(target, std::move(generator)));
}
template<typename T, typename Predicate>
class FilterGenerator : public IGenerator<T>
{
GeneratorWrapper<T> m_generator;
Predicate m_predicate;
public:
template<typename P = Predicate>
FilterGenerator(P&& pred, GeneratorWrapper<T>&& generator)
: m_generator(std::move(generator))
, m_predicate(std::forward<P>(pred))
{
if (!m_predicate(m_generator.get()))
{
// It might happen that there are no values that pass the
// filter. In that case we throw an exception.
auto has_initial_value = next();
if (!has_initial_value)
{
Catch::throw_exception(GeneratorException("No valid value found in filtered generator"));
}
}
}
T const& get() const override { return m_generator.get(); }
bool next() override
{
bool success = m_generator.next();
if (!success)
{
return false;
}
while (!m_predicate(m_generator.get()) && (success = m_generator.next()) == true)
;
return success;
}
};
template<typename T, typename Predicate>
GeneratorWrapper<T> filter(Predicate&& pred, GeneratorWrapper<T>&& generator)
{
return GeneratorWrapper<T>(std::unique_ptr<IGenerator<T>>(
pf::make_unique<FilterGenerator<T, Predicate>>(std::forward<Predicate>(pred), std::move(generator))));
}
template<typename T>
class RepeatGenerator : public IGenerator<T>
{
static_assert(!std::is_same<T, bool>::value,
"RepeatGenerator currently does not support bools"
"because of std::vector<bool> specialization");
GeneratorWrapper<T> m_generator;
mutable std::vector<T> m_returned;
size_t m_target_repeats;
size_t m_current_repeat = 0;
size_t m_repeat_index = 0;
public:
RepeatGenerator(size_t repeats, GeneratorWrapper<T>&& generator)
: m_generator(std::move(generator))
, m_target_repeats(repeats)
{
assert(m_target_repeats > 0 && "Repeat generator must repeat at least once");
}
T const& get() const override
{
if (m_current_repeat == 0)
{
m_returned.push_back(m_generator.get());
return m_returned.back();
}
return m_returned[m_repeat_index];
}
bool next() override
{
// There are 2 basic cases:
// 1) We are still reading the generator
// 2) We are reading our own cache
// In the first case, we need to poke the underlying generator.
// If it happily moves, we are left in that state, otherwise it is time to start reading from our cache
if (m_current_repeat == 0)
{
const auto success = m_generator.next();
if (!success)
{
++m_current_repeat;
}
return m_current_repeat < m_target_repeats;
}
// In the second case, we need to move indices forward and check that we haven't run up against the end
++m_repeat_index;
if (m_repeat_index == m_returned.size())
{
m_repeat_index = 0;
++m_current_repeat;
}
return m_current_repeat < m_target_repeats;
}
};
template<typename T>
GeneratorWrapper<T> repeat(size_t repeats, GeneratorWrapper<T>&& generator)
{
return GeneratorWrapper<T>(pf::make_unique<RepeatGenerator<T>>(repeats, std::move(generator)));
}
template<typename T, typename U, typename Func>
class MapGenerator : public IGenerator<T>
{
// TBD: provide static assert for mapping function, for friendly error message
GeneratorWrapper<U> m_generator;
Func m_function;
// To avoid returning dangling reference, we have to save the values
T m_cache;
public:
template<typename F2 = Func>
MapGenerator(F2&& function, GeneratorWrapper<U>&& generator)
: m_generator(std::move(generator))
, m_function(std::forward<F2>(function))
, m_cache(m_function(m_generator.get()))
{}
T const& get() const override { return m_cache; }
bool next() override
{
const auto success = m_generator.next();
if (success)
{
m_cache = m_function(m_generator.get());
}
return success;
}
};
template<typename Func, typename U, typename T = FunctionReturnType<Func, U>>
GeneratorWrapper<T> map(Func&& function, GeneratorWrapper<U>&& generator)
{
return GeneratorWrapper<T>(
pf::make_unique<MapGenerator<T, U, Func>>(std::forward<Func>(function), std::move(generator)));
}
template<typename T, typename U, typename Func>
GeneratorWrapper<T> map(Func&& function, GeneratorWrapper<U>&& generator)
{
return GeneratorWrapper<T>(
pf::make_unique<MapGenerator<T, U, Func>>(std::forward<Func>(function), std::move(generator)));
}
template<typename T>
class ChunkGenerator final : public IGenerator<std::vector<T>>
{
std::vector<T> m_chunk;
size_t m_chunk_size;
GeneratorWrapper<T> m_generator;
bool m_used_up = false;
public:
ChunkGenerator(size_t size, GeneratorWrapper<T> generator)
: m_chunk_size(size)
, m_generator(std::move(generator))
{
m_chunk.reserve(m_chunk_size);
if (m_chunk_size != 0)
{
m_chunk.push_back(m_generator.get());
for (size_t i = 1; i < m_chunk_size; ++i)
{
if (!m_generator.next())
{
Catch::throw_exception(GeneratorException("Not enough values to initialize the first chunk"));
}
m_chunk.push_back(m_generator.get());
}
}
}
std::vector<T> const& get() const override { return m_chunk; }
bool next() override
{
m_chunk.clear();
for (size_t idx = 0; idx < m_chunk_size; ++idx)
{
if (!m_generator.next())
{
return false;
}
m_chunk.push_back(m_generator.get());
}
return true;
}
};
template<typename T>
GeneratorWrapper<std::vector<T>> chunk(size_t size, GeneratorWrapper<T>&& generator)
{
return GeneratorWrapper<std::vector<T>>(pf::make_unique<ChunkGenerator<T>>(size, std::move(generator)));
}
} // namespace Generators
} // namespace Catch
// end catch_generators_generic.hpp
// start catch_generators_specific.hpp
// start catch_context.h
#include <memory>
namespace Catch {
struct IResultCapture;
struct IRunner;
struct IConfig;
struct IMutableContext;
using IConfigPtr = std::shared_ptr<IConfig const>;
struct IContext
{
virtual ~IContext();
virtual IResultCapture* getResultCapture() = 0;
virtual IRunner* getRunner() = 0;
virtual IConfigPtr const& getConfig() const = 0;
};
struct IMutableContext : IContext
{
virtual ~IMutableContext();
virtual void setResultCapture(IResultCapture* resultCapture) = 0;
virtual void setRunner(IRunner* runner) = 0;
virtual void setConfig(IConfigPtr const& config) = 0;
private:
static IMutableContext* currentContext;
friend IMutableContext& getCurrentMutableContext();
friend void cleanUpContext();
static void createContext();
};
inline IMutableContext& getCurrentMutableContext()
{
if (!IMutableContext::currentContext)
IMutableContext::createContext();
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
return *IMutableContext::currentContext;
}
inline IContext& getCurrentContext()
{
return getCurrentMutableContext();
}
void cleanUpContext();
class SimplePcg32;
SimplePcg32& rng();
} // namespace Catch
// end catch_context.h
// start catch_interfaces_config.h
// start catch_option.hpp
namespace Catch {
// An optional type
template<typename T>
class Option
{
public:
Option()
: nullableValue(nullptr)
{}
Option(T const& _value)
: nullableValue(new(storage) T(_value))
{}
Option(Option const& _other)
: nullableValue(_other ? new(storage) T(*_other) : nullptr)
{}
~Option() { reset(); }
Option& operator=(Option const& _other)
{
if (&_other != this)
{
reset();
if (_other)
nullableValue = new (storage) T(*_other);
}
return *this;
}
Option& operator=(T const& _value)
{
reset();
nullableValue = new (storage) T(_value);
return *this;
}
void reset()
{
if (nullableValue)
nullableValue->~T();
nullableValue = nullptr;
}
T& operator*() { return *nullableValue; }
T const& operator*() const { return *nullableValue; }
T* operator->() { return nullableValue; }
const T* operator->() const { return nullableValue; }
T valueOr(T const& defaultValue) const { return nullableValue ? *nullableValue : defaultValue; }
bool some() const { return nullableValue != nullptr; }
bool none() const { return nullableValue == nullptr; }
bool operator!() const { return nullableValue == nullptr; }
explicit operator bool() const { return some(); }
private:
T* nullableValue;
alignas(alignof(T)) char storage[sizeof(T)];
};
} // end namespace Catch
// end catch_option.hpp
#include <chrono>
#include <iosfwd>
#include <string>
#include <vector>
#include <memory>
namespace Catch {
enum class Verbosity { Quiet = 0, Normal, High };
struct WarnAbout
{
enum What { Nothing = 0x00, NoAssertions = 0x01, NoTests = 0x02 };
};
struct ShowDurations
{
enum OrNot { DefaultForReporter, Always, Never };
};
struct RunTests
{
enum InWhatOrder { InDeclarationOrder, InLexicographicalOrder, InRandomOrder };
};
struct UseColour
{
enum YesOrNo { Auto, Yes, No };
};
struct WaitForKeypress
{
enum When { Never, BeforeStart = 1, BeforeExit = 2, BeforeStartAndExit = BeforeStart | BeforeExit };
};
class TestSpec;
struct IConfig : NonCopyable
{
virtual ~IConfig();
virtual bool allowThrows() const = 0;
virtual std::ostream& stream() const = 0;
virtual std::string name() const = 0;
virtual bool includeSuccessfulResults() const = 0;
virtual bool shouldDebugBreak() const = 0;
virtual bool warnAboutMissingAssertions() const = 0;
virtual bool warnAboutNoTests() const = 0;
virtual int abortAfter() const = 0;
virtual bool showInvisibles() const = 0;
virtual ShowDurations::OrNot showDurations() const = 0;
virtual double minDuration() const = 0;
virtual TestSpec const& testSpec() const = 0;
virtual bool hasTestFilters() const = 0;
virtual std::vector<std::string> const& getTestsOrTags() const = 0;
virtual RunTests::InWhatOrder runOrder() const = 0;
virtual unsigned int rngSeed() const = 0;
virtual UseColour::YesOrNo useColour() const = 0;
virtual std::vector<std::string> const& getSectionsToRun() const = 0;
virtual Verbosity verbosity() const = 0;
virtual bool benchmarkNoAnalysis() const = 0;
virtual int benchmarkSamples() const = 0;
virtual double benchmarkConfidenceInterval() const = 0;
virtual unsigned int benchmarkResamples() const = 0;
virtual std::chrono::milliseconds benchmarkWarmupTime() const = 0;
};
using IConfigPtr = std::shared_ptr<IConfig const>;
} // namespace Catch
// end catch_interfaces_config.h
// start catch_random_number_generator.h
#include <cstdint>
namespace Catch {
// This is a simple implementation of C++11 Uniform Random Number
// Generator. It does not provide all operators, because Catch2
// does not use it, but it should behave as expected inside stdlib's
// distributions.
// The implementation is based on the PCG family (http://pcg-random.org)
class SimplePcg32
{
using state_type = std::uint64_t;
public:
using result_type = std::uint32_t;
static constexpr result_type(min)() { return 0; }
static constexpr result_type(max)() { return static_cast<result_type>(-1); }
// Provide some default initial state for the default constructor
SimplePcg32()
: SimplePcg32(0xed743cc4U)
{}
explicit SimplePcg32(result_type seed_);
void seed(result_type seed_);
void discard(uint64_t skip);
result_type operator()();
private:
friend bool operator==(SimplePcg32 const& lhs, SimplePcg32 const& rhs);
friend bool operator!=(SimplePcg32 const& lhs, SimplePcg32 const& rhs);
// In theory we also need operator<< and operator>>
// In practice we do not use them, so we will skip them for now
std::uint64_t m_state;
// This part of the state determines which "stream" of the numbers
// is chosen -- we take it as a constant for Catch2, so we only
// need to deal with seeding the main state.
// Picked by reading 8 bytes from `/dev/random` :-)
static const std::uint64_t s_inc = (0x13ed0cc53f939476ULL << 1ULL) | 1ULL;
};
} // end namespace Catch
// end catch_random_number_generator.h
#include <random>
namespace Catch {
namespace Generators {
template<typename Float>
class RandomFloatingGenerator final : public IGenerator<Float>
{
Catch::SimplePcg32& m_rng;
std::uniform_real_distribution<Float> m_dist;
Float m_current_number;
public:
RandomFloatingGenerator(Float a, Float b)
: m_rng(rng())
, m_dist(a, b)
{
static_cast<void>(next());
}
Float const& get() const override { return m_current_number; }
bool next() override
{
m_current_number = m_dist(m_rng);
return true;
}
};
template<typename Integer>
class RandomIntegerGenerator final : public IGenerator<Integer>
{
Catch::SimplePcg32& m_rng;
std::uniform_int_distribution<Integer> m_dist;
Integer m_current_number;
public:
RandomIntegerGenerator(Integer a, Integer b)
: m_rng(rng())
, m_dist(a, b)
{
static_cast<void>(next());
}
Integer const& get() const override { return m_current_number; }
bool next() override
{
m_current_number = m_dist(m_rng);
return true;
}
};
// TODO: Ideally this would be also constrained against the various char types,
// but I don't expect users to run into that in practice.
template<typename T>
typename std::enable_if<std::is_integral<T>::value && !std::is_same<T, bool>::value, GeneratorWrapper<T>>::type
random(T a, T b)
{
return GeneratorWrapper<T>(pf::make_unique<RandomIntegerGenerator<T>>(a, b));
}
template<typename T>
typename std::enable_if<std::is_floating_point<T>::value, GeneratorWrapper<T>>::type random(T a, T b)
{
return GeneratorWrapper<T>(pf::make_unique<RandomFloatingGenerator<T>>(a, b));
}
template<typename T>
class RangeGenerator final : public IGenerator<T>
{
T m_current;
T m_end;
T m_step;
bool m_positive;
public:
RangeGenerator(T const& start, T const& end, T const& step)
: m_current(start)
, m_end(end)
, m_step(step)
, m_positive(m_step > T(0))
{
assert(m_current != m_end && "Range start and end cannot be equal");
assert(m_step != T(0) && "Step size cannot be zero");
assert(((m_positive && m_current <= m_end) || (!m_positive && m_current >= m_end)) &&
"Step moves away from end");
}
RangeGenerator(T const& start, T const& end)
: RangeGenerator(start, end, (start < end) ? T(1) : T(-1))
{}
T const& get() const override { return m_current; }
bool next() override
{
m_current += m_step;
return (m_positive) ? (m_current < m_end) : (m_current > m_end);
}
};
template<typename T>
GeneratorWrapper<T> range(T const& start, T const& end, T const& step)
{
static_assert(std::is_arithmetic<T>::value && !std::is_same<T, bool>::value, "Type must be numeric");
return GeneratorWrapper<T>(pf::make_unique<RangeGenerator<T>>(start, end, step));
}
template<typename T>
GeneratorWrapper<T> range(T const& start, T const& end)
{
static_assert(std::is_integral<T>::value && !std::is_same<T, bool>::value, "Type must be an integer");
return GeneratorWrapper<T>(pf::make_unique<RangeGenerator<T>>(start, end));
}
template<typename T>
class IteratorGenerator final : public IGenerator<T>
{
static_assert(!std::is_same<T, bool>::value,
"IteratorGenerator currently does not support bools"
"because of std::vector<bool> specialization");
std::vector<T> m_elems;
size_t m_current = 0;
public:
template<typename InputIterator, typename InputSentinel>
IteratorGenerator(InputIterator first, InputSentinel last)
: m_elems(first, last)
{
if (m_elems.empty())
{
Catch::throw_exception(GeneratorException("IteratorGenerator received no valid values"));
}
}
T const& get() const override { return m_elems[m_current]; }
bool next() override
{
++m_current;
return m_current != m_elems.size();
}
};
template<typename InputIterator,
typename InputSentinel,
typename ResultType = typename std::iterator_traits<InputIterator>::value_type>
GeneratorWrapper<ResultType> from_range(InputIterator from, InputSentinel to)
{
return GeneratorWrapper<ResultType>(pf::make_unique<IteratorGenerator<ResultType>>(from, to));
}
template<typename Container, typename ResultType = typename Container::value_type>
GeneratorWrapper<ResultType> from_range(Container const& cnt)
{
return GeneratorWrapper<ResultType>(pf::make_unique<IteratorGenerator<ResultType>>(cnt.begin(), cnt.end()));
}
} // namespace Generators
} // namespace Catch
// end catch_generators_specific.hpp
// These files are included here so the single_include script doesn't put them
// in the conditionally compiled sections
// start catch_test_case_info.h
#include <string>
#include <vector>
#include <memory>
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
#endif
namespace Catch {
struct ITestInvoker;
struct TestCaseInfo
{
enum SpecialProperties {
None = 0,
IsHidden = 1 << 1,
ShouldFail = 1 << 2,
MayFail = 1 << 3,
Throws = 1 << 4,
NonPortable = 1 << 5,
Benchmark = 1 << 6
};
TestCaseInfo(std::string const& _name,
std::string const& _className,
std::string const& _description,
std::vector<std::string> const& _tags,
SourceLineInfo const& _lineInfo);
friend void setTags(TestCaseInfo& testCaseInfo, std::vector<std::string> tags);
bool isHidden() const;
bool throws() const;
bool okToFail() const;
bool expectedToFail() const;
std::string tagsAsString() const;
std::string name;
std::string className;
std::string description;
std::vector<std::string> tags;
std::vector<std::string> lcaseTags;
SourceLineInfo lineInfo;
SpecialProperties properties;
};
class TestCase : public TestCaseInfo
{
public:
TestCase(ITestInvoker* testCase, TestCaseInfo&& info);
TestCase withName(std::string const& _newName) const;
void invoke() const;
TestCaseInfo const& getTestCaseInfo() const;
bool operator==(TestCase const& other) const;
bool operator<(TestCase const& other) const;
private:
std::shared_ptr<ITestInvoker> test;
};
TestCase makeTestCase(ITestInvoker* testCase,
std::string const& className,
NameAndTags const& nameAndTags,
SourceLineInfo const& lineInfo);
} // namespace Catch
#ifdef __clang__
#pragma clang diagnostic pop
#endif
// end catch_test_case_info.h
// start catch_interfaces_runner.h
namespace Catch {
struct IRunner
{
virtual ~IRunner();
virtual bool aborting() const = 0;
};
} // namespace Catch
// end catch_interfaces_runner.h
#ifdef __OBJC__
// start catch_objc.hpp
#import <objc/runtime.h>
#include <string>
// NB. Any general catch headers included here must be included
// in catch.hpp first to make sure they are included by the single
// header for non obj-usage
///////////////////////////////////////////////////////////////////////////////
// This protocol is really only here for (self) documenting purposes, since
// all its methods are optional.
@protocol OcFixture
@optional
- (void)setUp;
- (void)tearDown;
@end
namespace Catch {
class OcMethod : public ITestInvoker
{
public:
OcMethod(Class cls, SEL sel)
: m_cls(cls)
, m_sel(sel)
{}
virtual void invoke() const
{
id obj = [[m_cls alloc] init];
performOptionalSelector(obj, @selector(setUp));
performOptionalSelector(obj, m_sel);
performOptionalSelector(obj, @selector(tearDown));
arcSafeRelease(obj);
}
private:
virtual ~OcMethod() {}
Class m_cls;
SEL m_sel;
};
namespace Detail {
inline std::string getAnnotation(Class cls, std::string const& annotationName, std::string const& testCaseName)
{
NSString* selStr = [[NSString alloc] initWithFormat:@"Catch_%s_%s", annotationName.c_str(), testCaseName.c_str()];
SEL sel = NSSelectorFromString(selStr);
arcSafeRelease(selStr);
id value = performOptionalSelector(cls, sel);
if (value)
return [(NSString*)value UTF8String];
return "";
}
} // namespace Detail
inline std::size_t registerTestMethods()
{
std::size_t noTestMethods = 0;
int noClasses = objc_getClassList(nullptr, 0);
Class* classes = (CATCH_UNSAFE_UNRETAINED Class*)malloc(sizeof(Class) * noClasses);
objc_getClassList(classes, noClasses);
for (int c = 0; c < noClasses; c++)
{
Class cls = classes[c];
{
u_int count;
Method* methods = class_copyMethodList(cls, &count);
for (u_int m = 0; m < count; m++)
{
SEL selector = method_getName(methods[m]);
std::string methodName = sel_getName(selector);
if (startsWith(methodName, "Catch_TestCase_"))
{
std::string testCaseName = methodName.substr(15);
std::string name = Detail::getAnnotation(cls, "Name", testCaseName);
std::string desc = Detail::getAnnotation(cls, "Description", testCaseName);
const char* className = class_getName(cls);
getMutableRegistryHub().registerTest(makeTestCase(new OcMethod(cls, selector),
className,
NameAndTags(name.c_str(), desc.c_str()),
SourceLineInfo("", 0)));
noTestMethods++;
}
}
free(methods);
}
}
return noTestMethods;
}
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
namespace Matchers {
namespace Impl {
namespace NSStringMatchers {
struct StringHolder : MatcherBase<NSString*>
{
StringHolder(NSString* substr)
: m_substr([substr copy])
{}
StringHolder(StringHolder const& other)
: m_substr([other.m_substr copy])
{}
StringHolder() { arcSafeRelease(m_substr); }
bool match(NSString* str) const override { return false; }
NSString* CATCH_ARC_STRONG m_substr;
};
struct Equals : StringHolder
{
Equals(NSString* substr)
: StringHolder(substr)
{}
bool match(NSString* str) const override
{
return (str != nil || m_substr == nil) && [str isEqualToString:m_substr];
}
std::string describe() const override { return "equals string: " + Catch::Detail::stringify(m_substr); }
};
struct Contains : StringHolder
{
Contains(NSString* substr)
: StringHolder(substr)
{}
bool match(NSString* str) const override
{
return (str != nil || m_substr == nil) && [str rangeOfString:m_substr].location != NSNotFound;
}
std::string describe() const override { return "contains string: " + Catch::Detail::stringify(m_substr); }
};
struct StartsWith : StringHolder
{
StartsWith(NSString* substr)
: StringHolder(substr)
{}
bool match(NSString* str) const override
{
return (str != nil || m_substr == nil) && [str rangeOfString:m_substr].location == 0;
}
std::string describe() const override { return "starts with: " + Catch::Detail::stringify(m_substr); }
};
struct EndsWith : StringHolder
{
EndsWith(NSString* substr)
: StringHolder(substr)
{}
bool match(NSString* str) const override
{
return (str != nil || m_substr == nil) &&
[str rangeOfString:m_substr].location == [str length] - [m_substr length];
}
std::string describe() const override { return "ends with: " + Catch::Detail::stringify(m_substr); }
};
} // namespace NSStringMatchers
} // namespace Impl
inline Impl::NSStringMatchers::Equals Equals(NSString* substr)
{
return Impl::NSStringMatchers::Equals(substr);
}
inline Impl::NSStringMatchers::Contains Contains(NSString* substr)
{
return Impl::NSStringMatchers::Contains(substr);
}
inline Impl::NSStringMatchers::StartsWith StartsWith(NSString* substr)
{
return Impl::NSStringMatchers::StartsWith(substr);
}
inline Impl::NSStringMatchers::EndsWith EndsWith(NSString* substr)
{
return Impl::NSStringMatchers::EndsWith(substr);
}
} // namespace Matchers
using namespace Matchers;
#endif // CATCH_CONFIG_DISABLE_MATCHERS
} // namespace Catch
///////////////////////////////////////////////////////////////////////////////
#define OC_MAKE_UNIQUE_NAME(root, uniqueSuffix) root##uniqueSuffix
#define OC_TEST_CASE2(name, desc, uniqueSuffix) \
+(NSString*)OC_MAKE_UNIQUE_NAME(Catch_Name_test_, uniqueSuffix) \
{ \
return @name; \
} \
+(NSString*)OC_MAKE_UNIQUE_NAME(Catch_Description_test_, uniqueSuffix) \
{ \
return @desc; \
} \
-(void)OC_MAKE_UNIQUE_NAME(Catch_TestCase_test_, uniqueSuffix)
#define OC_TEST_CASE(name, desc) OC_TEST_CASE2(name, desc, __LINE__)
// end catch_objc.hpp
#endif
// Benchmarking needs the externally-facing parts of reporters to work
#if defined(CATCH_CONFIG_EXTERNAL_INTERFACES) || defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
// start catch_external_interfaces.h
// start catch_reporter_bases.hpp
// start catch_interfaces_reporter.h
// start catch_config.hpp
// start catch_test_spec_parser.h
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
#endif
// start catch_test_spec.h
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
#endif
// start catch_wildcard_pattern.h
namespace Catch {
class WildcardPattern
{
enum WildcardPosition {
NoWildcard = 0,
WildcardAtStart = 1,
WildcardAtEnd = 2,
WildcardAtBothEnds = WildcardAtStart | WildcardAtEnd
};
public:
WildcardPattern(std::string const& pattern, CaseSensitive::Choice caseSensitivity);
virtual ~WildcardPattern() = default;
virtual bool matches(std::string const& str) const;
private:
std::string normaliseString(std::string const& str) const;
CaseSensitive::Choice m_caseSensitivity;
WildcardPosition m_wildcard = NoWildcard;
std::string m_pattern;
};
} // namespace Catch
// end catch_wildcard_pattern.h
#include <string>
#include <vector>
#include <memory>
namespace Catch {
struct IConfig;
class TestSpec
{
class Pattern
{
public:
explicit Pattern(std::string const& name);
virtual ~Pattern();
virtual bool matches(TestCaseInfo const& testCase) const = 0;
std::string const& name() const;
private:
std::string const m_name;
};
using PatternPtr = std::shared_ptr<Pattern>;
class NamePattern : public Pattern
{
public:
explicit NamePattern(std::string const& name, std::string const& filterString);
bool matches(TestCaseInfo const& testCase) const override;
private:
WildcardPattern m_wildcardPattern;
};
class TagPattern : public Pattern
{
public:
explicit TagPattern(std::string const& tag, std::string const& filterString);
bool matches(TestCaseInfo const& testCase) const override;
private:
std::string m_tag;
};
class ExcludedPattern : public Pattern
{
public:
explicit ExcludedPattern(PatternPtr const& underlyingPattern);
bool matches(TestCaseInfo const& testCase) const override;
private:
PatternPtr m_underlyingPattern;
};
struct Filter
{
std::vector<PatternPtr> m_patterns;
bool matches(TestCaseInfo const& testCase) const;
std::string name() const;
};
public:
struct FilterMatch
{
std::string name;
std::vector<TestCase const*> tests;
};
using Matches = std::vector<FilterMatch>;
using vectorStrings = std::vector<std::string>;
bool hasFilters() const;
bool matches(TestCaseInfo const& testCase) const;
Matches matchesByFilter(std::vector<TestCase> const& testCases, IConfig const& config) const;
const vectorStrings& getInvalidArgs() const;
private:
std::vector<Filter> m_filters;
std::vector<std::string> m_invalidArgs;
friend class TestSpecParser;
};
} // namespace Catch
#ifdef __clang__
#pragma clang diagnostic pop
#endif
// end catch_test_spec.h
// start catch_interfaces_tag_alias_registry.h
#include <string>
namespace Catch {
struct TagAlias;
struct ITagAliasRegistry
{
virtual ~ITagAliasRegistry();
// Nullptr if not present
virtual TagAlias const* find(std::string const& alias) const = 0;
virtual std::string expandAliases(std::string const& unexpandedTestSpec) const = 0;
static ITagAliasRegistry const& get();
};
} // end namespace Catch
// end catch_interfaces_tag_alias_registry.h
namespace Catch {
class TestSpecParser
{
enum Mode { None, Name, QuotedName, Tag, EscapedName };
Mode m_mode = None;
Mode lastMode = None;
bool m_exclusion = false;
std::size_t m_pos = 0;
std::size_t m_realPatternPos = 0;
std::string m_arg;
std::string m_substring;
std::string m_patternName;
std::vector<std::size_t> m_escapeChars;
TestSpec::Filter m_currentFilter;
TestSpec m_testSpec;
ITagAliasRegistry const* m_tagAliases = nullptr;
public:
TestSpecParser(ITagAliasRegistry const& tagAliases);
TestSpecParser& parse(std::string const& arg);
TestSpec testSpec();
private:
bool visitChar(char c);
void startNewMode(Mode mode);
bool processNoneChar(char c);
void processNameChar(char c);
bool processOtherChar(char c);
void endMode();
void escape();
bool isControlChar(char c) const;
void saveLastMode();
void revertBackToLastMode();
void addFilter();
bool separate();
// Handles common preprocessing of the pattern for name/tag patterns
std::string preprocessPattern();
// Adds the current pattern as a test name
void addNamePattern();
// Adds the current pattern as a tag
void addTagPattern();
inline void addCharToPattern(char c)
{
m_substring += c;
m_patternName += c;
m_realPatternPos++;
}
};
TestSpec parseTestSpec(std::string const& arg);
} // namespace Catch
#ifdef __clang__
#pragma clang diagnostic pop
#endif
// end catch_test_spec_parser.h
// Libstdc++ doesn't like incomplete classes for unique_ptr
#include <memory>
#include <vector>
#include <string>
#ifndef CATCH_CONFIG_CONSOLE_WIDTH
#define CATCH_CONFIG_CONSOLE_WIDTH 80
#endif
namespace Catch {
struct IStream;
struct ConfigData
{
bool listTests = false;
bool listTags = false;
bool listReporters = false;
bool listTestNamesOnly = false;
bool showSuccessfulTests = false;
bool shouldDebugBreak = false;
bool noThrow = false;
bool showHelp = false;
bool showInvisibles = false;
bool filenamesAsTags = false;
bool libIdentify = false;
int abortAfter = -1;
unsigned int rngSeed = 0;
bool benchmarkNoAnalysis = false;
unsigned int benchmarkSamples = 100;
double benchmarkConfidenceInterval = 0.95;
unsigned int benchmarkResamples = 100000;
std::chrono::milliseconds::rep benchmarkWarmupTime = 100;
Verbosity verbosity = Verbosity::Normal;
WarnAbout::What warnings = WarnAbout::Nothing;
ShowDurations::OrNot showDurations = ShowDurations::DefaultForReporter;
double minDuration = -1;
RunTests::InWhatOrder runOrder = RunTests::InDeclarationOrder;
UseColour::YesOrNo useColour = UseColour::Auto;
WaitForKeypress::When waitForKeypress = WaitForKeypress::Never;
std::string outputFilename;
std::string name;
std::string processName;
#ifndef CATCH_CONFIG_DEFAULT_REPORTER
#define CATCH_CONFIG_DEFAULT_REPORTER "console"
#endif
std::string reporterName = CATCH_CONFIG_DEFAULT_REPORTER;
#undef CATCH_CONFIG_DEFAULT_REPORTER
std::vector<std::string> testsOrTags;
std::vector<std::string> sectionsToRun;
};
class Config : public IConfig
{
public:
Config() = default;
Config(ConfigData const& data);
virtual ~Config() = default;
std::string const& getFilename() const;
bool listTests() const;
bool listTestNamesOnly() const;
bool listTags() const;
bool listReporters() const;
std::string getProcessName() const;
std::string const& getReporterName() const;
std::vector<std::string> const& getTestsOrTags() const override;
std::vector<std::string> const& getSectionsToRun() const override;
TestSpec const& testSpec() const override;
bool hasTestFilters() const override;
bool showHelp() const;
// IConfig interface
bool allowThrows() const override;
std::ostream& stream() const override;
std::string name() const override;
bool includeSuccessfulResults() const override;
bool warnAboutMissingAssertions() const override;
bool warnAboutNoTests() const override;
ShowDurations::OrNot showDurations() const override;
double minDuration() const override;
RunTests::InWhatOrder runOrder() const override;
unsigned int rngSeed() const override;
UseColour::YesOrNo useColour() const override;
bool shouldDebugBreak() const override;
int abortAfter() const override;
bool showInvisibles() const override;
Verbosity verbosity() const override;
bool benchmarkNoAnalysis() const override;
int benchmarkSamples() const override;
double benchmarkConfidenceInterval() const override;
unsigned int benchmarkResamples() const override;
std::chrono::milliseconds benchmarkWarmupTime() const override;
private:
IStream const* openStream();
ConfigData m_data;
std::unique_ptr<IStream const> m_stream;
TestSpec m_testSpec;
bool m_hasTestFilters = false;
};
} // end namespace Catch
// end catch_config.hpp
// start catch_assertionresult.h
#include <string>
namespace Catch {
struct AssertionResultData
{
AssertionResultData() = delete;
AssertionResultData(ResultWas::OfType _resultType, LazyExpression const& _lazyExpression);
std::string message;
mutable std::string reconstructedExpression;
LazyExpression lazyExpression;
ResultWas::OfType resultType;
std::string reconstructExpression() const;
};
class AssertionResult
{
public:
AssertionResult() = delete;
AssertionResult(AssertionInfo const& info, AssertionResultData const& data);
bool isOk() const;
bool succeeded() const;
ResultWas::OfType getResultType() const;
bool hasExpression() const;
bool hasMessage() const;
std::string getExpression() const;
std::string getExpressionInMacro() const;
bool hasExpandedExpression() const;
std::string getExpandedExpression() const;
std::string getMessage() const;
SourceLineInfo getSourceInfo() const;
StringRef getTestMacroName() const;
// protected:
AssertionInfo m_info;
AssertionResultData m_resultData;
};
} // end namespace Catch
// end catch_assertionresult.h
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
// start catch_estimate.hpp
// Statistics estimates
namespace Catch {
namespace Benchmark {
template<typename Duration>
struct Estimate
{
Duration point;
Duration lower_bound;
Duration upper_bound;
double confidence_interval;
template<typename Duration2>
operator Estimate<Duration2>() const
{
return {point, lower_bound, upper_bound, confidence_interval};
}
};
} // namespace Benchmark
} // namespace Catch
// end catch_estimate.hpp
// start catch_outlier_classification.hpp
// Outlier information
namespace Catch {
namespace Benchmark {
struct OutlierClassification
{
int samples_seen = 0;
int low_severe = 0; // more than 3 times IQR below Q1
int low_mild = 0; // 1.5 to 3 times IQR below Q1
int high_mild = 0; // 1.5 to 3 times IQR above Q3
int high_severe = 0; // more than 3 times IQR above Q3
int total() const { return low_severe + low_mild + high_mild + high_severe; }
};
} // namespace Benchmark
} // namespace Catch
// end catch_outlier_classification.hpp
#include <iterator>
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
#include <string>
#include <iosfwd>
#include <map>
#include <set>
#include <memory>
#include <algorithm>
namespace Catch {
struct ReporterConfig
{
explicit ReporterConfig(IConfigPtr const& _fullConfig);
ReporterConfig(IConfigPtr const& _fullConfig, std::ostream& _stream);
std::ostream& stream() const;
IConfigPtr fullConfig() const;
private:
std::ostream* m_stream;
IConfigPtr m_fullConfig;
};
struct ReporterPreferences
{
bool shouldRedirectStdOut = false;
bool shouldReportAllAssertions = false;
};
template<typename T>
struct LazyStat : Option<T>
{
LazyStat& operator=(T const& _value)
{
Option<T>::operator=(_value);
used = false;
return *this;
}
void reset()
{
Option<T>::reset();
used = false;
}
bool used = false;
};
struct TestRunInfo
{
TestRunInfo(std::string const& _name);
std::string name;
};
struct GroupInfo
{
GroupInfo(std::string const& _name, std::size_t _groupIndex, std::size_t _groupsCount);
std::string name;
std::size_t groupIndex;
std::size_t groupsCounts;
};
struct AssertionStats
{
AssertionStats(AssertionResult const& _assertionResult,
std::vector<MessageInfo> const& _infoMessages,
Totals const& _totals);
AssertionStats(AssertionStats const&) = default;
AssertionStats(AssertionStats&&) = default;
AssertionStats& operator=(AssertionStats const&) = delete;
AssertionStats& operator=(AssertionStats&&) = delete;
virtual ~AssertionStats();
AssertionResult assertionResult;
std::vector<MessageInfo> infoMessages;
Totals totals;
};
struct SectionStats
{
SectionStats(SectionInfo const& _sectionInfo,
Counts const& _assertions,
double _durationInSeconds,
bool _missingAssertions);
SectionStats(SectionStats const&) = default;
SectionStats(SectionStats&&) = default;
SectionStats& operator=(SectionStats const&) = default;
SectionStats& operator=(SectionStats&&) = default;
virtual ~SectionStats();
SectionInfo sectionInfo;
Counts assertions;
double durationInSeconds;
bool missingAssertions;
};
struct TestCaseStats
{
TestCaseStats(TestCaseInfo const& _testInfo,
Totals const& _totals,
std::string const& _stdOut,
std::string const& _stdErr,
bool _aborting);
TestCaseStats(TestCaseStats const&) = default;
TestCaseStats(TestCaseStats&&) = default;
TestCaseStats& operator=(TestCaseStats const&) = default;
TestCaseStats& operator=(TestCaseStats&&) = default;
virtual ~TestCaseStats();
TestCaseInfo testInfo;
Totals totals;
std::string stdOut;
std::string stdErr;
bool aborting;
};
struct TestGroupStats
{
TestGroupStats(GroupInfo const& _groupInfo, Totals const& _totals, bool _aborting);
TestGroupStats(GroupInfo const& _groupInfo);
TestGroupStats(TestGroupStats const&) = default;
TestGroupStats(TestGroupStats&&) = default;
TestGroupStats& operator=(TestGroupStats const&) = default;
TestGroupStats& operator=(TestGroupStats&&) = default;
virtual ~TestGroupStats();
GroupInfo groupInfo;
Totals totals;
bool aborting;
};
struct TestRunStats
{
TestRunStats(TestRunInfo const& _runInfo, Totals const& _totals, bool _aborting);
TestRunStats(TestRunStats const&) = default;
TestRunStats(TestRunStats&&) = default;
TestRunStats& operator=(TestRunStats const&) = default;
TestRunStats& operator=(TestRunStats&&) = default;
virtual ~TestRunStats();
TestRunInfo runInfo;
Totals totals;
bool aborting;
};
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
struct BenchmarkInfo
{
std::string name;
double estimatedDuration;
int iterations;
int samples;
unsigned int resamples;
double clockResolution;
double clockCost;
};
template<class Duration>
struct BenchmarkStats
{
BenchmarkInfo info;
std::vector<Duration> samples;
Benchmark::Estimate<Duration> mean;
Benchmark::Estimate<Duration> standardDeviation;
Benchmark::OutlierClassification outliers;
double outlierVariance;
template<typename Duration2>
operator BenchmarkStats<Duration2>() const
{
std::vector<Duration2> samples2;
samples2.reserve(samples.size());
std::transform(samples.begin(), samples.end(), std::back_inserter(samples2), [](Duration d) {
return Duration2(d);
});
return {
info,
std::move(samples2),
mean,
standardDeviation,
outliers,
outlierVariance,
};
}
};
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
struct IStreamingReporter
{
virtual ~IStreamingReporter() = default;
// Implementing class must also provide the following static methods:
// static std::string getDescription();
// static std::set<Verbosity> getSupportedVerbosities()
virtual ReporterPreferences getPreferences() const = 0;
virtual void noMatchingTestCases(std::string const& spec) = 0;
virtual void reportInvalidArguments(std::string const&) {}
virtual void testRunStarting(TestRunInfo const& testRunInfo) = 0;
virtual void testGroupStarting(GroupInfo const& groupInfo) = 0;
virtual void testCaseStarting(TestCaseInfo const& testInfo) = 0;
virtual void sectionStarting(SectionInfo const& sectionInfo) = 0;
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
virtual void benchmarkPreparing(std::string const&) {}
virtual void benchmarkStarting(BenchmarkInfo const&) {}
virtual void benchmarkEnded(BenchmarkStats<> const&) {}
virtual void benchmarkFailed(std::string const&) {}
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
virtual void assertionStarting(AssertionInfo const& assertionInfo) = 0;
// The return value indicates if the messages buffer should be cleared:
virtual bool assertionEnded(AssertionStats const& assertionStats) = 0;
virtual void sectionEnded(SectionStats const& sectionStats) = 0;
virtual void testCaseEnded(TestCaseStats const& testCaseStats) = 0;
virtual void testGroupEnded(TestGroupStats const& testGroupStats) = 0;
virtual void testRunEnded(TestRunStats const& testRunStats) = 0;
virtual void skipTest(TestCaseInfo const& testInfo) = 0;
// Default empty implementation provided
virtual void fatalErrorEncountered(StringRef name);
virtual bool isMulti() const;
};
using IStreamingReporterPtr = std::unique_ptr<IStreamingReporter>;
struct IReporterFactory
{
virtual ~IReporterFactory();
virtual IStreamingReporterPtr create(ReporterConfig const& config) const = 0;
virtual std::string getDescription() const = 0;
};
using IReporterFactoryPtr = std::shared_ptr<IReporterFactory>;
struct IReporterRegistry
{
using FactoryMap = std::map<std::string, IReporterFactoryPtr>;
using Listeners = std::vector<IReporterFactoryPtr>;
virtual ~IReporterRegistry();
virtual IStreamingReporterPtr create(std::string const& name, IConfigPtr const& config) const = 0;
virtual FactoryMap const& getFactories() const = 0;
virtual Listeners const& getListeners() const = 0;
};
} // end namespace Catch
// end catch_interfaces_reporter.h
#include <algorithm>
#include <cstring>
#include <cfloat>
#include <cstdio>
#include <cassert>
#include <memory>
#include <ostream>
namespace Catch {
void prepareExpandedExpression(AssertionResult& result);
// Returns double formatted as %.3f (format expected on output)
std::string getFormattedDuration(double duration);
//! Should the reporter show
bool shouldShowDuration(IConfig const& config, double duration);
std::string serializeFilters(std::vector<std::string> const& container);
template<typename DerivedT>
struct StreamingReporterBase : IStreamingReporter
{
StreamingReporterBase(ReporterConfig const& _config)
: m_config(_config.fullConfig())
, stream(_config.stream())
{
m_reporterPrefs.shouldRedirectStdOut = false;
if (!DerivedT::getSupportedVerbosities().count(m_config->verbosity()))
CATCH_ERROR("Verbosity level not supported by this reporter");
}
ReporterPreferences getPreferences() const override { return m_reporterPrefs; }
static std::set<Verbosity> getSupportedVerbosities() { return {Verbosity::Normal}; }
~StreamingReporterBase() override = default;
void noMatchingTestCases(std::string const&) override {}
void reportInvalidArguments(std::string const&) override {}
void testRunStarting(TestRunInfo const& _testRunInfo) override { currentTestRunInfo = _testRunInfo; }
void testGroupStarting(GroupInfo const& _groupInfo) override { currentGroupInfo = _groupInfo; }
void testCaseStarting(TestCaseInfo const& _testInfo) override { currentTestCaseInfo = _testInfo; }
void sectionStarting(SectionInfo const& _sectionInfo) override { m_sectionStack.push_back(_sectionInfo); }
void sectionEnded(SectionStats const& /* _sectionStats */) override { m_sectionStack.pop_back(); }
void testCaseEnded(TestCaseStats const& /* _testCaseStats */) override { currentTestCaseInfo.reset(); }
void testGroupEnded(TestGroupStats const& /* _testGroupStats */) override { currentGroupInfo.reset(); }
void testRunEnded(TestRunStats const& /* _testRunStats */) override
{
currentTestCaseInfo.reset();
currentGroupInfo.reset();
currentTestRunInfo.reset();
}
void skipTest(TestCaseInfo const&) override
{
// Don't do anything with this by default.
// It can optionally be overridden in the derived class.
}
IConfigPtr m_config;
std::ostream& stream;
LazyStat<TestRunInfo> currentTestRunInfo;
LazyStat<GroupInfo> currentGroupInfo;
LazyStat<TestCaseInfo> currentTestCaseInfo;
std::vector<SectionInfo> m_sectionStack;
ReporterPreferences m_reporterPrefs;
};
template<typename DerivedT>
struct CumulativeReporterBase : IStreamingReporter
{
template<typename T, typename ChildNodeT>
struct Node
{
explicit Node(T const& _value)
: value(_value)
{}
virtual ~Node() {}
using ChildNodes = std::vector<std::shared_ptr<ChildNodeT>>;
T value;
ChildNodes children;
};
struct SectionNode
{
explicit SectionNode(SectionStats const& _stats)
: stats(_stats)
{}
virtual ~SectionNode() = default;
bool operator==(SectionNode const& other) const
{
return stats.sectionInfo.lineInfo == other.stats.sectionInfo.lineInfo;
}
bool operator==(std::shared_ptr<SectionNode> const& other) const { return operator==(*other); }
SectionStats stats;
using ChildSections = std::vector<std::shared_ptr<SectionNode>>;
using Assertions = std::vector<AssertionStats>;
ChildSections childSections;
Assertions assertions;
std::string stdOut;
std::string stdErr;
};
struct BySectionInfo
{
BySectionInfo(SectionInfo const& other)
: m_other(other)
{}
BySectionInfo(BySectionInfo const& other)
: m_other(other.m_other)
{}
bool operator()(std::shared_ptr<SectionNode> const& node) const
{
return ((node->stats.sectionInfo.name == m_other.name) &&
(node->stats.sectionInfo.lineInfo == m_other.lineInfo));
}
void operator=(BySectionInfo const&) = delete;
private:
SectionInfo const& m_other;
};
using TestCaseNode = Node<TestCaseStats, SectionNode>;
using TestGroupNode = Node<TestGroupStats, TestCaseNode>;
using TestRunNode = Node<TestRunStats, TestGroupNode>;
CumulativeReporterBase(ReporterConfig const& _config)
: m_config(_config.fullConfig())
, stream(_config.stream())
{
m_reporterPrefs.shouldRedirectStdOut = false;
if (!DerivedT::getSupportedVerbosities().count(m_config->verbosity()))
CATCH_ERROR("Verbosity level not supported by this reporter");
}
~CumulativeReporterBase() override = default;
ReporterPreferences getPreferences() const override { return m_reporterPrefs; }
static std::set<Verbosity> getSupportedVerbosities() { return {Verbosity::Normal}; }
void testRunStarting(TestRunInfo const&) override {}
void testGroupStarting(GroupInfo const&) override {}
void testCaseStarting(TestCaseInfo const&) override {}
void sectionStarting(SectionInfo const& sectionInfo) override
{
SectionStats incompleteStats(sectionInfo, Counts(), 0, false);
std::shared_ptr<SectionNode> node;
if (m_sectionStack.empty())
{
if (!m_rootSection)
m_rootSection = std::make_shared<SectionNode>(incompleteStats);
node = m_rootSection;
}
else
{
SectionNode& parentNode = *m_sectionStack.back();
auto it = std::find_if(parentNode.childSections.begin(),
parentNode.childSections.end(),
BySectionInfo(sectionInfo));
if (it == parentNode.childSections.end())
{
node = std::make_shared<SectionNode>(incompleteStats);
parentNode.childSections.push_back(node);
}
else
node = *it;
}
m_sectionStack.push_back(node);
m_deepestSection = std::move(node);
}
void assertionStarting(AssertionInfo const&) override {}
bool assertionEnded(AssertionStats const& assertionStats) override
{
assert(!m_sectionStack.empty());
// AssertionResult holds a pointer to a temporary DecomposedExpression,
// which getExpandedExpression() calls to build the expression string.
// Our section stack copy of the assertionResult will likely outlive the
// temporary, so it must be expanded or discarded now to avoid calling
// a destroyed object later.
prepareExpandedExpression(const_cast<AssertionResult&>(assertionStats.assertionResult));
SectionNode& sectionNode = *m_sectionStack.back();
sectionNode.assertions.push_back(assertionStats);
return true;
}
void sectionEnded(SectionStats const& sectionStats) override
{
assert(!m_sectionStack.empty());
SectionNode& node = *m_sectionStack.back();
node.stats = sectionStats;
m_sectionStack.pop_back();
}
void testCaseEnded(TestCaseStats const& testCaseStats) override
{
auto node = std::make_shared<TestCaseNode>(testCaseStats);
assert(m_sectionStack.size() == 0);
node->children.push_back(m_rootSection);
m_testCases.push_back(node);
m_rootSection.reset();
assert(m_deepestSection);
m_deepestSection->stdOut = testCaseStats.stdOut;
m_deepestSection->stdErr = testCaseStats.stdErr;
}
void testGroupEnded(TestGroupStats const& testGroupStats) override
{
auto node = std::make_shared<TestGroupNode>(testGroupStats);
node->children.swap(m_testCases);
m_testGroups.push_back(node);
}
void testRunEnded(TestRunStats const& testRunStats) override
{
auto node = std::make_shared<TestRunNode>(testRunStats);
node->children.swap(m_testGroups);
m_testRuns.push_back(node);
testRunEndedCumulative();
}
virtual void testRunEndedCumulative() = 0;
void skipTest(TestCaseInfo const&) override {}
IConfigPtr m_config;
std::ostream& stream;
std::vector<AssertionStats> m_assertions;
std::vector<std::vector<std::shared_ptr<SectionNode>>> m_sections;
std::vector<std::shared_ptr<TestCaseNode>> m_testCases;
std::vector<std::shared_ptr<TestGroupNode>> m_testGroups;
std::vector<std::shared_ptr<TestRunNode>> m_testRuns;
std::shared_ptr<SectionNode> m_rootSection;
std::shared_ptr<SectionNode> m_deepestSection;
std::vector<std::shared_ptr<SectionNode>> m_sectionStack;
ReporterPreferences m_reporterPrefs;
};
template<char C>
char const* getLineOfChars()
{
static char line[CATCH_CONFIG_CONSOLE_WIDTH] = {0};
if (!*line)
{
std::memset(line, C, CATCH_CONFIG_CONSOLE_WIDTH - 1);
line[CATCH_CONFIG_CONSOLE_WIDTH - 1] = 0;
}
return line;
}
struct TestEventListenerBase : StreamingReporterBase<TestEventListenerBase>
{
TestEventListenerBase(ReporterConfig const& _config);
static std::set<Verbosity> getSupportedVerbosities();
void assertionStarting(AssertionInfo const&) override;
bool assertionEnded(AssertionStats const&) override;
};
} // end namespace Catch
// end catch_reporter_bases.hpp
// start catch_console_colour.h
namespace Catch {
struct Colour
{
enum Code {
None = 0,
White,
Red,
Green,
Blue,
Cyan,
Yellow,
Grey,
Bright = 0x10,
BrightRed = Bright | Red,
BrightGreen = Bright | Green,
LightGrey = Bright | Grey,
BrightWhite = Bright | White,
BrightYellow = Bright | Yellow,
// By intention
FileName = LightGrey,
Warning = BrightYellow,
ResultError = BrightRed,
ResultSuccess = BrightGreen,
ResultExpectedFailure = Warning,
Error = BrightRed,
Success = Green,
OriginalExpression = Cyan,
ReconstructedExpression = BrightYellow,
SecondaryText = LightGrey,
Headers = White
};
// Use constructed object for RAII guard
Colour(Code _colourCode);
Colour(Colour&& other) noexcept;
Colour& operator=(Colour&& other) noexcept;
~Colour();
// Use static method for one-shot changes
static void use(Code _colourCode);
private:
bool m_moved = false;
};
std::ostream& operator<<(std::ostream& os, Colour const&);
} // end namespace Catch
// end catch_console_colour.h
// start catch_reporter_registrars.hpp
namespace Catch {
template<typename T>
class ReporterRegistrar
{
class ReporterFactory : public IReporterFactory
{
IStreamingReporterPtr create(ReporterConfig const& config) const override
{
return std::unique_ptr<T>(new T(config));
}
std::string getDescription() const override { return T::getDescription(); }
};
public:
explicit ReporterRegistrar(std::string const& name)
{
getMutableRegistryHub().registerReporter(name, std::make_shared<ReporterFactory>());
}
};
template<typename T>
class ListenerRegistrar
{
class ListenerFactory : public IReporterFactory
{
IStreamingReporterPtr create(ReporterConfig const& config) const override
{
return std::unique_ptr<T>(new T(config));
}
std::string getDescription() const override { return std::string(); }
};
public:
ListenerRegistrar() { getMutableRegistryHub().registerListener(std::make_shared<ListenerFactory>()); }
};
} // namespace Catch
#if !defined(CATCH_CONFIG_DISABLE)
#define CATCH_REGISTER_REPORTER(name, reporterType) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
namespace { \
Catch::ReporterRegistrar<reporterType> catch_internal_RegistrarFor##reporterType(name); \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
#define CATCH_REGISTER_LISTENER(listenerType) \
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION \
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS \
namespace { \
Catch::ListenerRegistrar<listenerType> catch_internal_RegistrarFor##listenerType; \
} \
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
#else // CATCH_CONFIG_DISABLE
#define CATCH_REGISTER_REPORTER(name, reporterType)
#define CATCH_REGISTER_LISTENER(listenerType)
#endif // CATCH_CONFIG_DISABLE
// end catch_reporter_registrars.hpp
// Allow users to base their work off existing reporters
// start catch_reporter_compact.h
namespace Catch {
struct CompactReporter : StreamingReporterBase<CompactReporter>
{
using StreamingReporterBase::StreamingReporterBase;
~CompactReporter() override;
static std::string getDescription();
void noMatchingTestCases(std::string const& spec) override;
void assertionStarting(AssertionInfo const&) override;
bool assertionEnded(AssertionStats const& _assertionStats) override;
void sectionEnded(SectionStats const& _sectionStats) override;
void testRunEnded(TestRunStats const& _testRunStats) override;
};
} // end namespace Catch
// end catch_reporter_compact.h
// start catch_reporter_console.h
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4061) // Not all labels are EXPLICITLY handled in switch
// Note that 4062 (not all labels are handled
// and default is missing) is enabled
#endif
namespace Catch {
// Fwd decls
struct SummaryColumn;
class TablePrinter;
struct ConsoleReporter : StreamingReporterBase<ConsoleReporter>
{
std::unique_ptr<TablePrinter> m_tablePrinter;
ConsoleReporter(ReporterConfig const& config);
~ConsoleReporter() override;
static std::string getDescription();
void noMatchingTestCases(std::string const& spec) override;
void reportInvalidArguments(std::string const& arg) override;
void assertionStarting(AssertionInfo const&) override;
bool assertionEnded(AssertionStats const& _assertionStats) override;
void sectionStarting(SectionInfo const& _sectionInfo) override;
void sectionEnded(SectionStats const& _sectionStats) override;
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void benchmarkPreparing(std::string const& name) override;
void benchmarkStarting(BenchmarkInfo const& info) override;
void benchmarkEnded(BenchmarkStats<> const& stats) override;
void benchmarkFailed(std::string const& error) override;
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
void testCaseEnded(TestCaseStats const& _testCaseStats) override;
void testGroupEnded(TestGroupStats const& _testGroupStats) override;
void testRunEnded(TestRunStats const& _testRunStats) override;
void testRunStarting(TestRunInfo const& _testRunInfo) override;
private:
void lazyPrint();
void lazyPrintWithoutClosingBenchmarkTable();
void lazyPrintRunInfo();
void lazyPrintGroupInfo();
void printTestCaseAndSectionHeader();
void printClosedHeader(std::string const& _name);
void printOpenHeader(std::string const& _name);
// if string has a : in first line will set indent to follow it on
// subsequent lines
void printHeaderString(std::string const& _string, std::size_t indent = 0);
void printTotals(Totals const& totals);
void printSummaryRow(std::string const& label, std::vector<SummaryColumn> const& cols, std::size_t row);
void printTotalsDivider(Totals const& totals);
void printSummaryDivider();
void printTestFilters();
private:
bool m_headerPrinted = false;
};
} // end namespace Catch
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
// end catch_reporter_console.h
// start catch_reporter_junit.h
// start catch_xmlwriter.h
#include <vector>
namespace Catch {
enum class XmlFormatting {
None = 0x00,
Indent = 0x01,
Newline = 0x02,
};
XmlFormatting operator|(XmlFormatting lhs, XmlFormatting rhs);
XmlFormatting operator&(XmlFormatting lhs, XmlFormatting rhs);
class XmlEncode
{
public:
enum ForWhat { ForTextNodes, ForAttributes };
XmlEncode(std::string const& str, ForWhat forWhat = ForTextNodes);
void encodeTo(std::ostream& os) const;
friend std::ostream& operator<<(std::ostream& os, XmlEncode const& xmlEncode);
private:
std::string m_str;
ForWhat m_forWhat;
};
class XmlWriter
{
public:
class ScopedElement
{
public:
ScopedElement(XmlWriter* writer, XmlFormatting fmt);
ScopedElement(ScopedElement&& other) noexcept;
ScopedElement& operator=(ScopedElement&& other) noexcept;
~ScopedElement();
ScopedElement& writeText(std::string const& text,
XmlFormatting fmt = XmlFormatting::Newline | XmlFormatting::Indent);
template<typename T>
ScopedElement& writeAttribute(std::string const& name, T const& attribute)
{
m_writer->writeAttribute(name, attribute);
return *this;
}
private:
mutable XmlWriter* m_writer = nullptr;
XmlFormatting m_fmt;
};
XmlWriter(std::ostream& os = Catch::cout());
~XmlWriter();
XmlWriter(XmlWriter const&) = delete;
XmlWriter& operator=(XmlWriter const&) = delete;
XmlWriter& startElement(std::string const& name,
XmlFormatting fmt = XmlFormatting::Newline | XmlFormatting::Indent);
ScopedElement scopedElement(std::string const& name,
XmlFormatting fmt = XmlFormatting::Newline | XmlFormatting::Indent);
XmlWriter& endElement(XmlFormatting fmt = XmlFormatting::Newline | XmlFormatting::Indent);
XmlWriter& writeAttribute(std::string const& name, std::string const& attribute);
XmlWriter& writeAttribute(std::string const& name, bool attribute);
template<typename T>
XmlWriter& writeAttribute(std::string const& name, T const& attribute)
{
ReusableStringStream rss;
rss << attribute;
return writeAttribute(name, rss.str());
}
XmlWriter& writeText(std::string const& text, XmlFormatting fmt = XmlFormatting::Newline | XmlFormatting::Indent);
XmlWriter& writeComment(std::string const& text,
XmlFormatting fmt = XmlFormatting::Newline | XmlFormatting::Indent);
void writeStylesheetRef(std::string const& url);
XmlWriter& writeBlankLine();
void ensureTagClosed();
private:
void applyFormatting(XmlFormatting fmt);
void writeDeclaration();
void newlineIfNecessary();
bool m_tagIsOpen = false;
bool m_needsNewline = false;
std::vector<std::string> m_tags;
std::string m_indent;
std::ostream& m_os;
};
} // namespace Catch
// end catch_xmlwriter.h
namespace Catch {
class JunitReporter : public CumulativeReporterBase<JunitReporter>
{
public:
JunitReporter(ReporterConfig const& _config);
~JunitReporter() override;
static std::string getDescription();
void noMatchingTestCases(std::string const& /*spec*/) override;
void testRunStarting(TestRunInfo const& runInfo) override;
void testGroupStarting(GroupInfo const& groupInfo) override;
void testCaseStarting(TestCaseInfo const& testCaseInfo) override;
bool assertionEnded(AssertionStats const& assertionStats) override;
void testCaseEnded(TestCaseStats const& testCaseStats) override;
void testGroupEnded(TestGroupStats const& testGroupStats) override;
void testRunEndedCumulative() override;
void writeGroup(TestGroupNode const& groupNode, double suiteTime);
void writeTestCase(TestCaseNode const& testCaseNode);
void writeSection(std::string const& className,
std::string const& rootName,
SectionNode const& sectionNode,
bool testOkToFail);
void writeAssertions(SectionNode const& sectionNode);
void writeAssertion(AssertionStats const& stats);
XmlWriter xml;
Timer suiteTimer;
std::string stdOutForSuite;
std::string stdErrForSuite;
unsigned int unexpectedExceptions = 0;
bool m_okToFail = false;
};
} // end namespace Catch
// end catch_reporter_junit.h
// start catch_reporter_xml.h
namespace Catch {
class XmlReporter : public StreamingReporterBase<XmlReporter>
{
public:
XmlReporter(ReporterConfig const& _config);
~XmlReporter() override;
static std::string getDescription();
virtual std::string getStylesheetRef() const;
void writeSourceInfo(SourceLineInfo const& sourceInfo);
public: // StreamingReporterBase
void noMatchingTestCases(std::string const& s) override;
void testRunStarting(TestRunInfo const& testInfo) override;
void testGroupStarting(GroupInfo const& groupInfo) override;
void testCaseStarting(TestCaseInfo const& testInfo) override;
void sectionStarting(SectionInfo const& sectionInfo) override;
void assertionStarting(AssertionInfo const&) override;
bool assertionEnded(AssertionStats const& assertionStats) override;
void sectionEnded(SectionStats const& sectionStats) override;
void testCaseEnded(TestCaseStats const& testCaseStats) override;
void testGroupEnded(TestGroupStats const& testGroupStats) override;
void testRunEnded(TestRunStats const& testRunStats) override;
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void benchmarkPreparing(std::string const& name) override;
void benchmarkStarting(BenchmarkInfo const&) override;
void benchmarkEnded(BenchmarkStats<> const&) override;
void benchmarkFailed(std::string const&) override;
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
private:
Timer m_testCaseTimer;
XmlWriter m_xml;
int m_sectionDepth = 0;
};
} // end namespace Catch
// end catch_reporter_xml.h
// end catch_external_interfaces.h
#endif
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
// start catch_benchmarking_all.hpp
// A proxy header that includes all of the benchmarking headers to allow
// concise include of the benchmarking features. You should prefer the
// individual includes in standard use.
// start catch_benchmark.hpp
// Benchmark
// start catch_chronometer.hpp
// User-facing chronometer
// start catch_clock.hpp
// Clocks
#include <chrono>
#include <ratio>
namespace Catch {
namespace Benchmark {
template<typename Clock>
using ClockDuration = typename Clock::duration;
template<typename Clock>
using FloatDuration = std::chrono::duration<double, typename Clock::period>;
template<typename Clock>
using TimePoint = typename Clock::time_point;
using default_clock = std::chrono::steady_clock;
template<typename Clock>
struct now
{
TimePoint<Clock> operator()() const { return Clock::now(); }
};
using fp_seconds = std::chrono::duration<double, std::ratio<1>>;
} // namespace Benchmark
} // namespace Catch
// end catch_clock.hpp
// start catch_optimizer.hpp
// Hinting the optimizer
#if defined(_MSC_VER)
#include <atomic> // atomic_thread_fence
#endif
namespace Catch {
namespace Benchmark {
#if defined(__GNUC__) || defined(__clang__)
template<typename T>
inline void keep_memory(T* p)
{
asm volatile("" : : "g"(p) : "memory");
}
inline void keep_memory()
{
asm volatile("" : : : "memory");
}
namespace Detail {
inline void optimizer_barrier()
{
keep_memory();
}
} // namespace Detail
#elif defined(_MSC_VER)
#pragma optimize("", off)
template<typename T>
inline void keep_memory(T* p)
{
// thanks @milleniumbug
*reinterpret_cast<char volatile*>(p) = *reinterpret_cast<char const volatile*>(p);
}
// TODO equivalent keep_memory()
#pragma optimize("", on)
namespace Detail {
inline void optimizer_barrier()
{
std::atomic_thread_fence(std::memory_order_seq_cst);
}
} // namespace Detail
#endif
template<typename T>
inline void deoptimize_value(T&& x)
{
keep_memory(&x);
}
template<typename Fn, typename... Args>
inline auto invoke_deoptimized(Fn&& fn, Args&&... args) ->
typename std::enable_if<!std::is_same<void, decltype(fn(args...))>::value>::type
{
deoptimize_value(std::forward<Fn>(fn)(std::forward<Args...>(args...)));
}
template<typename Fn, typename... Args>
inline auto invoke_deoptimized(Fn&& fn, Args&&... args) ->
typename std::enable_if<std::is_same<void, decltype(fn(args...))>::value>::type
{
std::forward<Fn>(fn)(std::forward<Args...>(args...));
}
} // namespace Benchmark
} // namespace Catch
// end catch_optimizer.hpp
// start catch_complete_invoke.hpp
// Invoke with a special case for void
#include <type_traits>
#include <utility>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename T>
struct CompleteType
{
using type = T;
};
template<>
struct CompleteType<void>
{
struct type
{};
};
template<typename T>
using CompleteType_t = typename CompleteType<T>::type;
template<typename Result>
struct CompleteInvoker
{
template<typename Fun, typename... Args>
static Result invoke(Fun&& fun, Args&&... args)
{
return std::forward<Fun>(fun)(std::forward<Args>(args)...);
}
};
template<>
struct CompleteInvoker<void>
{
template<typename Fun, typename... Args>
static CompleteType_t<void> invoke(Fun&& fun, Args&&... args)
{
std::forward<Fun>(fun)(std::forward<Args>(args)...);
return {};
}
};
// invoke and not return void :(
template<typename Fun, typename... Args>
CompleteType_t<FunctionReturnType<Fun, Args...>> complete_invoke(Fun&& fun, Args&&... args)
{
return CompleteInvoker<FunctionReturnType<Fun, Args...>>::invoke(std::forward<Fun>(fun),
std::forward<Args>(args)...);
}
const std::string benchmarkErrorMsg = "a benchmark failed to run successfully";
} // namespace Detail
template<typename Fun>
Detail::CompleteType_t<FunctionReturnType<Fun>> user_code(Fun&& fun)
{
CATCH_TRY
{
return Detail::complete_invoke(std::forward<Fun>(fun));
}
CATCH_CATCH_ALL
{
getResultCapture().benchmarkFailed(translateActiveException());
CATCH_RUNTIME_ERROR(Detail::benchmarkErrorMsg);
}
}
} // namespace Benchmark
} // namespace Catch
// end catch_complete_invoke.hpp
namespace Catch {
namespace Benchmark {
namespace Detail {
struct ChronometerConcept
{
virtual void start() = 0;
virtual void finish() = 0;
virtual ~ChronometerConcept() = default;
};
template<typename Clock>
struct ChronometerModel final : public ChronometerConcept
{
void start() override { started = Clock::now(); }
void finish() override { finished = Clock::now(); }
ClockDuration<Clock> elapsed() const { return finished - started; }
TimePoint<Clock> started;
TimePoint<Clock> finished;
};
} // namespace Detail
struct Chronometer
{
public:
template<typename Fun>
void measure(Fun&& fun)
{
measure(std::forward<Fun>(fun), is_callable<Fun(int)>());
}
int runs() const { return k; }
Chronometer(Detail::ChronometerConcept& meter, int k)
: impl(&meter)
, k(k)
{}
private:
template<typename Fun>
void measure(Fun&& fun, std::false_type)
{
measure([&fun](int) { return fun(); }, std::true_type());
}
template<typename Fun>
void measure(Fun&& fun, std::true_type)
{
Detail::optimizer_barrier();
impl->start();
for (int i = 0; i < k; ++i)
invoke_deoptimized(fun, i);
impl->finish();
Detail::optimizer_barrier();
}
Detail::ChronometerConcept* impl;
int k;
};
} // namespace Benchmark
} // namespace Catch
// end catch_chronometer.hpp
// start catch_environment.hpp
// Environment information
namespace Catch {
namespace Benchmark {
template<typename Duration>
struct EnvironmentEstimate
{
Duration mean;
OutlierClassification outliers;
template<typename Duration2>
operator EnvironmentEstimate<Duration2>() const
{
return {mean, outliers};
}
};
template<typename Clock>
struct Environment
{
using clock_type = Clock;
EnvironmentEstimate<FloatDuration<Clock>> clock_resolution;
EnvironmentEstimate<FloatDuration<Clock>> clock_cost;
};
} // namespace Benchmark
} // namespace Catch
// end catch_environment.hpp
// start catch_execution_plan.hpp
// Execution plan
// start catch_benchmark_function.hpp
// Dumb std::function implementation for consistent call overhead
#include <cassert>
#include <type_traits>
#include <utility>
#include <memory>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename T>
using Decay = typename std::decay<T>::type;
template<typename T, typename U>
struct is_related : std::is_same<Decay<T>, Decay<U>>
{};
/// We need to reinvent std::function because every piece of code that might add overhead
/// in a measurement context needs to have consistent performance characteristics so that we
/// can account for it in the measurement.
/// Implementations of std::function with optimizations that aren't always applicable, like
/// small buffer optimizations, are not uncommon.
/// This is effectively an implementation of std::function without any such optimizations;
/// it may be slow, but it is consistently slow.
struct BenchmarkFunction
{
private:
struct callable
{
virtual void call(Chronometer meter) const = 0;
virtual callable* clone() const = 0;
virtual ~callable() = default;
};
template<typename Fun>
struct model : public callable
{
model(Fun&& fun)
: fun(std::move(fun))
{}
model(Fun const& fun)
: fun(fun)
{}
model<Fun>* clone() const override { return new model<Fun>(*this); }
void call(Chronometer meter) const override { call(meter, is_callable<Fun(Chronometer)>()); }
void call(Chronometer meter, std::true_type) const { fun(meter); }
void call(Chronometer meter, std::false_type) const { meter.measure(fun); }
Fun fun;
};
struct do_nothing
{
void operator()() const {}
};
template<typename T>
BenchmarkFunction(model<T>* c)
: f(c)
{}
public:
BenchmarkFunction()
: f(new model<do_nothing>{{}})
{}
template<typename Fun, typename std::enable_if<!is_related<Fun, BenchmarkFunction>::value, int>::type = 0>
BenchmarkFunction(Fun&& fun)
: f(new model<typename std::decay<Fun>::type>(std::forward<Fun>(fun)))
{}
BenchmarkFunction(BenchmarkFunction&& that)
: f(std::move(that.f))
{}
BenchmarkFunction(BenchmarkFunction const& that)
: f(that.f->clone())
{}
BenchmarkFunction& operator=(BenchmarkFunction&& that)
{
f = std::move(that.f);
return *this;
}
BenchmarkFunction& operator=(BenchmarkFunction const& that)
{
f.reset(that.f->clone());
return *this;
}
void operator()(Chronometer meter) const { f->call(meter); }
private:
std::unique_ptr<callable> f;
};
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// end catch_benchmark_function.hpp
// start catch_repeat.hpp
// repeat algorithm
#include <type_traits>
#include <utility>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename Fun>
struct repeater
{
void operator()(int k) const
{
for (int i = 0; i < k; ++i)
{
fun();
}
}
Fun fun;
};
template<typename Fun>
repeater<typename std::decay<Fun>::type> repeat(Fun&& fun)
{
return {std::forward<Fun>(fun)};
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// end catch_repeat.hpp
// start catch_run_for_at_least.hpp
// Run a function for a minimum amount of time
// start catch_measure.hpp
// Measure
// start catch_timing.hpp
// Timing
#include <tuple>
#include <type_traits>
namespace Catch {
namespace Benchmark {
template<typename Duration, typename Result>
struct Timing
{
Duration elapsed;
Result result;
int iterations;
};
template<typename Clock, typename Func, typename... Args>
using TimingOf = Timing<ClockDuration<Clock>, Detail::CompleteType_t<FunctionReturnType<Func, Args...>>>;
} // namespace Benchmark
} // namespace Catch
// end catch_timing.hpp
#include <utility>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename Clock, typename Fun, typename... Args>
TimingOf<Clock, Fun, Args...> measure(Fun&& fun, Args&&... args)
{
auto start = Clock::now();
auto&& r = Detail::complete_invoke(fun, std::forward<Args>(args)...);
auto end = Clock::now();
auto delta = end - start;
return {delta, std::forward<decltype(r)>(r), 1};
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// end catch_measure.hpp
#include <utility>
#include <type_traits>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename Clock, typename Fun>
TimingOf<Clock, Fun, int> measure_one(Fun&& fun, int iters, std::false_type)
{
return Detail::measure<Clock>(fun, iters);
}
template<typename Clock, typename Fun>
TimingOf<Clock, Fun, Chronometer> measure_one(Fun&& fun, int iters, std::true_type)
{
Detail::ChronometerModel<Clock> meter;
auto&& result = Detail::complete_invoke(fun, Chronometer(meter, iters));
return {meter.elapsed(), std::move(result), iters};
}
template<typename Clock, typename Fun>
using run_for_at_least_argument_t =
typename std::conditional<is_callable<Fun(Chronometer)>::value, Chronometer, int>::type;
struct optimized_away_error : std::exception
{
const char* what() const noexcept override { return "could not measure benchmark, maybe it was optimized away"; }
};
template<typename Clock, typename Fun>
TimingOf<Clock, Fun, run_for_at_least_argument_t<Clock, Fun>>
run_for_at_least(ClockDuration<Clock> how_long, int seed, Fun&& fun)
{
auto iters = seed;
while (iters < (1 << 30))
{
auto&& Timing = measure_one<Clock>(fun, iters, is_callable<Fun(Chronometer)>());
if (Timing.elapsed >= how_long)
{
return {Timing.elapsed, std::move(Timing.result), iters};
}
iters *= 2;
}
Catch::throw_exception(optimized_away_error{});
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// end catch_run_for_at_least.hpp
#include <algorithm>
#include <iterator>
namespace Catch {
namespace Benchmark {
template<typename Duration>
struct ExecutionPlan
{
int iterations_per_sample;
Duration estimated_duration;
Detail::BenchmarkFunction benchmark;
Duration warmup_time;
int warmup_iterations;
template<typename Duration2>
operator ExecutionPlan<Duration2>() const
{
return {iterations_per_sample, estimated_duration, benchmark, warmup_time, warmup_iterations};
}
template<typename Clock>
std::vector<FloatDuration<Clock>> run(const IConfig& cfg, Environment<FloatDuration<Clock>> env) const
{
// warmup a bit
Detail::run_for_at_least<Clock>(std::chrono::duration_cast<ClockDuration<Clock>>(warmup_time),
warmup_iterations,
Detail::repeat(now<Clock>{}));
std::vector<FloatDuration<Clock>> times;
times.reserve(cfg.benchmarkSamples());
std::generate_n(std::back_inserter(times), cfg.benchmarkSamples(), [this, env] {
Detail::ChronometerModel<Clock> model;
this->benchmark(Chronometer(model, iterations_per_sample));
auto sample_time = model.elapsed() - env.clock_cost.mean;
if (sample_time < FloatDuration<Clock>::zero())
sample_time = FloatDuration<Clock>::zero();
return sample_time / iterations_per_sample;
});
return times;
}
};
} // namespace Benchmark
} // namespace Catch
// end catch_execution_plan.hpp
// start catch_estimate_clock.hpp
// Environment measurement
// start catch_stats.hpp
// Statistical analysis tools
#include <algorithm>
#include <functional>
#include <vector>
#include <iterator>
#include <numeric>
#include <tuple>
#include <cmath>
#include <utility>
#include <cstddef>
#include <random>
namespace Catch {
namespace Benchmark {
namespace Detail {
using sample = std::vector<double>;
double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last);
template<typename Iterator>
OutlierClassification classify_outliers(Iterator first, Iterator last)
{
std::vector<double> copy(first, last);
auto q1 = weighted_average_quantile(1, 4, copy.begin(), copy.end());
auto q3 = weighted_average_quantile(3, 4, copy.begin(), copy.end());
auto iqr = q3 - q1;
auto los = q1 - (iqr * 3.);
auto lom = q1 - (iqr * 1.5);
auto him = q3 + (iqr * 1.5);
auto his = q3 + (iqr * 3.);
OutlierClassification o;
for (; first != last; ++first)
{
auto&& t = *first;
if (t < los)
++o.low_severe;
else if (t < lom)
++o.low_mild;
else if (t > his)
++o.high_severe;
else if (t > him)
++o.high_mild;
++o.samples_seen;
}
return o;
}
template<typename Iterator>
double mean(Iterator first, Iterator last)
{
auto count = last - first;
double sum = std::accumulate(first, last, 0.);
return sum / count;
}
template<typename URng, typename Iterator, typename Estimator>
sample resample(URng& rng, int resamples, Iterator first, Iterator last, Estimator& estimator)
{
auto n = last - first;
std::uniform_int_distribution<decltype(n)> dist(0, n - 1);
sample out;
out.reserve(resamples);
std::generate_n(std::back_inserter(out), resamples, [n, first, &estimator, &dist, &rng] {
std::vector<double> resampled;
resampled.reserve(n);
std::generate_n(std::back_inserter(resampled), n, [first, &dist, &rng] { return first[dist(rng)]; });
return estimator(resampled.begin(), resampled.end());
});
std::sort(out.begin(), out.end());
return out;
}
template<typename Estimator, typename Iterator>
sample jackknife(Estimator&& estimator, Iterator first, Iterator last)
{
auto n = last - first;
auto second = std::next(first);
sample results;
results.reserve(n);
for (auto it = first; it != last; ++it)
{
std::iter_swap(it, first);
results.push_back(estimator(second, last));
}
return results;
}
inline double normal_cdf(double x)
{
return std::erfc(-x / std::sqrt(2.0)) / 2.0;
}
double erfc_inv(double x);
double normal_quantile(double p);
template<typename Iterator, typename Estimator>
Estimate<double>
bootstrap(double confidence_level, Iterator first, Iterator last, sample const& resample, Estimator&& estimator)
{
auto n_samples = last - first;
double point = estimator(first, last);
// Degenerate case with a single sample
if (n_samples == 1)
return {point, point, point, confidence_level};
sample jack = jackknife(estimator, first, last);
double jack_mean = mean(jack.begin(), jack.end());
double sum_squares, sum_cubes;
std::tie(sum_squares, sum_cubes) =
std::accumulate(jack.begin(),
jack.end(),
std::make_pair(0., 0.),
[jack_mean](std::pair<double, double> sqcb, double x) -> std::pair<double, double> {
auto d = jack_mean - x;
auto d2 = d * d;
auto d3 = d2 * d;
return {sqcb.first + d2, sqcb.second + d3};
});
double accel = sum_cubes / (6 * std::pow(sum_squares, 1.5));
int n = static_cast<int>(resample.size());
double prob_n =
std::count_if(resample.begin(), resample.end(), [point](double x) { return x < point; }) / (double)n;
// degenerate case with uniform samples
if (prob_n == 0)
return {point, point, point, confidence_level};
double bias = normal_quantile(prob_n);
double z1 = normal_quantile((1. - confidence_level) / 2.);
auto cumn = [n](double x) -> int {
return std::lround(normal_cdf(x) * n);
};
auto a = [bias, accel](double b) {
return bias + b / (1. - accel * b);
};
double b1 = bias + z1;
double b2 = bias - z1;
double a1 = a(b1);
double a2 = a(b2);
auto lo = (std::max)(cumn(a1), 0);
auto hi = (std::min)(cumn(a2), n - 1);
return {point, resample[lo], resample[hi], confidence_level};
}
double outlier_variance(Estimate<double> mean, Estimate<double> stddev, int n);
struct bootstrap_analysis
{
Estimate<double> mean;
Estimate<double> standard_deviation;
double outlier_variance;
};
bootstrap_analysis analyse_samples(double confidence_level,
int n_resamples,
std::vector<double>::iterator first,
std::vector<double>::iterator last);
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// end catch_stats.hpp
#include <algorithm>
#include <iterator>
#include <tuple>
#include <vector>
#include <cmath>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename Clock>
std::vector<double> resolution(int k)
{
std::vector<TimePoint<Clock>> times;
times.reserve(k + 1);
std::generate_n(std::back_inserter(times), k + 1, now<Clock>{});
std::vector<double> deltas;
deltas.reserve(k);
std::transform(std::next(times.begin()),
times.end(),
times.begin(),
std::back_inserter(deltas),
[](TimePoint<Clock> a, TimePoint<Clock> b) { return static_cast<double>((a - b).count()); });
return deltas;
}
const auto warmup_iterations = 10000;
const auto warmup_time = std::chrono::milliseconds(100);
const auto minimum_ticks = 1000;
const auto warmup_seed = 10000;
const auto clock_resolution_estimation_time = std::chrono::milliseconds(500);
const auto clock_cost_estimation_time_limit = std::chrono::seconds(1);
const auto clock_cost_estimation_tick_limit = 100000;
const auto clock_cost_estimation_time = std::chrono::milliseconds(10);
const auto clock_cost_estimation_iterations = 10000;
template<typename Clock>
int warmup()
{
return run_for_at_least<Clock>(std::chrono::duration_cast<ClockDuration<Clock>>(warmup_time),
warmup_seed,
&resolution<Clock>)
.iterations;
}
template<typename Clock>
EnvironmentEstimate<FloatDuration<Clock>> estimate_clock_resolution(int iterations)
{
auto r = run_for_at_least<Clock>(std::chrono::duration_cast<ClockDuration<Clock>>(clock_resolution_estimation_time),
iterations,
&resolution<Clock>)
.result;
return {
FloatDuration<Clock>(mean(r.begin(), r.end())),
classify_outliers(r.begin(), r.end()),
};
}
template<typename Clock>
EnvironmentEstimate<FloatDuration<Clock>> estimate_clock_cost(FloatDuration<Clock> resolution)
{
auto time_limit =
(std::min)(resolution * clock_cost_estimation_tick_limit, FloatDuration<Clock>(clock_cost_estimation_time_limit));
auto time_clock = [](int k) {
return Detail::measure<Clock>([k] {
for (int i = 0; i < k; ++i)
{
volatile auto ignored = Clock::now();
(void)ignored;
}
})
.elapsed;
};
time_clock(1);
int iters = clock_cost_estimation_iterations;
auto&& r = run_for_at_least<Clock>(std::chrono::duration_cast<ClockDuration<Clock>>(clock_cost_estimation_time),
iters,
time_clock);
std::vector<double> times;
int nsamples = static_cast<int>(std::ceil(time_limit / r.elapsed));
times.reserve(nsamples);
std::generate_n(std::back_inserter(times), nsamples, [time_clock, &r] {
return static_cast<double>((time_clock(r.iterations) / r.iterations).count());
});
return {
FloatDuration<Clock>(mean(times.begin(), times.end())),
classify_outliers(times.begin(), times.end()),
};
}
template<typename Clock>
Environment<FloatDuration<Clock>> measure_environment()
{
static Environment<FloatDuration<Clock>>* env = nullptr;
if (env)
{
return *env;
}
auto iters = Detail::warmup<Clock>();
auto resolution = Detail::estimate_clock_resolution<Clock>(iters);
auto cost = Detail::estimate_clock_cost<Clock>(resolution.mean);
env = new Environment<FloatDuration<Clock>>{resolution, cost};
return *env;
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// end catch_estimate_clock.hpp
// start catch_analyse.hpp
// Run and analyse one benchmark
// start catch_sample_analysis.hpp
// Benchmark results
#include <algorithm>
#include <vector>
#include <string>
#include <iterator>
namespace Catch {
namespace Benchmark {
template<typename Duration>
struct SampleAnalysis
{
std::vector<Duration> samples;
Estimate<Duration> mean;
Estimate<Duration> standard_deviation;
OutlierClassification outliers;
double outlier_variance;
template<typename Duration2>
operator SampleAnalysis<Duration2>() const
{
std::vector<Duration2> samples2;
samples2.reserve(samples.size());
std::transform(samples.begin(), samples.end(), std::back_inserter(samples2), [](Duration d) {
return Duration2(d);
});
return {
std::move(samples2),
mean,
standard_deviation,
outliers,
outlier_variance,
};
}
};
} // namespace Benchmark
} // namespace Catch
// end catch_sample_analysis.hpp
#include <algorithm>
#include <iterator>
#include <vector>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename Duration, typename Iterator>
SampleAnalysis<Duration> analyse(const IConfig& cfg, Environment<Duration>, Iterator first, Iterator last)
{
if (!cfg.benchmarkNoAnalysis())
{
std::vector<double> samples;
samples.reserve(last - first);
std::transform(first, last, std::back_inserter(samples), [](Duration d) { return d.count(); });
auto analysis = Catch::Benchmark::Detail::analyse_samples(cfg.benchmarkConfidenceInterval(),
cfg.benchmarkResamples(),
samples.begin(),
samples.end());
auto outliers = Catch::Benchmark::Detail::classify_outliers(samples.begin(), samples.end());
auto wrap_estimate = [](Estimate<double> e) {
return Estimate<Duration>{
Duration(e.point),
Duration(e.lower_bound),
Duration(e.upper_bound),
e.confidence_interval,
};
};
std::vector<Duration> samples2;
samples2.reserve(samples.size());
std::transform(samples.begin(), samples.end(), std::back_inserter(samples2), [](double d) {
return Duration(d);
});
return {
std::move(samples2),
wrap_estimate(analysis.mean),
wrap_estimate(analysis.standard_deviation),
outliers,
analysis.outlier_variance,
};
}
else
{
std::vector<Duration> samples;
samples.reserve(last - first);
Duration mean = Duration(0);
int i = 0;
for (auto it = first; it < last; ++it, ++i)
{
samples.push_back(Duration(*it));
mean += Duration(*it);
}
mean /= i;
return {std::move(samples),
Estimate<Duration>{mean, mean, mean, 0.0},
Estimate<Duration>{Duration(0), Duration(0), Duration(0), 0.0},
OutlierClassification{},
0.0};
}
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// end catch_analyse.hpp
#include <algorithm>
#include <functional>
#include <string>
#include <vector>
#include <cmath>
namespace Catch {
namespace Benchmark {
struct Benchmark
{
Benchmark(std::string&& name)
: name(std::move(name))
{}
template<class FUN>
Benchmark(std::string&& name, FUN&& func)
: fun(std::move(func))
, name(std::move(name))
{}
template<typename Clock>
ExecutionPlan<FloatDuration<Clock>> prepare(const IConfig& cfg, Environment<FloatDuration<Clock>> env) const
{
auto min_time = env.clock_resolution.mean * Detail::minimum_ticks;
auto run_time = std::max(min_time, std::chrono::duration_cast<decltype(min_time)>(cfg.benchmarkWarmupTime()));
auto&& test =
Detail::run_for_at_least<Clock>(std::chrono::duration_cast<ClockDuration<Clock>>(run_time), 1, fun);
int new_iters = static_cast<int>(std::ceil(min_time * test.iterations / test.elapsed));
return {new_iters,
test.elapsed / test.iterations * new_iters * cfg.benchmarkSamples(),
fun,
std::chrono::duration_cast<FloatDuration<Clock>>(cfg.benchmarkWarmupTime()),
Detail::warmup_iterations};
}
template<typename Clock = default_clock>
void run()
{
IConfigPtr cfg = getCurrentContext().getConfig();
auto env = Detail::measure_environment<Clock>();
getResultCapture().benchmarkPreparing(name);
CATCH_TRY
{
auto plan = user_code([&] { return prepare<Clock>(*cfg, env); });
BenchmarkInfo info{name,
plan.estimated_duration.count(),
plan.iterations_per_sample,
cfg->benchmarkSamples(),
cfg->benchmarkResamples(),
env.clock_resolution.mean.count(),
env.clock_cost.mean.count()};
getResultCapture().benchmarkStarting(info);
auto samples = user_code([&] { return plan.template run<Clock>(*cfg, env); });
auto analysis = Detail::analyse(*cfg, env, samples.begin(), samples.end());
BenchmarkStats<FloatDuration<Clock>> stats{info,
analysis.samples,
analysis.mean,
analysis.standard_deviation,
analysis.outliers,
analysis.outlier_variance};
getResultCapture().benchmarkEnded(stats);
}
CATCH_CATCH_ALL
{
if (translateActiveException() !=
Detail::benchmarkErrorMsg) // benchmark errors have been reported, otherwise rethrow.
std::rethrow_exception(std::current_exception());
}
}
// sets lambda to be used in fun *and* executes benchmark!
template<typename Fun, typename std::enable_if<!Detail::is_related<Fun, Benchmark>::value, int>::type = 0>
Benchmark& operator=(Fun func)
{
fun = Detail::BenchmarkFunction(func);
run();
return *this;
}
explicit operator bool() { return true; }
private:
Detail::BenchmarkFunction fun;
std::string name;
};
} // namespace Benchmark
} // namespace Catch
#define INTERNAL_CATCH_GET_1_ARG(arg1, arg2, ...) arg1
#define INTERNAL_CATCH_GET_2_ARG(arg1, arg2, ...) arg2
#define INTERNAL_CATCH_BENCHMARK(BenchmarkName, name, benchmarkIndex) \
if (Catch::Benchmark::Benchmark BenchmarkName{name}) \
BenchmarkName = [&](int benchmarkIndex)
#define INTERNAL_CATCH_BENCHMARK_ADVANCED(BenchmarkName, name) \
if (Catch::Benchmark::Benchmark BenchmarkName{name}) \
BenchmarkName = [&]
// end catch_benchmark.hpp
// start catch_constructor.hpp
// Constructor and destructor helpers
#include <type_traits>
namespace Catch {
namespace Benchmark {
namespace Detail {
template<typename T, bool Destruct>
struct ObjectStorage
{
using TStorage = typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type;
ObjectStorage()
: data()
{}
ObjectStorage(const ObjectStorage& other) { new (&data) T(other.stored_object()); }
ObjectStorage(ObjectStorage&& other) { new (&data) T(std::move(other.stored_object())); }
~ObjectStorage() { destruct_on_exit<T>(); }
template<typename... Args>
void construct(Args&&... args)
{
new (&data) T(std::forward<Args>(args)...);
}
template<bool AllowManualDestruction = !Destruct>
typename std::enable_if<AllowManualDestruction>::type destruct()
{
stored_object().~T();
}
private:
// If this is a constructor benchmark, destruct the underlying object
template<typename U>
void destruct_on_exit(typename std::enable_if<Destruct, U>::type* = 0)
{
destruct<true>();
}
// Otherwise, don't
template<typename U>
void destruct_on_exit(typename std::enable_if<!Destruct, U>::type* = 0)
{}
T& stored_object() { return *static_cast<T*>(static_cast<void*>(&data)); }
T const& stored_object() const { return *static_cast<T*>(static_cast<void*>(&data)); }
TStorage data;
};
} // namespace Detail
template<typename T>
using storage_for = Detail::ObjectStorage<T, true>;
template<typename T>
using destructable_object = Detail::ObjectStorage<T, false>;
} // namespace Benchmark
} // namespace Catch
// end catch_constructor.hpp
// end catch_benchmarking_all.hpp
#endif
#endif // ! CATCH_CONFIG_IMPL_ONLY
#ifdef CATCH_IMPL
// start catch_impl.hpp
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wweak-vtables"
#endif
// Keep these here for external reporters
// start catch_test_case_tracker.h
#include <string>
#include <vector>
#include <memory>
namespace Catch {
namespace TestCaseTracking {
struct NameAndLocation
{
std::string name;
SourceLineInfo location;
NameAndLocation(std::string const& _name, SourceLineInfo const& _location);
friend bool operator==(NameAndLocation const& lhs, NameAndLocation const& rhs)
{
return lhs.name == rhs.name && lhs.location == rhs.location;
}
};
class ITracker;
using ITrackerPtr = std::shared_ptr<ITracker>;
class ITracker
{
NameAndLocation m_nameAndLocation;
public:
ITracker(NameAndLocation const& nameAndLoc)
: m_nameAndLocation(nameAndLoc)
{}
// static queries
NameAndLocation const& nameAndLocation() const { return m_nameAndLocation; }
virtual ~ITracker();
// dynamic queries
virtual bool isComplete() const = 0; // Successfully completed or failed
virtual bool isSuccessfullyCompleted() const = 0;
virtual bool isOpen() const = 0; // Started but not complete
virtual bool hasChildren() const = 0;
virtual bool hasStarted() const = 0;
virtual ITracker& parent() = 0;
// actions
virtual void close() = 0; // Successfully complete
virtual void fail() = 0;
virtual void markAsNeedingAnotherRun() = 0;
virtual void addChild(ITrackerPtr const& child) = 0;
virtual ITrackerPtr findChild(NameAndLocation const& nameAndLocation) = 0;
virtual void openChild() = 0;
// Debug/ checking
virtual bool isSectionTracker() const = 0;
virtual bool isGeneratorTracker() const = 0;
};
class TrackerContext
{
enum RunState { NotStarted, Executing, CompletedCycle };
ITrackerPtr m_rootTracker;
ITracker* m_currentTracker = nullptr;
RunState m_runState = NotStarted;
public:
ITracker& startRun();
void endRun();
void startCycle();
void completeCycle();
bool completedCycle() const;
ITracker& currentTracker();
void setCurrentTracker(ITracker* tracker);
};
class TrackerBase : public ITracker
{
protected:
enum CycleState { NotStarted, Executing, ExecutingChildren, NeedsAnotherRun, CompletedSuccessfully, Failed };
using Children = std::vector<ITrackerPtr>;
TrackerContext& m_ctx;
ITracker* m_parent;
Children m_children;
CycleState m_runState = NotStarted;
public:
TrackerBase(NameAndLocation const& nameAndLocation, TrackerContext& ctx, ITracker* parent);
bool isComplete() const override;
bool isSuccessfullyCompleted() const override;
bool isOpen() const override;
bool hasChildren() const override;
bool hasStarted() const override { return m_runState != NotStarted; }
void addChild(ITrackerPtr const& child) override;
ITrackerPtr findChild(NameAndLocation const& nameAndLocation) override;
ITracker& parent() override;
void openChild() override;
bool isSectionTracker() const override;
bool isGeneratorTracker() const override;
void open();
void close() override;
void fail() override;
void markAsNeedingAnotherRun() override;
private:
void moveToParent();
void moveToThis();
};
class SectionTracker : public TrackerBase
{
std::vector<std::string> m_filters;
std::string m_trimmed_name;
public:
SectionTracker(NameAndLocation const& nameAndLocation, TrackerContext& ctx, ITracker* parent);
bool isSectionTracker() const override;
bool isComplete() const override;
static SectionTracker& acquire(TrackerContext& ctx, NameAndLocation const& nameAndLocation);
void tryOpen();
void addInitialFilters(std::vector<std::string> const& filters);
void addNextFilters(std::vector<std::string> const& filters);
//! Returns filters active in this tracker
std::vector<std::string> const& getFilters() const;
//! Returns whitespace-trimmed name of the tracked section
std::string const& trimmedName() const;
};
} // namespace TestCaseTracking
using TestCaseTracking::ITracker;
using TestCaseTracking::SectionTracker;
using TestCaseTracking::TrackerContext;
} // namespace Catch
// end catch_test_case_tracker.h
// start catch_leak_detector.h
namespace Catch {
struct LeakDetector
{
LeakDetector();
~LeakDetector();
};
} // namespace Catch
// end catch_leak_detector.h
// Cpp files will be included in the single-header file here
// start catch_stats.cpp
// Statistical analysis tools
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
#include <cassert>
#include <random>
#if defined(CATCH_CONFIG_USE_ASYNC)
#include <future>
#endif
namespace {
double erf_inv(double x)
{
// Code accompanying the article "Approximating the erfinv function" in GPU Computing Gems, Volume 2
double w, p;
w = -log((1.0 - x) * (1.0 + x));
if (w < 6.250000)
{
w = w - 3.125000;
p = -3.6444120640178196996e-21;
p = -1.685059138182016589e-19 + p * w;
p = 1.2858480715256400167e-18 + p * w;
p = 1.115787767802518096e-17 + p * w;
p = -1.333171662854620906e-16 + p * w;
p = 2.0972767875968561637e-17 + p * w;
p = 6.6376381343583238325e-15 + p * w;
p = -4.0545662729752068639e-14 + p * w;
p = -8.1519341976054721522e-14 + p * w;
p = 2.6335093153082322977e-12 + p * w;
p = -1.2975133253453532498e-11 + p * w;
p = -5.4154120542946279317e-11 + p * w;
p = 1.051212273321532285e-09 + p * w;
p = -4.1126339803469836976e-09 + p * w;
p = -2.9070369957882005086e-08 + p * w;
p = 4.2347877827932403518e-07 + p * w;
p = -1.3654692000834678645e-06 + p * w;
p = -1.3882523362786468719e-05 + p * w;
p = 0.0001867342080340571352 + p * w;
p = -0.00074070253416626697512 + p * w;
p = -0.0060336708714301490533 + p * w;
p = 0.24015818242558961693 + p * w;
p = 1.6536545626831027356 + p * w;
}
else if (w < 16.000000)
{
w = sqrt(w) - 3.250000;
p = 2.2137376921775787049e-09;
p = 9.0756561938885390979e-08 + p * w;
p = -2.7517406297064545428e-07 + p * w;
p = 1.8239629214389227755e-08 + p * w;
p = 1.5027403968909827627e-06 + p * w;
p = -4.013867526981545969e-06 + p * w;
p = 2.9234449089955446044e-06 + p * w;
p = 1.2475304481671778723e-05 + p * w;
p = -4.7318229009055733981e-05 + p * w;
p = 6.8284851459573175448e-05 + p * w;
p = 2.4031110387097893999e-05 + p * w;
p = -0.0003550375203628474796 + p * w;
p = 0.00095328937973738049703 + p * w;
p = -0.0016882755560235047313 + p * w;
p = 0.0024914420961078508066 + p * w;
p = -0.0037512085075692412107 + p * w;
p = 0.005370914553590063617 + p * w;
p = 1.0052589676941592334 + p * w;
p = 3.0838856104922207635 + p * w;
}
else
{
w = sqrt(w) - 5.000000;
p = -2.7109920616438573243e-11;
p = -2.5556418169965252055e-10 + p * w;
p = 1.5076572693500548083e-09 + p * w;
p = -3.7894654401267369937e-09 + p * w;
p = 7.6157012080783393804e-09 + p * w;
p = -1.4960026627149240478e-08 + p * w;
p = 2.9147953450901080826e-08 + p * w;
p = -6.7711997758452339498e-08 + p * w;
p = 2.2900482228026654717e-07 + p * w;
p = -9.9298272942317002539e-07 + p * w;
p = 4.5260625972231537039e-06 + p * w;
p = -1.9681778105531670567e-05 + p * w;
p = 7.5995277030017761139e-05 + p * w;
p = -0.00021503011930044477347 + p * w;
p = -0.00013871931833623122026 + p * w;
p = 1.0103004648645343977 + p * w;
p = 4.8499064014085844221 + p * w;
}
return p * x;
}
double standard_deviation(std::vector<double>::iterator first, std::vector<double>::iterator last)
{
auto m = Catch::Benchmark::Detail::mean(first, last);
double variance = std::accumulate(first,
last,
0.,
[m](double a, double b) {
double diff = b - m;
return a + diff * diff;
}) /
(last - first);
return std::sqrt(variance);
}
} // namespace
namespace Catch {
namespace Benchmark {
namespace Detail {
double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last)
{
auto count = last - first;
double idx = (count - 1) * k / static_cast<double>(q);
int j = static_cast<int>(idx);
double g = idx - j;
std::nth_element(first, first + j, last);
auto xj = first[j];
if (g == 0)
return xj;
auto xj1 = *std::min_element(first + (j + 1), last);
return xj + g * (xj1 - xj);
}
double erfc_inv(double x)
{
return erf_inv(1.0 - x);
}
double normal_quantile(double p)
{
static const double ROOT_TWO = std::sqrt(2.0);
double result = 0.0;
assert(p >= 0 && p <= 1);
if (p < 0 || p > 1)
{
return result;
}
result = -erfc_inv(2.0 * p);
// result *= normal distribution standard deviation (1.0) * sqrt(2)
result *= /*sd * */ ROOT_TWO;
// result += normal disttribution mean (0)
return result;
}
double outlier_variance(Estimate<double> mean, Estimate<double> stddev, int n)
{
double sb = stddev.point;
double mn = mean.point / n;
double mg_min = mn / 2.;
double sg = (std::min)(mg_min / 4., sb / std::sqrt(n));
double sg2 = sg * sg;
double sb2 = sb * sb;
auto c_max = [n, mn, sb2, sg2](double x) -> double {
double k = mn - x;
double d = k * k;
double nd = n * d;
double k0 = -n * nd;
double k1 = sb2 - n * sg2 + nd;
double det = k1 * k1 - 4 * sg2 * k0;
return (int)(-2. * k0 / (k1 + std::sqrt(det)));
};
auto var_out = [n, sb2, sg2](double c) {
double nc = n - c;
return (nc / n) * (sb2 - nc * sg2);
};
return (std::min)(var_out(1), var_out((std::min)(c_max(0.), c_max(mg_min)))) / sb2;
}
bootstrap_analysis analyse_samples(double confidence_level,
int n_resamples,
std::vector<double>::iterator first,
std::vector<double>::iterator last)
{
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
static std::random_device entropy;
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
auto n = static_cast<int>(last - first); // seriously, one can't use integral types without hell in C++
auto mean = &Detail::mean<std::vector<double>::iterator>;
auto stddev = &standard_deviation;
#if defined(CATCH_CONFIG_USE_ASYNC)
auto Estimate = [=](double (*f)(std::vector<double>::iterator, std::vector<double>::iterator)) {
auto seed = entropy();
return std::async(std::launch::async, [=] {
std::mt19937 rng(seed);
auto resampled = resample(rng, n_resamples, first, last, f);
return bootstrap(confidence_level, first, last, resampled, f);
});
};
auto mean_future = Estimate(mean);
auto stddev_future = Estimate(stddev);
auto mean_estimate = mean_future.get();
auto stddev_estimate = stddev_future.get();
#else
auto Estimate = [=](double (*f)(std::vector<double>::iterator, std::vector<double>::iterator)) {
auto seed = entropy();
std::mt19937 rng(seed);
auto resampled = resample(rng, n_resamples, first, last, f);
return bootstrap(confidence_level, first, last, resampled, f);
};
auto mean_estimate = Estimate(mean);
auto stddev_estimate = Estimate(stddev);
#endif // CATCH_USE_ASYNC
double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n);
return {mean_estimate, stddev_estimate, outlier_variance};
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
// end catch_stats.cpp
// start catch_approx.cpp
#include <cmath>
#include <limits>
namespace {
// Performs equivalent check of std::fabs(lhs - rhs) <= margin
// But without the subtraction to allow for INFINITY in comparison
bool marginComparison(double lhs, double rhs, double margin)
{
return (lhs + margin >= rhs) && (rhs + margin >= lhs);
}
} // namespace
namespace Catch {
namespace Detail {
Approx::Approx(double value)
: m_epsilon(std::numeric_limits<float>::epsilon() * 100)
, m_margin(0.0)
, m_scale(0.0)
, m_value(value)
{}
Approx Approx::custom()
{
return Approx(0);
}
Approx Approx::operator-() const
{
auto temp(*this);
temp.m_value = -temp.m_value;
return temp;
}
std::string Approx::toString() const
{
ReusableStringStream rss;
rss << "Approx( " << ::Catch::Detail::stringify(m_value) << " )";
return rss.str();
}
bool Approx::equalityComparisonImpl(const double other) const
{
// First try with fixed margin, then compute margin based on epsilon, scale and Approx's value
// Thanks to Richard Harris for his help refining the scaled margin value
return marginComparison(m_value, other, m_margin) ||
marginComparison(m_value, other, m_epsilon * (m_scale + std::fabs(std::isinf(m_value) ? 0 : m_value)));
}
void Approx::setMargin(double newMargin)
{
CATCH_ENFORCE(newMargin >= 0,
"Invalid Approx::margin: " << newMargin << '.' << " Approx::Margin has to be non-negative.");
m_margin = newMargin;
}
void Approx::setEpsilon(double newEpsilon)
{
CATCH_ENFORCE(newEpsilon >= 0 && newEpsilon <= 1.0,
"Invalid Approx::epsilon: " << newEpsilon << '.' << " Approx::epsilon has to be in [0, 1]");
m_epsilon = newEpsilon;
}
} // end namespace Detail
namespace literals {
Detail::Approx operator"" _a(long double val)
{
return Detail::Approx(val);
}
Detail::Approx operator"" _a(unsigned long long val)
{
return Detail::Approx(val);
}
} // end namespace literals
std::string StringMaker<Catch::Detail::Approx>::convert(Catch::Detail::Approx const& value)
{
return value.toString();
}
} // end namespace Catch
// end catch_approx.cpp
// start catch_assertionhandler.cpp
// start catch_debugger.h
namespace Catch {
bool isDebuggerActive();
}
#ifdef CATCH_PLATFORM_MAC
#if defined(__i386__) || defined(__x86_64__)
#define CATCH_TRAP() __asm__("int $3\n" : :) /* NOLINT */
#elif defined(__aarch64__)
#define CATCH_TRAP() __asm__(".inst 0xd4200000")
#endif
#elif defined(CATCH_PLATFORM_IPHONE)
// use inline assembler
#if defined(__i386__) || defined(__x86_64__)
#define CATCH_TRAP() __asm__("int $3")
#elif defined(__aarch64__)
#define CATCH_TRAP() __asm__(".inst 0xd4200000")
#elif defined(__arm__) && !defined(__thumb__)
#define CATCH_TRAP() __asm__(".inst 0xe7f001f0")
#elif defined(__arm__) && defined(__thumb__)
#define CATCH_TRAP() __asm__(".inst 0xde01")
#endif
#elif defined(CATCH_PLATFORM_LINUX)
// If we can use inline assembler, do it because this allows us to break
// directly at the location of the failing check instead of breaking inside
// raise() called from it, i.e. one stack frame below.
#if defined(__GNUC__) && (defined(__i386) || defined(__x86_64))
#define CATCH_TRAP() asm volatile("int $3") /* NOLINT */
#else // Fall back to the generic way.
#include <signal.h>
#define CATCH_TRAP() raise(SIGTRAP)
#endif
#elif defined(_MSC_VER)
#define CATCH_TRAP() __debugbreak()
#elif defined(__MINGW32__)
extern "C" __declspec(dllimport) void __stdcall DebugBreak();
#define CATCH_TRAP() DebugBreak()
#endif
#ifndef CATCH_BREAK_INTO_DEBUGGER
#ifdef CATCH_TRAP
#define CATCH_BREAK_INTO_DEBUGGER() \
[] { \
if (Catch::isDebuggerActive()) \
{ \
CATCH_TRAP(); \
} \
}()
#else
#define CATCH_BREAK_INTO_DEBUGGER() \
[] { \
}()
#endif
#endif
// end catch_debugger.h
// start catch_run_context.h
// start catch_fatal_condition.h
#include <cassert>
namespace Catch {
// Wrapper for platform-specific fatal error (signals/SEH) handlers
//
// Tries to be cooperative with other handlers, and not step over
// other handlers. This means that unknown structured exceptions
// are passed on, previous signal handlers are called, and so on.
//
// Can only be instantiated once, and assumes that once a signal
// is caught, the binary will end up terminating. Thus, there
class FatalConditionHandler
{
bool m_started = false;
// Install/disengage implementation for specific platform.
// Should be if-defed to work on current platform, can assume
// engage-disengage 1:1 pairing.
void engage_platform();
void disengage_platform();
public:
// Should also have platform-specific implementations as needed
FatalConditionHandler();
~FatalConditionHandler();
void engage()
{
assert(!m_started && "Handler cannot be installed twice.");
m_started = true;
engage_platform();
}
void disengage()
{
assert(m_started && "Handler cannot be uninstalled without being installed first");
m_started = false;
disengage_platform();
}
};
//! Simple RAII guard for (dis)engaging the FatalConditionHandler
class FatalConditionHandlerGuard
{
FatalConditionHandler* m_handler;
public:
FatalConditionHandlerGuard(FatalConditionHandler* handler)
: m_handler(handler)
{
m_handler->engage();
}
~FatalConditionHandlerGuard() { m_handler->disengage(); }
};
} // end namespace Catch
// end catch_fatal_condition.h
#include <string>
namespace Catch {
struct IMutableContext;
///////////////////////////////////////////////////////////////////////////
class RunContext : public IResultCapture,
public IRunner
{
public:
RunContext(RunContext const&) = delete;
RunContext& operator=(RunContext const&) = delete;
explicit RunContext(IConfigPtr const& _config, IStreamingReporterPtr&& reporter);
~RunContext() override;
void testGroupStarting(std::string const& testSpec, std::size_t groupIndex, std::size_t groupsCount);
void testGroupEnded(std::string const& testSpec,
Totals const& totals,
std::size_t groupIndex,
std::size_t groupsCount);
Totals runTest(TestCase const& testCase);
IConfigPtr config() const;
IStreamingReporter& reporter() const;
public: // IResultCapture
// Assertion handlers
void handleExpr(AssertionInfo const& info, ITransientExpression const& expr, AssertionReaction& reaction) override;
void handleMessage(AssertionInfo const& info,
ResultWas::OfType resultType,
StringRef const& message,
AssertionReaction& reaction) override;
void handleUnexpectedExceptionNotThrown(AssertionInfo const& info, AssertionReaction& reaction) override;
void handleUnexpectedInflightException(AssertionInfo const& info,
std::string const& message,
AssertionReaction& reaction) override;
void handleIncomplete(AssertionInfo const& info) override;
void handleNonExpr(AssertionInfo const& info, ResultWas::OfType resultType, AssertionReaction& reaction) override;
bool sectionStarted(SectionInfo const& sectionInfo, Counts& assertions) override;
void sectionEnded(SectionEndInfo const& endInfo) override;
void sectionEndedEarly(SectionEndInfo const& endInfo) override;
auto acquireGeneratorTracker(StringRef generatorName,
SourceLineInfo const& lineInfo) -> IGeneratorTracker& override;
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void benchmarkPreparing(std::string const& name) override;
void benchmarkStarting(BenchmarkInfo const& info) override;
void benchmarkEnded(BenchmarkStats<> const& stats) override;
void benchmarkFailed(std::string const& error) override;
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
void pushScopedMessage(MessageInfo const& message) override;
void popScopedMessage(MessageInfo const& message) override;
void emplaceUnscopedMessage(MessageBuilder const& builder) override;
std::string getCurrentTestName() const override;
const AssertionResult* getLastResult() const override;
void exceptionEarlyReported() override;
void handleFatalErrorCondition(StringRef message) override;
bool lastAssertionPassed() override;
void assertionPassed() override;
public:
// !TBD We need to do this another way!
bool aborting() const final;
private:
void runCurrentTest(std::string& redirectedCout, std::string& redirectedCerr);
void invokeActiveTestCase();
void resetAssertionInfo();
bool testForMissingAssertions(Counts& assertions);
void assertionEnded(AssertionResult const& result);
void reportExpr(AssertionInfo const& info,
ResultWas::OfType resultType,
ITransientExpression const* expr,
bool negated);
void populateReaction(AssertionReaction& reaction);
private:
void handleUnfinishedSections();
TestRunInfo m_runInfo;
IMutableContext& m_context;
TestCase const* m_activeTestCase = nullptr;
ITracker* m_testCaseTracker = nullptr;
Option<AssertionResult> m_lastResult;
IConfigPtr m_config;
Totals m_totals;
IStreamingReporterPtr m_reporter;
std::vector<MessageInfo> m_messages;
std::vector<ScopedMessage> m_messageScopes; /* Keeps owners of so-called unscoped messages. */
AssertionInfo m_lastAssertionInfo;
std::vector<SectionEndInfo> m_unfinishedSections;
std::vector<ITracker*> m_activeSections;
TrackerContext m_trackerContext;
FatalConditionHandler m_fatalConditionhandler;
bool m_lastAssertionPassed = false;
bool m_shouldReportUnexpected = true;
bool m_includeSuccessfulResults;
};
void seedRng(IConfig const& config);
unsigned int rngSeed();
} // end namespace Catch
// end catch_run_context.h
namespace Catch {
namespace {
auto operator<<(std::ostream& os, ITransientExpression const& expr) -> std::ostream&
{
expr.streamReconstructedExpression(os);
return os;
}
} // namespace
LazyExpression::LazyExpression(bool isNegated)
: m_isNegated(isNegated)
{}
LazyExpression::LazyExpression(LazyExpression const& other)
: m_isNegated(other.m_isNegated)
{}
LazyExpression::operator bool() const
{
return m_transientExpression != nullptr;
}
auto operator<<(std::ostream& os, LazyExpression const& lazyExpr) -> std::ostream&
{
if (lazyExpr.m_isNegated)
os << "!";
if (lazyExpr)
{
if (lazyExpr.m_isNegated && lazyExpr.m_transientExpression->isBinaryExpression())
os << "(" << *lazyExpr.m_transientExpression << ")";
else
os << *lazyExpr.m_transientExpression;
}
else
{
os << "{** error - unchecked empty expression requested **}";
}
return os;
}
AssertionHandler::AssertionHandler(StringRef const& macroName,
SourceLineInfo const& lineInfo,
StringRef capturedExpression,
ResultDisposition::Flags resultDisposition)
: m_assertionInfo{macroName, lineInfo, capturedExpression, resultDisposition}
, m_resultCapture(getResultCapture())
{}
void AssertionHandler::handleExpr(ITransientExpression const& expr)
{
m_resultCapture.handleExpr(m_assertionInfo, expr, m_reaction);
}
void AssertionHandler::handleMessage(ResultWas::OfType resultType, StringRef const& message)
{
m_resultCapture.handleMessage(m_assertionInfo, resultType, message, m_reaction);
}
auto AssertionHandler::allowThrows() const -> bool
{
return getCurrentContext().getConfig()->allowThrows();
}
void AssertionHandler::complete()
{
setCompleted();
if (m_reaction.shouldDebugBreak)
{
// If you find your debugger stopping you here then go one level up on the
// call-stack for the code that caused it (typically a failed assertion)
// (To go back to the test and change execution, jump over the throw, next)
CATCH_BREAK_INTO_DEBUGGER();
}
if (m_reaction.shouldThrow)
{
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
throw Catch::TestFailureException();
#else
CATCH_ERROR("Test failure requires aborting test!");
#endif
}
}
void AssertionHandler::setCompleted()
{
m_completed = true;
}
void AssertionHandler::handleUnexpectedInflightException()
{
m_resultCapture.handleUnexpectedInflightException(m_assertionInfo, Catch::translateActiveException(), m_reaction);
}
void AssertionHandler::handleExceptionThrownAsExpected()
{
m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction);
}
void AssertionHandler::handleExceptionNotThrownAsExpected()
{
m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction);
}
void AssertionHandler::handleUnexpectedExceptionNotThrown()
{
m_resultCapture.handleUnexpectedExceptionNotThrown(m_assertionInfo, m_reaction);
}
void AssertionHandler::handleThrowingCallSkipped()
{
m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction);
}
// This is the overload that takes a string and infers the Equals matcher from it
// The more general overload, that takes any string matcher, is in catch_capture_matchers.cpp
void handleExceptionMatchExpr(AssertionHandler& handler, std::string const& str, StringRef const& matcherString)
{
handleExceptionMatchExpr(handler, Matchers::Equals(str), matcherString);
}
} // namespace Catch
// end catch_assertionhandler.cpp
// start catch_assertionresult.cpp
namespace Catch {
AssertionResultData::AssertionResultData(ResultWas::OfType _resultType, LazyExpression const& _lazyExpression)
: lazyExpression(_lazyExpression)
, resultType(_resultType)
{}
std::string AssertionResultData::reconstructExpression() const
{
if (reconstructedExpression.empty())
{
if (lazyExpression)
{
ReusableStringStream rss;
rss << lazyExpression;
reconstructedExpression = rss.str();
}
}
return reconstructedExpression;
}
AssertionResult::AssertionResult(AssertionInfo const& info, AssertionResultData const& data)
: m_info(info)
, m_resultData(data)
{}
// Result was a success
bool AssertionResult::succeeded() const
{
return Catch::isOk(m_resultData.resultType);
}
// Result was a success, or failure is suppressed
bool AssertionResult::isOk() const
{
return Catch::isOk(m_resultData.resultType) || shouldSuppressFailure(m_info.resultDisposition);
}
ResultWas::OfType AssertionResult::getResultType() const
{
return m_resultData.resultType;
}
bool AssertionResult::hasExpression() const
{
return !m_info.capturedExpression.empty();
}
bool AssertionResult::hasMessage() const
{
return !m_resultData.message.empty();
}
std::string AssertionResult::getExpression() const
{
// Possibly overallocating by 3 characters should be basically free
std::string expr;
expr.reserve(m_info.capturedExpression.size() + 3);
if (isFalseTest(m_info.resultDisposition))
{
expr += "!(";
}
expr += m_info.capturedExpression;
if (isFalseTest(m_info.resultDisposition))
{
expr += ')';
}
return expr;
}
std::string AssertionResult::getExpressionInMacro() const
{
std::string expr;
if (m_info.macroName.empty())
expr = static_cast<std::string>(m_info.capturedExpression);
else
{
expr.reserve(m_info.macroName.size() + m_info.capturedExpression.size() + 4);
expr += m_info.macroName;
expr += "( ";
expr += m_info.capturedExpression;
expr += " )";
}
return expr;
}
bool AssertionResult::hasExpandedExpression() const
{
return hasExpression() && getExpandedExpression() != getExpression();
}
std::string AssertionResult::getExpandedExpression() const
{
std::string expr = m_resultData.reconstructExpression();
return expr.empty() ? getExpression() : expr;
}
std::string AssertionResult::getMessage() const
{
return m_resultData.message;
}
SourceLineInfo AssertionResult::getSourceInfo() const
{
return m_info.lineInfo;
}
StringRef AssertionResult::getTestMacroName() const
{
return m_info.macroName;
}
} // end namespace Catch
// end catch_assertionresult.cpp
// start catch_capture_matchers.cpp
namespace Catch {
using StringMatcher = Matchers::Impl::MatcherBase<std::string>;
// This is the general overload that takes a any string matcher
// There is another overload, in catch_assertionhandler.h/.cpp, that only takes a string and infers
// the Equals matcher (so the header does not mention matchers)
void handleExceptionMatchExpr(AssertionHandler& handler, StringMatcher const& matcher, StringRef const& matcherString)
{
std::string exceptionMessage = Catch::translateActiveException();
MatchExpr<std::string, StringMatcher const&> expr(exceptionMessage, matcher, matcherString);
handler.handleExpr(expr);
}
} // namespace Catch
// end catch_capture_matchers.cpp
// start catch_commandline.cpp
// start catch_commandline.h
// start catch_clara.h
// Use Catch's value for console width (store Clara's off to the side, if present)
#ifdef CLARA_CONFIG_CONSOLE_WIDTH
#define CATCH_TEMP_CLARA_CONFIG_CONSOLE_WIDTH CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#undef CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#endif
#define CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH CATCH_CONFIG_CONSOLE_WIDTH - 1
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wweak-vtables"
#pragma clang diagnostic ignored "-Wexit-time-destructors"
#pragma clang diagnostic ignored "-Wshadow"
#endif
// start clara.hpp
// Copyright 2017 Two Blue Cubes Ltd. All rights reserved.
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See https://github.com/philsquared/Clara for more details
// Clara v1.1.5
#ifndef CATCH_CLARA_CONFIG_CONSOLE_WIDTH
#define CATCH_CLARA_CONFIG_CONSOLE_WIDTH 80
#endif
#ifndef CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#define CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH CATCH_CLARA_CONFIG_CONSOLE_WIDTH
#endif
#ifndef CLARA_CONFIG_OPTIONAL_TYPE
#ifdef __has_include
#if __has_include(<optional>) && __cplusplus >= 201703L
#include <optional>
#define CLARA_CONFIG_OPTIONAL_TYPE std::optional
#endif
#endif
#endif
// ----------- #included from clara_textflow.hpp -----------
// TextFlowCpp
//
// A single-header library for wrapping and laying out basic text, by Phil Nash
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This project is hosted at https://github.com/philsquared/textflowcpp
#include <cassert>
#include <ostream>
#include <sstream>
#include <vector>
#ifndef CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#define CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH 80
#endif
namespace Catch {
namespace clara {
namespace TextFlow {
inline auto isWhitespace(char c) -> bool
{
static std::string chars = " \t\n\r";
return chars.find(c) != std::string::npos;
}
inline auto isBreakableBefore(char c) -> bool
{
static std::string chars = "[({<|";
return chars.find(c) != std::string::npos;
}
inline auto isBreakableAfter(char c) -> bool
{
static std::string chars = "])}>.,:;*+-=&/\\";
return chars.find(c) != std::string::npos;
}
class Columns;
class Column
{
std::vector<std::string> m_strings;
size_t m_width = CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH;
size_t m_indent = 0;
size_t m_initialIndent = std::string::npos;
public:
class iterator
{
friend Column;
Column const& m_column;
size_t m_stringIndex = 0;
size_t m_pos = 0;
size_t m_len = 0;
size_t m_end = 0;
bool m_suffix = false;
iterator(Column const& column, size_t stringIndex)
: m_column(column)
, m_stringIndex(stringIndex)
{}
auto line() const -> std::string const& { return m_column.m_strings[m_stringIndex]; }
auto isBoundary(size_t at) const -> bool
{
assert(at > 0);
assert(at <= line().size());
return at == line().size() || (isWhitespace(line()[at]) && !isWhitespace(line()[at - 1])) ||
isBreakableBefore(line()[at]) || isBreakableAfter(line()[at - 1]);
}
void calcLength()
{
assert(m_stringIndex < m_column.m_strings.size());
m_suffix = false;
auto width = m_column.m_width - indent();
m_end = m_pos;
if (line()[m_pos] == '\n')
{
++m_end;
}
while (m_end < line().size() && line()[m_end] != '\n')
++m_end;
if (m_end < m_pos + width)
{
m_len = m_end - m_pos;
}
else
{
size_t len = width;
while (len > 0 && !isBoundary(m_pos + len))
--len;
while (len > 0 && isWhitespace(line()[m_pos + len - 1]))
--len;
if (len > 0)
{
m_len = len;
}
else
{
m_suffix = true;
m_len = width - 1;
}
}
}
auto indent() const -> size_t
{
auto initial = m_pos == 0 && m_stringIndex == 0 ? m_column.m_initialIndent : std::string::npos;
return initial == std::string::npos ? m_column.m_indent : initial;
}
auto addIndentAndSuffix(std::string const& plain) const -> std::string
{
return std::string(indent(), ' ') + (m_suffix ? plain + "-" : plain);
}
public:
using difference_type = std::ptrdiff_t;
using value_type = std::string;
using pointer = value_type*;
using reference = value_type&;
using iterator_category = std::forward_iterator_tag;
explicit iterator(Column const& column)
: m_column(column)
{
assert(m_column.m_width > m_column.m_indent);
assert(m_column.m_initialIndent == std::string::npos || m_column.m_width > m_column.m_initialIndent);
calcLength();
if (m_len == 0)
m_stringIndex++; // Empty string
}
auto operator*() const -> std::string
{
assert(m_stringIndex < m_column.m_strings.size());
assert(m_pos <= m_end);
return addIndentAndSuffix(line().substr(m_pos, m_len));
}
auto operator++() -> iterator&
{
m_pos += m_len;
if (m_pos < line().size() && line()[m_pos] == '\n')
m_pos += 1;
else
while (m_pos < line().size() && isWhitespace(line()[m_pos]))
++m_pos;
if (m_pos == line().size())
{
m_pos = 0;
++m_stringIndex;
}
if (m_stringIndex < m_column.m_strings.size())
calcLength();
return *this;
}
auto operator++(int) -> iterator
{
iterator prev(*this);
operator++();
return prev;
}
auto operator==(iterator const& other) const -> bool
{
return m_pos == other.m_pos && m_stringIndex == other.m_stringIndex && &m_column == &other.m_column;
}
auto operator!=(iterator const& other) const -> bool { return !operator==(other); }
};
using const_iterator = iterator;
explicit Column(std::string const& text) { m_strings.push_back(text); }
auto width(size_t newWidth) -> Column&
{
assert(newWidth > 0);
m_width = newWidth;
return *this;
}
auto indent(size_t newIndent) -> Column&
{
m_indent = newIndent;
return *this;
}
auto initialIndent(size_t newIndent) -> Column&
{
m_initialIndent = newIndent;
return *this;
}
auto width() const -> size_t { return m_width; }
auto begin() const -> iterator { return iterator(*this); }
auto end() const -> iterator { return {*this, m_strings.size()}; }
inline friend std::ostream& operator<<(std::ostream& os, Column const& col)
{
bool first = true;
for (auto line : col)
{
if (first)
first = false;
else
os << "\n";
os << line;
}
return os;
}
auto operator+(Column const& other) -> Columns;
auto toString() const -> std::string
{
std::ostringstream oss;
oss << *this;
return oss.str();
}
};
class Spacer : public Column
{
public:
explicit Spacer(size_t spaceWidth)
: Column("")
{
width(spaceWidth);
}
};
class Columns
{
std::vector<Column> m_columns;
public:
class iterator
{
friend Columns;
struct EndTag
{};
std::vector<Column> const& m_columns;
std::vector<Column::iterator> m_iterators;
size_t m_activeIterators;
iterator(Columns const& columns, EndTag)
: m_columns(columns.m_columns)
, m_activeIterators(0)
{
m_iterators.reserve(m_columns.size());
for (auto const& col : m_columns)
m_iterators.push_back(col.end());
}
public:
using difference_type = std::ptrdiff_t;
using value_type = std::string;
using pointer = value_type*;
using reference = value_type&;
using iterator_category = std::forward_iterator_tag;
explicit iterator(Columns const& columns)
: m_columns(columns.m_columns)
, m_activeIterators(m_columns.size())
{
m_iterators.reserve(m_columns.size());
for (auto const& col : m_columns)
m_iterators.push_back(col.begin());
}
auto operator==(iterator const& other) const -> bool { return m_iterators == other.m_iterators; }
auto operator!=(iterator const& other) const -> bool { return m_iterators != other.m_iterators; }
auto operator*() const -> std::string
{
std::string row, padding;
for (size_t i = 0; i < m_columns.size(); ++i)
{
auto width = m_columns[i].width();
if (m_iterators[i] != m_columns[i].end())
{
std::string col = *m_iterators[i];
row += padding + col;
if (col.size() < width)
padding = std::string(width - col.size(), ' ');
else
padding = "";
}
else
{
padding += std::string(width, ' ');
}
}
return row;
}
auto operator++() -> iterator&
{
for (size_t i = 0; i < m_columns.size(); ++i)
{
if (m_iterators[i] != m_columns[i].end())
++m_iterators[i];
}
return *this;
}
auto operator++(int) -> iterator
{
iterator prev(*this);
operator++();
return prev;
}
};
using const_iterator = iterator;
auto begin() const -> iterator { return iterator(*this); }
auto end() const -> iterator { return {*this, iterator::EndTag()}; }
auto operator+=(Column const& col) -> Columns&
{
m_columns.push_back(col);
return *this;
}
auto operator+(Column const& col) -> Columns
{
Columns combined = *this;
combined += col;
return combined;
}
inline friend std::ostream& operator<<(std::ostream& os, Columns const& cols)
{
bool first = true;
for (auto line : cols)
{
if (first)
first = false;
else
os << "\n";
os << line;
}
return os;
}
auto toString() const -> std::string
{
std::ostringstream oss;
oss << *this;
return oss.str();
}
};
inline auto Column::operator+(Column const& other) -> Columns
{
Columns cols;
cols += *this;
cols += other;
return cols;
}
} // namespace TextFlow
} // namespace clara
} // namespace Catch
// ----------- end of #include from clara_textflow.hpp -----------
// ........... back in clara.hpp
#include <cctype>
#include <string>
#include <memory>
#include <set>
#include <algorithm>
#if !defined(CATCH_PLATFORM_WINDOWS) && (defined(WIN32) || defined(__WIN32__) || defined(_WIN32) || defined(_MSC_VER))
#define CATCH_PLATFORM_WINDOWS
#endif
namespace Catch {
namespace clara {
namespace detail {
// Traits for extracting arg and return type of lambdas (for single argument lambdas)
template<typename L>
struct UnaryLambdaTraits : UnaryLambdaTraits<decltype(&L::operator())>
{};
template<typename ClassT, typename ReturnT, typename... Args>
struct UnaryLambdaTraits<ReturnT (ClassT::*)(Args...) const>
{
static const bool isValid = false;
};
template<typename ClassT, typename ReturnT, typename ArgT>
struct UnaryLambdaTraits<ReturnT (ClassT::*)(ArgT) const>
{
static const bool isValid = true;
using ArgType = typename std::remove_const<typename std::remove_reference<ArgT>::type>::type;
using ReturnType = ReturnT;
};
class TokenStream;
// Transport for raw args (copied from main args, or supplied via init list for testing)
class Args
{
friend TokenStream;
std::string m_exeName;
std::vector<std::string> m_args;
public:
Args(int argc, char const* const* argv)
: m_exeName(argv[0])
, m_args(argv + 1, argv + argc)
{}
Args(std::initializer_list<std::string> args)
: m_exeName(*args.begin())
, m_args(args.begin() + 1, args.end())
{}
auto exeName() const -> std::string { return m_exeName; }
};
// Wraps a token coming from a token stream. These may not directly correspond to strings as a single string
// may encode an option + its argument if the : or = form is used
enum class TokenType { Option, Argument };
struct Token
{
TokenType type;
std::string token;
};
inline auto isOptPrefix(char c) -> bool
{
return c == '-'
#ifdef CATCH_PLATFORM_WINDOWS
|| c == '/'
#endif
;
}
// Abstracts iterators into args as a stream of tokens, with option arguments uniformly handled
class TokenStream
{
using Iterator = std::vector<std::string>::const_iterator;
Iterator it;
Iterator itEnd;
std::vector<Token> m_tokenBuffer;
void loadBuffer()
{
m_tokenBuffer.resize(0);
// Skip any empty strings
while (it != itEnd && it->empty())
++it;
if (it != itEnd)
{
auto const& next = *it;
if (isOptPrefix(next[0]))
{
auto delimiterPos = next.find_first_of(" :=");
if (delimiterPos != std::string::npos)
{
m_tokenBuffer.push_back({TokenType::Option, next.substr(0, delimiterPos)});
m_tokenBuffer.push_back({TokenType::Argument, next.substr(delimiterPos + 1)});
}
else
{
if (next[1] != '-' && next.size() > 2)
{
std::string opt = "- ";
for (size_t i = 1; i < next.size(); ++i)
{
opt[1] = next[i];
m_tokenBuffer.push_back({TokenType::Option, opt});
}
}
else
{
m_tokenBuffer.push_back({TokenType::Option, next});
}
}
}
else
{
m_tokenBuffer.push_back({TokenType::Argument, next});
}
}
}
public:
explicit TokenStream(Args const& args)
: TokenStream(args.m_args.begin(), args.m_args.end())
{}
TokenStream(Iterator it, Iterator itEnd)
: it(it)
, itEnd(itEnd)
{
loadBuffer();
}
explicit operator bool() const { return !m_tokenBuffer.empty() || it != itEnd; }
auto count() const -> size_t { return m_tokenBuffer.size() + (itEnd - it); }
auto operator*() const -> Token
{
assert(!m_tokenBuffer.empty());
return m_tokenBuffer.front();
}
auto operator->() const -> Token const*
{
assert(!m_tokenBuffer.empty());
return &m_tokenBuffer.front();
}
auto operator++() -> TokenStream&
{
if (m_tokenBuffer.size() >= 2)
{
m_tokenBuffer.erase(m_tokenBuffer.begin());
}
else
{
if (it != itEnd)
++it;
loadBuffer();
}
return *this;
}
};
class ResultBase
{
public:
enum Type { Ok, LogicError, RuntimeError };
protected:
ResultBase(Type type)
: m_type(type)
{}
virtual ~ResultBase() = default;
virtual void enforceOk() const = 0;
Type m_type;
};
template<typename T>
class ResultValueBase : public ResultBase
{
public:
auto value() const -> T const&
{
enforceOk();
return m_value;
}
protected:
ResultValueBase(Type type)
: ResultBase(type)
{}
ResultValueBase(ResultValueBase const& other)
: ResultBase(other)
{
if (m_type == ResultBase::Ok)
new (&m_value) T(other.m_value);
}
ResultValueBase(Type, T const& value)
: ResultBase(Ok)
{
new (&m_value) T(value);
}
auto operator=(ResultValueBase const& other) -> ResultValueBase&
{
if (m_type == ResultBase::Ok)
m_value.~T();
ResultBase::operator=(other);
if (m_type == ResultBase::Ok)
new (&m_value) T(other.m_value);
return *this;
}
~ResultValueBase() override
{
if (m_type == Ok)
m_value.~T();
}
union {
T m_value;
};
};
template<>
class ResultValueBase<void> : public ResultBase
{
protected:
using ResultBase::ResultBase;
};
template<typename T = void>
class BasicResult : public ResultValueBase<T>
{
public:
template<typename U>
explicit BasicResult(BasicResult<U> const& other)
: ResultValueBase<T>(other.type())
, m_errorMessage(other.errorMessage())
{
assert(type() != ResultBase::Ok);
}
template<typename U>
static auto ok(U const& value) -> BasicResult
{
return {ResultBase::Ok, value};
}
static auto ok() -> BasicResult { return {ResultBase::Ok}; }
static auto logicError(std::string const& message) -> BasicResult { return {ResultBase::LogicError, message}; }
static auto runtimeError(std::string const& message) -> BasicResult { return {ResultBase::RuntimeError, message}; }
explicit operator bool() const { return m_type == ResultBase::Ok; }
auto type() const -> ResultBase::Type { return m_type; }
auto errorMessage() const -> std::string { return m_errorMessage; }
protected:
void enforceOk() const override
{
// Errors shouldn't reach this point, but if they do
// the actual error message will be in m_errorMessage
assert(m_type != ResultBase::LogicError);
assert(m_type != ResultBase::RuntimeError);
if (m_type != ResultBase::Ok)
std::abort();
}
std::string m_errorMessage; // Only populated if resultType is an error
BasicResult(ResultBase::Type type, std::string const& message)
: ResultValueBase<T>(type)
, m_errorMessage(message)
{
assert(m_type != ResultBase::Ok);
}
using ResultValueBase<T>::ResultValueBase;
using ResultBase::m_type;
};
enum class ParseResultType { Matched, NoMatch, ShortCircuitAll, ShortCircuitSame };
class ParseState
{
public:
ParseState(ParseResultType type, TokenStream const& remainingTokens)
: m_type(type)
, m_remainingTokens(remainingTokens)
{}
auto type() const -> ParseResultType { return m_type; }
auto remainingTokens() const -> TokenStream { return m_remainingTokens; }
private:
ParseResultType m_type;
TokenStream m_remainingTokens;
};
using Result = BasicResult<void>;
using ParserResult = BasicResult<ParseResultType>;
using InternalParseResult = BasicResult<ParseState>;
struct HelpColumns
{
std::string left;
std::string right;
};
template<typename T>
inline auto convertInto(std::string const& source, T& target) -> ParserResult
{
std::stringstream ss;
ss << source;
ss >> target;
if (ss.fail())
return ParserResult::runtimeError("Unable to convert '" + source + "' to destination type");
else
return ParserResult::ok(ParseResultType::Matched);
}
inline auto convertInto(std::string const& source, std::string& target) -> ParserResult
{
target = source;
return ParserResult::ok(ParseResultType::Matched);
}
inline auto convertInto(std::string const& source, bool& target) -> ParserResult
{
std::string srcLC = source;
std::transform(srcLC.begin(), srcLC.end(), srcLC.begin(), [](unsigned char c) {
return static_cast<char>(std::tolower(c));
});
if (srcLC == "y" || srcLC == "1" || srcLC == "true" || srcLC == "yes" || srcLC == "on")
target = true;
else if (srcLC == "n" || srcLC == "0" || srcLC == "false" || srcLC == "no" || srcLC == "off")
target = false;
else
return ParserResult::runtimeError("Expected a boolean value but did not recognise: '" + source + "'");
return ParserResult::ok(ParseResultType::Matched);
}
#ifdef CLARA_CONFIG_OPTIONAL_TYPE
template<typename T>
inline auto convertInto(std::string const& source, CLARA_CONFIG_OPTIONAL_TYPE<T>& target) -> ParserResult
{
T temp;
auto result = convertInto(source, temp);
if (result)
target = std::move(temp);
return result;
}
#endif // CLARA_CONFIG_OPTIONAL_TYPE
struct NonCopyable
{
NonCopyable() = default;
NonCopyable(NonCopyable const&) = delete;
NonCopyable(NonCopyable&&) = delete;
NonCopyable& operator=(NonCopyable const&) = delete;
NonCopyable& operator=(NonCopyable&&) = delete;
};
struct BoundRef : NonCopyable
{
virtual ~BoundRef() = default;
virtual auto isContainer() const -> bool { return false; }
virtual auto isFlag() const -> bool { return false; }
};
struct BoundValueRefBase : BoundRef
{
virtual auto setValue(std::string const& arg) -> ParserResult = 0;
};
struct BoundFlagRefBase : BoundRef
{
virtual auto setFlag(bool flag) -> ParserResult = 0;
virtual auto isFlag() const -> bool { return true; }
};
template<typename T>
struct BoundValueRef : BoundValueRefBase
{
T& m_ref;
explicit BoundValueRef(T& ref)
: m_ref(ref)
{}
auto setValue(std::string const& arg) -> ParserResult override { return convertInto(arg, m_ref); }
};
template<typename T>
struct BoundValueRef<std::vector<T>> : BoundValueRefBase
{
std::vector<T>& m_ref;
explicit BoundValueRef(std::vector<T>& ref)
: m_ref(ref)
{}
auto isContainer() const -> bool override { return true; }
auto setValue(std::string const& arg) -> ParserResult override
{
T temp;
auto result = convertInto(arg, temp);
if (result)
m_ref.push_back(temp);
return result;
}
};
struct BoundFlagRef : BoundFlagRefBase
{
bool& m_ref;
explicit BoundFlagRef(bool& ref)
: m_ref(ref)
{}
auto setFlag(bool flag) -> ParserResult override
{
m_ref = flag;
return ParserResult::ok(ParseResultType::Matched);
}
};
template<typename ReturnType>
struct LambdaInvoker
{
static_assert(std::is_same<ReturnType, ParserResult>::value, "Lambda must return void or clara::ParserResult");
template<typename L, typename ArgType>
static auto invoke(L const& lambda, ArgType const& arg) -> ParserResult
{
return lambda(arg);
}
};
template<>
struct LambdaInvoker<void>
{
template<typename L, typename ArgType>
static auto invoke(L const& lambda, ArgType const& arg) -> ParserResult
{
lambda(arg);
return ParserResult::ok(ParseResultType::Matched);
}
};
template<typename ArgType, typename L>
inline auto invokeLambda(L const& lambda, std::string const& arg) -> ParserResult
{
ArgType temp{};
auto result = convertInto(arg, temp);
return !result ? result : LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke(lambda, temp);
}
template<typename L>
struct BoundLambda : BoundValueRefBase
{
L m_lambda;
static_assert(UnaryLambdaTraits<L>::isValid, "Supplied lambda must take exactly one argument");
explicit BoundLambda(L const& lambda)
: m_lambda(lambda)
{}
auto setValue(std::string const& arg) -> ParserResult override
{
return invokeLambda<typename UnaryLambdaTraits<L>::ArgType>(m_lambda, arg);
}
};
template<typename L>
struct BoundFlagLambda : BoundFlagRefBase
{
L m_lambda;
static_assert(UnaryLambdaTraits<L>::isValid, "Supplied lambda must take exactly one argument");
static_assert(std::is_same<typename UnaryLambdaTraits<L>::ArgType, bool>::value, "flags must be boolean");
explicit BoundFlagLambda(L const& lambda)
: m_lambda(lambda)
{}
auto setFlag(bool flag) -> ParserResult override
{
return LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke(m_lambda, flag);
}
};
enum class Optionality { Optional, Required };
struct Parser;
class ParserBase
{
public:
virtual ~ParserBase() = default;
virtual auto validate() const -> Result { return Result::ok(); }
virtual auto parse(std::string const& exeName, TokenStream const& tokens) const -> InternalParseResult = 0;
virtual auto cardinality() const -> size_t { return 1; }
auto parse(Args const& args) const -> InternalParseResult { return parse(args.exeName(), TokenStream(args)); }
};
template<typename DerivedT>
class ComposableParserImpl : public ParserBase
{
public:
template<typename T>
auto operator|(T const& other) const -> Parser;
template<typename T>
auto operator+(T const& other) const -> Parser;
};
// Common code and state for Args and Opts
template<typename DerivedT>
class ParserRefImpl : public ComposableParserImpl<DerivedT>
{
protected:
Optionality m_optionality = Optionality::Optional;
std::shared_ptr<BoundRef> m_ref;
std::string m_hint;
std::string m_description;
explicit ParserRefImpl(std::shared_ptr<BoundRef> const& ref)
: m_ref(ref)
{}
public:
template<typename T>
ParserRefImpl(T& ref, std::string const& hint)
: m_ref(std::make_shared<BoundValueRef<T>>(ref))
, m_hint(hint)
{}
template<typename LambdaT>
ParserRefImpl(LambdaT const& ref, std::string const& hint)
: m_ref(std::make_shared<BoundLambda<LambdaT>>(ref))
, m_hint(hint)
{}
auto operator()(std::string const& description) -> DerivedT&
{
m_description = description;
return static_cast<DerivedT&>(*this);
}
auto optional() -> DerivedT&
{
m_optionality = Optionality::Optional;
return static_cast<DerivedT&>(*this);
};
auto required() -> DerivedT&
{
m_optionality = Optionality::Required;
return static_cast<DerivedT&>(*this);
};
auto isOptional() const -> bool { return m_optionality == Optionality::Optional; }
auto cardinality() const -> size_t override
{
if (m_ref->isContainer())
return 0;
else
return 1;
}
auto hint() const -> std::string { return m_hint; }
};
class ExeName : public ComposableParserImpl<ExeName>
{
std::shared_ptr<std::string> m_name;
std::shared_ptr<BoundValueRefBase> m_ref;
template<typename LambdaT>
static auto makeRef(LambdaT const& lambda) -> std::shared_ptr<BoundValueRefBase>
{
return std::make_shared<BoundLambda<LambdaT>>(lambda);
}
public:
ExeName()
: m_name(std::make_shared<std::string>("<executable>"))
{}
explicit ExeName(std::string& ref)
: ExeName()
{
m_ref = std::make_shared<BoundValueRef<std::string>>(ref);
}
template<typename LambdaT>
explicit ExeName(LambdaT const& lambda)
: ExeName()
{
m_ref = std::make_shared<BoundLambda<LambdaT>>(lambda);
}
// The exe name is not parsed out of the normal tokens, but is handled specially
auto parse(std::string const&, TokenStream const& tokens) const -> InternalParseResult override
{
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, tokens));
}
auto name() const -> std::string { return *m_name; }
auto set(std::string const& newName) -> ParserResult
{
auto lastSlash = newName.find_last_of("\\/");
auto filename = (lastSlash == std::string::npos) ? newName : newName.substr(lastSlash + 1);
*m_name = filename;
if (m_ref)
return m_ref->setValue(filename);
else
return ParserResult::ok(ParseResultType::Matched);
}
};
class Arg : public ParserRefImpl<Arg>
{
public:
using ParserRefImpl::ParserRefImpl;
auto parse(std::string const&, TokenStream const& tokens) const -> InternalParseResult override
{
auto validationResult = validate();
if (!validationResult)
return InternalParseResult(validationResult);
auto remainingTokens = tokens;
auto const& token = *remainingTokens;
if (token.type != TokenType::Argument)
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, remainingTokens));
assert(!m_ref->isFlag());
auto valueRef = static_cast<detail::BoundValueRefBase*>(m_ref.get());
auto result = valueRef->setValue(remainingTokens->token);
if (!result)
return InternalParseResult(result);
else
return InternalParseResult::ok(ParseState(ParseResultType::Matched, ++remainingTokens));
}
};
inline auto normaliseOpt(std::string const& optName) -> std::string
{
#ifdef CATCH_PLATFORM_WINDOWS
if (optName[0] == '/')
return "-" + optName.substr(1);
else
#endif
return optName;
}
class Opt : public ParserRefImpl<Opt>
{
protected:
std::vector<std::string> m_optNames;
public:
template<typename LambdaT>
explicit Opt(LambdaT const& ref)
: ParserRefImpl(std::make_shared<BoundFlagLambda<LambdaT>>(ref))
{}
explicit Opt(bool& ref)
: ParserRefImpl(std::make_shared<BoundFlagRef>(ref))
{}
template<typename LambdaT>
Opt(LambdaT const& ref, std::string const& hint)
: ParserRefImpl(ref, hint)
{}
template<typename T>
Opt(T& ref, std::string const& hint)
: ParserRefImpl(ref, hint)
{}
auto operator[](std::string const& optName) -> Opt&
{
m_optNames.push_back(optName);
return *this;
}
auto getHelpColumns() const -> std::vector<HelpColumns>
{
std::ostringstream oss;
bool first = true;
for (auto const& opt : m_optNames)
{
if (first)
first = false;
else
oss << ", ";
oss << opt;
}
if (!m_hint.empty())
oss << " <" << m_hint << ">";
return {{oss.str(), m_description}};
}
auto isMatch(std::string const& optToken) const -> bool
{
auto normalisedToken = normaliseOpt(optToken);
for (auto const& name : m_optNames)
{
if (normaliseOpt(name) == normalisedToken)
return true;
}
return false;
}
using ParserBase::parse;
auto parse(std::string const&, TokenStream const& tokens) const -> InternalParseResult override
{
auto validationResult = validate();
if (!validationResult)
return InternalParseResult(validationResult);
auto remainingTokens = tokens;
if (remainingTokens && remainingTokens->type == TokenType::Option)
{
auto const& token = *remainingTokens;
if (isMatch(token.token))
{
if (m_ref->isFlag())
{
auto flagRef = static_cast<detail::BoundFlagRefBase*>(m_ref.get());
auto result = flagRef->setFlag(true);
if (!result)
return InternalParseResult(result);
if (result.value() == ParseResultType::ShortCircuitAll)
return InternalParseResult::ok(ParseState(result.value(), remainingTokens));
}
else
{
auto valueRef = static_cast<detail::BoundValueRefBase*>(m_ref.get());
++remainingTokens;
if (!remainingTokens)
return InternalParseResult::runtimeError("Expected argument following " + token.token);
auto const& argToken = *remainingTokens;
if (argToken.type != TokenType::Argument)
return InternalParseResult::runtimeError("Expected argument following " + token.token);
auto result = valueRef->setValue(argToken.token);
if (!result)
return InternalParseResult(result);
if (result.value() == ParseResultType::ShortCircuitAll)
return InternalParseResult::ok(ParseState(result.value(), remainingTokens));
}
return InternalParseResult::ok(ParseState(ParseResultType::Matched, ++remainingTokens));
}
}
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, remainingTokens));
}
auto validate() const -> Result override
{
if (m_optNames.empty())
return Result::logicError("No options supplied to Opt");
for (auto const& name : m_optNames)
{
if (name.empty())
return Result::logicError("Option name cannot be empty");
#ifdef CATCH_PLATFORM_WINDOWS
if (name[0] != '-' && name[0] != '/')
return Result::logicError("Option name must begin with '-' or '/'");
#else
if (name[0] != '-')
return Result::logicError("Option name must begin with '-'");
#endif
}
return ParserRefImpl::validate();
}
};
struct Help : Opt
{
Help(bool& showHelpFlag)
: Opt([&](bool flag) {
showHelpFlag = flag;
return ParserResult::ok(ParseResultType::ShortCircuitAll);
})
{
static_cast<Opt&>(*this)("display usage information")["-?"]["-h"]["--help"].optional();
}
};
struct Parser : ParserBase
{
mutable ExeName m_exeName;
std::vector<Opt> m_options;
std::vector<Arg> m_args;
auto operator|=(ExeName const& exeName) -> Parser&
{
m_exeName = exeName;
return *this;
}
auto operator|=(Arg const& arg) -> Parser&
{
m_args.push_back(arg);
return *this;
}
auto operator|=(Opt const& opt) -> Parser&
{
m_options.push_back(opt);
return *this;
}
auto operator|=(Parser const& other) -> Parser&
{
m_options.insert(m_options.end(), other.m_options.begin(), other.m_options.end());
m_args.insert(m_args.end(), other.m_args.begin(), other.m_args.end());
return *this;
}
template<typename T>
auto operator|(T const& other) const -> Parser
{
return Parser(*this) |= other;
}
// Forward deprecated interface with '+' instead of '|'
template<typename T>
auto operator+=(T const& other) -> Parser&
{
return operator|=(other);
}
template<typename T>
auto operator+(T const& other) const -> Parser
{
return operator|(other);
}
auto getHelpColumns() const -> std::vector<HelpColumns>
{
std::vector<HelpColumns> cols;
for (auto const& o : m_options)
{
auto childCols = o.getHelpColumns();
cols.insert(cols.end(), childCols.begin(), childCols.end());
}
return cols;
}
void writeToStream(std::ostream& os) const
{
if (!m_exeName.name().empty())
{
os << "usage:\n"
<< " " << m_exeName.name() << " ";
bool required = true, first = true;
for (auto const& arg : m_args)
{
if (first)
first = false;
else
os << " ";
if (arg.isOptional() && required)
{
os << "[";
required = false;
}
os << "<" << arg.hint() << ">";
if (arg.cardinality() == 0)
os << " ... ";
}
if (!required)
os << "]";
if (!m_options.empty())
os << " options";
os << "\n\nwhere options are:" << std::endl;
}
auto rows = getHelpColumns();
size_t consoleWidth = CATCH_CLARA_CONFIG_CONSOLE_WIDTH;
size_t optWidth = 0;
for (auto const& cols : rows)
optWidth = (std::max)(optWidth, cols.left.size() + 2);
optWidth = (std::min)(optWidth, consoleWidth / 2);
for (auto const& cols : rows)
{
auto row = TextFlow::Column(cols.left).width(optWidth).indent(2) + TextFlow::Spacer(4) +
TextFlow::Column(cols.right).width(consoleWidth - 7 - optWidth);
os << row << std::endl;
}
}
friend auto operator<<(std::ostream& os, Parser const& parser) -> std::ostream&
{
parser.writeToStream(os);
return os;
}
auto validate() const -> Result override
{
for (auto const& opt : m_options)
{
auto result = opt.validate();
if (!result)
return result;
}
for (auto const& arg : m_args)
{
auto result = arg.validate();
if (!result)
return result;
}
return Result::ok();
}
using ParserBase::parse;
auto parse(std::string const& exeName, TokenStream const& tokens) const -> InternalParseResult override
{
struct ParserInfo
{
ParserBase const* parser = nullptr;
size_t count = 0;
};
const size_t totalParsers = m_options.size() + m_args.size();
assert(totalParsers < 512);
// ParserInfo parseInfos[totalParsers]; // <-- this is what we really want to do
ParserInfo parseInfos[512];
{
size_t i = 0;
for (auto const& opt : m_options)
parseInfos[i++].parser = &opt;
for (auto const& arg : m_args)
parseInfos[i++].parser = &arg;
}
m_exeName.set(exeName);
auto result = InternalParseResult::ok(ParseState(ParseResultType::NoMatch, tokens));
while (result.value().remainingTokens())
{
bool tokenParsed = false;
for (size_t i = 0; i < totalParsers; ++i)
{
auto& parseInfo = parseInfos[i];
if (parseInfo.parser->cardinality() == 0 || parseInfo.count < parseInfo.parser->cardinality())
{
result = parseInfo.parser->parse(exeName, result.value().remainingTokens());
if (!result)
return result;
if (result.value().type() != ParseResultType::NoMatch)
{
tokenParsed = true;
++parseInfo.count;
break;
}
}
}
if (result.value().type() == ParseResultType::ShortCircuitAll)
return result;
if (!tokenParsed)
return InternalParseResult::runtimeError("Unrecognised token: " +
result.value().remainingTokens()->token);
}
// !TBD Check missing required options
return result;
}
};
template<typename DerivedT>
template<typename T>
auto ComposableParserImpl<DerivedT>::operator|(T const& other) const -> Parser
{
return Parser() | static_cast<DerivedT const&>(*this) | other;
}
} // namespace detail
// A Combined parser
using detail::Parser;
// A parser for options
using detail::Opt;
// A parser for arguments
using detail::Arg;
// Wrapper for argc, argv from main()
using detail::Args;
// Specifies the name of the executable
using detail::ExeName;
// Convenience wrapper for option parser that specifies the help option
using detail::Help;
// enum of result types from a parse
using detail::ParseResultType;
// Result type for parser operation
using detail::ParserResult;
} // namespace clara
} // namespace Catch
// end clara.hpp
#ifdef __clang__
#pragma clang diagnostic pop
#endif
// Restore Clara's value for console width, if present
#ifdef CATCH_TEMP_CLARA_CONFIG_CONSOLE_WIDTH
#define CATCH_CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH CATCH_TEMP_CLARA_CONFIG_CONSOLE_WIDTH
#undef CATCH_TEMP_CLARA_CONFIG_CONSOLE_WIDTH
#endif
// end catch_clara.h
namespace Catch {
clara::Parser makeCommandLineParser(ConfigData& config);
} // end namespace Catch
// end catch_commandline.h
#include <fstream>
#include <ctime>
namespace Catch {
clara::Parser makeCommandLineParser(ConfigData& config)
{
using namespace clara;
auto const setWarning = [&](std::string const& warning) {
auto warningSet = [&]() {
if (warning == "NoAssertions")
return WarnAbout::NoAssertions;
if (warning == "NoTests")
return WarnAbout::NoTests;
return WarnAbout::Nothing;
}();
if (warningSet == WarnAbout::Nothing)
return ParserResult::runtimeError("Unrecognised warning: '" + warning + "'");
config.warnings = static_cast<WarnAbout::What>(config.warnings | warningSet);
return ParserResult::ok(ParseResultType::Matched);
};
auto const loadTestNamesFromFile = [&](std::string const& filename) {
std::ifstream f(filename.c_str());
if (!f.is_open())
return ParserResult::runtimeError("Unable to load input file: '" + filename + "'");
std::string line;
while (std::getline(f, line))
{
line = trim(line);
if (!line.empty() && !startsWith(line, '#'))
{
if (!startsWith(line, '"'))
line = '"' + line + '"';
config.testsOrTags.push_back(line);
config.testsOrTags.emplace_back(",");
}
}
// Remove comma in the end
if (!config.testsOrTags.empty())
config.testsOrTags.erase(config.testsOrTags.end() - 1);
return ParserResult::ok(ParseResultType::Matched);
};
auto const setTestOrder = [&](std::string const& order) {
if (startsWith("declared", order))
config.runOrder = RunTests::InDeclarationOrder;
else if (startsWith("lexical", order))
config.runOrder = RunTests::InLexicographicalOrder;
else if (startsWith("random", order))
config.runOrder = RunTests::InRandomOrder;
else
return clara::ParserResult::runtimeError("Unrecognised ordering: '" + order + "'");
return ParserResult::ok(ParseResultType::Matched);
};
auto const setRngSeed = [&](std::string const& seed) {
if (seed != "time")
return clara::detail::convertInto(seed, config.rngSeed);
config.rngSeed = static_cast<unsigned int>(std::time(nullptr));
return ParserResult::ok(ParseResultType::Matched);
};
auto const setColourUsage = [&](std::string const& useColour) {
auto mode = toLower(useColour);
if (mode == "yes")
config.useColour = UseColour::Yes;
else if (mode == "no")
config.useColour = UseColour::No;
else if (mode == "auto")
config.useColour = UseColour::Auto;
else
return ParserResult::runtimeError("colour mode must be one of: auto, yes or no. '" + useColour +
"' not recognised");
return ParserResult::ok(ParseResultType::Matched);
};
auto const setWaitForKeypress = [&](std::string const& keypress) {
auto keypressLc = toLower(keypress);
if (keypressLc == "never")
config.waitForKeypress = WaitForKeypress::Never;
else if (keypressLc == "start")
config.waitForKeypress = WaitForKeypress::BeforeStart;
else if (keypressLc == "exit")
config.waitForKeypress = WaitForKeypress::BeforeExit;
else if (keypressLc == "both")
config.waitForKeypress = WaitForKeypress::BeforeStartAndExit;
else
return ParserResult::runtimeError("keypress argument must be one of: never, start, exit or both. '" +
keypress + "' not recognised");
return ParserResult::ok(ParseResultType::Matched);
};
auto const setVerbosity = [&](std::string const& verbosity) {
auto lcVerbosity = toLower(verbosity);
if (lcVerbosity == "quiet")
config.verbosity = Verbosity::Quiet;
else if (lcVerbosity == "normal")
config.verbosity = Verbosity::Normal;
else if (lcVerbosity == "high")
config.verbosity = Verbosity::High;
else
return ParserResult::runtimeError("Unrecognised verbosity, '" + verbosity + "'");
return ParserResult::ok(ParseResultType::Matched);
};
auto const setReporter = [&](std::string const& reporter) {
IReporterRegistry::FactoryMap const& factories = getRegistryHub().getReporterRegistry().getFactories();
auto lcReporter = toLower(reporter);
auto result = factories.find(lcReporter);
if (factories.end() != result)
config.reporterName = lcReporter;
else
return ParserResult::runtimeError("Unrecognized reporter, '" + reporter +
"'. Check available with --list-reporters");
return ParserResult::ok(ParseResultType::Matched);
};
auto cli =
ExeName(config.processName) | Help(config.showHelp) |
Opt(config.listTests)["-l"]["--list-tests"]("list all/matching test cases") |
Opt(config.listTags)["-t"]["--list-tags"]("list all/matching tags") |
Opt(config.showSuccessfulTests)["-s"]["--success"]("include successful tests in output") |
Opt(config.shouldDebugBreak)["-b"]["--break"]("break into debugger on failure") |
Opt(config.noThrow)["-e"]["--nothrow"]("skip exception tests") |
Opt(config.showInvisibles)["-i"]["--invisibles"]("show invisibles (tabs, newlines)") |
Opt(config.outputFilename, "filename")["-o"]["--out"]("output filename") |
Opt(setReporter, "name")["-r"]["--reporter"]("reporter to use (defaults to console)") |
Opt(config.name, "name")["-n"]["--name"]("suite name") |
Opt([&](bool) { config.abortAfter = 1; })["-a"]["--abort"]("abort at first failure") |
Opt([&](int x) { config.abortAfter = x; }, "no. failures")["-x"]["--abortx"]("abort after x failures") |
Opt(setWarning, "warning name")["-w"]["--warn"]("enable warnings") |
Opt([&](bool flag) { config.showDurations = flag ? ShowDurations::Always : ShowDurations::Never; },
"yes|no")["-d"]["--durations"]("show test durations") |
Opt(config.minDuration, "seconds")["-D"]["--min-duration"](
"show test durations for tests taking at least the given number of seconds") |
Opt(loadTestNamesFromFile, "filename")["-f"]["--input-file"]("load test names to run from a file") |
Opt(config.filenamesAsTags)["-#"]["--filenames-as-tags"]("adds a tag for the filename") |
Opt(config.sectionsToRun, "section name")["-c"]["--section"]("specify section to run") |
Opt(setVerbosity, "quiet|normal|high")["-v"]["--verbosity"]("set output verbosity") |
Opt(config.listTestNamesOnly)["--list-test-names-only"]("list all/matching test cases names only") |
Opt(config.listReporters)["--list-reporters"]("list all reporters") |
Opt(setTestOrder, "decl|lex|rand")["--order"]("test case order (defaults to decl)") |
Opt(setRngSeed, "'time'|number")["--rng-seed"]("set a specific seed for random numbers") |
Opt(setColourUsage, "yes|no")["--use-colour"]("should output be colourised") |
Opt(config.libIdentify)["--libidentify"]("report name and version according to libidentify standard") |
Opt(setWaitForKeypress, "never|start|exit|both")["--wait-for-keypress"]("waits for a keypress before exiting") |
Opt(config.benchmarkSamples, "samples")["--benchmark-samples"]("number of samples to collect (default: 100)") |
Opt(config.benchmarkResamples,
"resamples")["--benchmark-resamples"]("number of resamples for the bootstrap (default: 100000)") |
Opt(config.benchmarkConfidenceInterval, "confidence interval")["--benchmark-confidence-interval"](
"confidence interval for the bootstrap (between 0 and 1, default: 0.95)") |
Opt(config.benchmarkNoAnalysis)["--benchmark-no-analysis"](
"perform only measurements; do not perform any analysis") |
Opt(config.benchmarkWarmupTime, "benchmarkWarmupTime")["--benchmark-warmup-time"](
"amount of time in milliseconds spent on warming up each test (default: 100)") |
Arg(config.testsOrTags, "test name|pattern|tags")("which test or tests to use");
return cli;
}
} // end namespace Catch
// end catch_commandline.cpp
// start catch_common.cpp
#include <cstring>
#include <ostream>
namespace Catch {
bool SourceLineInfo::operator==(SourceLineInfo const& other) const noexcept
{
return line == other.line && (file == other.file || std::strcmp(file, other.file) == 0);
}
bool SourceLineInfo::operator<(SourceLineInfo const& other) const noexcept
{
// We can assume that the same file will usually have the same pointer.
// Thus, if the pointers are the same, there is no point in calling the strcmp
return line < other.line || (line == other.line && file != other.file && (std::strcmp(file, other.file) < 0));
}
std::ostream& operator<<(std::ostream& os, SourceLineInfo const& info)
{
#ifndef __GNUG__
os << info.file << '(' << info.line << ')';
#else
os << info.file << ':' << info.line;
#endif
return os;
}
std::string StreamEndStop::operator+() const
{
return std::string();
}
NonCopyable::NonCopyable() = default;
NonCopyable::~NonCopyable() = default;
} // namespace Catch
// end catch_common.cpp
// start catch_config.cpp
namespace Catch {
Config::Config(ConfigData const& data)
: m_data(data)
, m_stream(openStream())
{
// We need to trim filter specs to avoid trouble with superfluous
// whitespace (esp. important for bdd macros, as those are manually
// aligned with whitespace).
for (auto& elem : m_data.testsOrTags)
{
elem = trim(elem);
}
for (auto& elem : m_data.sectionsToRun)
{
elem = trim(elem);
}
TestSpecParser parser(ITagAliasRegistry::get());
if (!m_data.testsOrTags.empty())
{
m_hasTestFilters = true;
for (auto const& testOrTags : m_data.testsOrTags)
{
parser.parse(testOrTags);
}
}
m_testSpec = parser.testSpec();
}
std::string const& Config::getFilename() const
{
return m_data.outputFilename;
}
bool Config::listTests() const
{
return m_data.listTests;
}
bool Config::listTestNamesOnly() const
{
return m_data.listTestNamesOnly;
}
bool Config::listTags() const
{
return m_data.listTags;
}
bool Config::listReporters() const
{
return m_data.listReporters;
}
std::string Config::getProcessName() const
{
return m_data.processName;
}
std::string const& Config::getReporterName() const
{
return m_data.reporterName;
}
std::vector<std::string> const& Config::getTestsOrTags() const
{
return m_data.testsOrTags;
}
std::vector<std::string> const& Config::getSectionsToRun() const
{
return m_data.sectionsToRun;
}
TestSpec const& Config::testSpec() const
{
return m_testSpec;
}
bool Config::hasTestFilters() const
{
return m_hasTestFilters;
}
bool Config::showHelp() const
{
return m_data.showHelp;
}
// IConfig interface
bool Config::allowThrows() const
{
return !m_data.noThrow;
}
std::ostream& Config::stream() const
{
return m_stream->stream();
}
std::string Config::name() const
{
return m_data.name.empty() ? m_data.processName : m_data.name;
}
bool Config::includeSuccessfulResults() const
{
return m_data.showSuccessfulTests;
}
bool Config::warnAboutMissingAssertions() const
{
return !!(m_data.warnings & WarnAbout::NoAssertions);
}
bool Config::warnAboutNoTests() const
{
return !!(m_data.warnings & WarnAbout::NoTests);
}
ShowDurations::OrNot Config::showDurations() const
{
return m_data.showDurations;
}
double Config::minDuration() const
{
return m_data.minDuration;
}
RunTests::InWhatOrder Config::runOrder() const
{
return m_data.runOrder;
}
unsigned int Config::rngSeed() const
{
return m_data.rngSeed;
}
UseColour::YesOrNo Config::useColour() const
{
return m_data.useColour;
}
bool Config::shouldDebugBreak() const
{
return m_data.shouldDebugBreak;
}
int Config::abortAfter() const
{
return m_data.abortAfter;
}
bool Config::showInvisibles() const
{
return m_data.showInvisibles;
}
Verbosity Config::verbosity() const
{
return m_data.verbosity;
}
bool Config::benchmarkNoAnalysis() const
{
return m_data.benchmarkNoAnalysis;
}
int Config::benchmarkSamples() const
{
return m_data.benchmarkSamples;
}
double Config::benchmarkConfidenceInterval() const
{
return m_data.benchmarkConfidenceInterval;
}
unsigned int Config::benchmarkResamples() const
{
return m_data.benchmarkResamples;
}
std::chrono::milliseconds Config::benchmarkWarmupTime() const
{
return std::chrono::milliseconds(m_data.benchmarkWarmupTime);
}
IStream const* Config::openStream()
{
return Catch::makeStream(m_data.outputFilename);
}
} // end namespace Catch
// end catch_config.cpp
// start catch_console_colour.cpp
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wexit-time-destructors"
#endif
// start catch_errno_guard.h
namespace Catch {
class ErrnoGuard
{
public:
ErrnoGuard();
~ErrnoGuard();
private:
int m_oldErrno;
};
} // namespace Catch
// end catch_errno_guard.h
// start catch_windows_h_proxy.h
#if defined(CATCH_PLATFORM_WINDOWS)
#if !defined(NOMINMAX) && !defined(CATCH_CONFIG_NO_NOMINMAX)
#define CATCH_DEFINED_NOMINMAX
#define NOMINMAX
#endif
#if !defined(WIN32_LEAN_AND_MEAN) && !defined(CATCH_CONFIG_NO_WIN32_LEAN_AND_MEAN)
#define CATCH_DEFINED_WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#ifdef __AFXDLL
#include <AfxWin.h>
#else
#include <windows.h>
#endif
#ifdef CATCH_DEFINED_NOMINMAX
#undef NOMINMAX
#endif
#ifdef CATCH_DEFINED_WIN32_LEAN_AND_MEAN
#undef WIN32_LEAN_AND_MEAN
#endif
#endif // defined(CATCH_PLATFORM_WINDOWS)
// end catch_windows_h_proxy.h
#include <sstream>
namespace Catch {
namespace {
struct IColourImpl
{
virtual ~IColourImpl() = default;
virtual void use(Colour::Code _colourCode) = 0;
};
struct NoColourImpl : IColourImpl
{
void use(Colour::Code) override {}
static IColourImpl* instance()
{
static NoColourImpl s_instance;
return &s_instance;
}
};
} // namespace
} // namespace Catch
#if !defined(CATCH_CONFIG_COLOUR_NONE) && !defined(CATCH_CONFIG_COLOUR_WINDOWS) && !defined(CATCH_CONFIG_COLOUR_ANSI)
#ifdef CATCH_PLATFORM_WINDOWS
#define CATCH_CONFIG_COLOUR_WINDOWS
#else
#define CATCH_CONFIG_COLOUR_ANSI
#endif
#endif
#if defined(CATCH_CONFIG_COLOUR_WINDOWS) /////////////////////////////////////////
namespace Catch {
namespace {
class Win32ColourImpl : public IColourImpl
{
public:
Win32ColourImpl()
: stdoutHandle(GetStdHandle(STD_OUTPUT_HANDLE))
{
CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
GetConsoleScreenBufferInfo(stdoutHandle, &csbiInfo);
originalForegroundAttributes =
csbiInfo.wAttributes & ~(BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_BLUE | BACKGROUND_INTENSITY);
originalBackgroundAttributes =
csbiInfo.wAttributes & ~(FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE | FOREGROUND_INTENSITY);
}
void use(Colour::Code _colourCode) override
{
switch (_colourCode)
{
case Colour::None:
return setTextAttribute(originalForegroundAttributes);
case Colour::White:
return setTextAttribute(FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE);
case Colour::Red:
return setTextAttribute(FOREGROUND_RED);
case Colour::Green:
return setTextAttribute(FOREGROUND_GREEN);
case Colour::Blue:
return setTextAttribute(FOREGROUND_BLUE);
case Colour::Cyan:
return setTextAttribute(FOREGROUND_BLUE | FOREGROUND_GREEN);
case Colour::Yellow:
return setTextAttribute(FOREGROUND_RED | FOREGROUND_GREEN);
case Colour::Grey:
return setTextAttribute(0);
case Colour::LightGrey:
return setTextAttribute(FOREGROUND_INTENSITY);
case Colour::BrightRed:
return setTextAttribute(FOREGROUND_INTENSITY | FOREGROUND_RED);
case Colour::BrightGreen:
return setTextAttribute(FOREGROUND_INTENSITY | FOREGROUND_GREEN);
case Colour::BrightWhite:
return setTextAttribute(FOREGROUND_INTENSITY | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE);
case Colour::BrightYellow:
return setTextAttribute(FOREGROUND_INTENSITY | FOREGROUND_RED | FOREGROUND_GREEN);
case Colour::Bright:
CATCH_INTERNAL_ERROR("not a colour");
default:
CATCH_ERROR("Unknown colour requested");
}
}
private:
void setTextAttribute(WORD _textAttribute)
{
SetConsoleTextAttribute(stdoutHandle, _textAttribute | originalBackgroundAttributes);
}
HANDLE stdoutHandle;
WORD originalForegroundAttributes;
WORD originalBackgroundAttributes;
};
IColourImpl* platformColourInstance()
{
static Win32ColourImpl s_instance;
IConfigPtr config = getCurrentContext().getConfig();
UseColour::YesOrNo colourMode = config ? config->useColour() : UseColour::Auto;
if (colourMode == UseColour::Auto)
colourMode = UseColour::Yes;
return colourMode == UseColour::Yes ? &s_instance : NoColourImpl::instance();
}
} // namespace
} // end namespace Catch
#elif defined(CATCH_CONFIG_COLOUR_ANSI) //////////////////////////////////////
#include <unistd.h>
namespace Catch {
namespace {
// use POSIX/ ANSI console terminal codes
// Thanks to Adam Strzelecki for original contribution
// (http://github.com/nanoant)
// https://github.com/philsquared/Catch/pull/131
class PosixColourImpl : public IColourImpl
{
public:
void use(Colour::Code _colourCode) override
{
switch (_colourCode)
{
case Colour::None:
case Colour::White:
return setColour("[0m");
case Colour::Red:
return setColour("[0;31m");
case Colour::Green:
return setColour("[0;32m");
case Colour::Blue:
return setColour("[0;34m");
case Colour::Cyan:
return setColour("[0;36m");
case Colour::Yellow:
return setColour("[0;33m");
case Colour::Grey:
return setColour("[1;30m");
case Colour::LightGrey:
return setColour("[0;37m");
case Colour::BrightRed:
return setColour("[1;31m");
case Colour::BrightGreen:
return setColour("[1;32m");
case Colour::BrightWhite:
return setColour("[1;37m");
case Colour::BrightYellow:
return setColour("[1;33m");
case Colour::Bright:
CATCH_INTERNAL_ERROR("not a colour");
default:
CATCH_INTERNAL_ERROR("Unknown colour requested");
}
}
static IColourImpl* instance()
{
static PosixColourImpl s_instance;
return &s_instance;
}
private:
void setColour(const char* _escapeCode) { getCurrentContext().getConfig()->stream() << '\033' << _escapeCode; }
};
bool useColourOnPlatform()
{
return
#if defined(CATCH_PLATFORM_MAC) || defined(CATCH_PLATFORM_IPHONE)
!isDebuggerActive() &&
#endif
#if !(defined(__DJGPP__) && defined(__STRICT_ANSI__))
isatty(STDOUT_FILENO)
#else
false
#endif
;
}
IColourImpl* platformColourInstance()
{
ErrnoGuard guard;
IConfigPtr config = getCurrentContext().getConfig();
UseColour::YesOrNo colourMode = config ? config->useColour() : UseColour::Auto;
if (colourMode == UseColour::Auto)
colourMode = useColourOnPlatform() ? UseColour::Yes : UseColour::No;
return colourMode == UseColour::Yes ? PosixColourImpl::instance() : NoColourImpl::instance();
}
} // namespace
} // end namespace Catch
#else // not Windows or ANSI ///////////////////////////////////////////////
namespace Catch {
static IColourImpl* platformColourInstance()
{
return NoColourImpl::instance();
}
} // end namespace Catch
#endif // Windows/ ANSI/ None
namespace Catch {
Colour::Colour(Code _colourCode)
{
use(_colourCode);
}
Colour::Colour(Colour&& other) noexcept
{
m_moved = other.m_moved;
other.m_moved = true;
}
Colour& Colour::operator=(Colour&& other) noexcept
{
m_moved = other.m_moved;
other.m_moved = true;
return *this;
}
Colour::~Colour()
{
if (!m_moved)
use(None);
}
void Colour::use(Code _colourCode)
{
static IColourImpl* impl = platformColourInstance();
// Strictly speaking, this cannot possibly happen.
// However, under some conditions it does happen (see #1626),
// and this change is small enough that we can let practicality
// triumph over purity in this case.
if (impl != nullptr)
{
impl->use(_colourCode);
}
}
std::ostream& operator<<(std::ostream& os, Colour const&)
{
return os;
}
} // end namespace Catch
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
// end catch_console_colour.cpp
// start catch_context.cpp
namespace Catch {
class Context : public IMutableContext,
NonCopyable
{
public: // IContext
IResultCapture* getResultCapture() override { return m_resultCapture; }
IRunner* getRunner() override { return m_runner; }
IConfigPtr const& getConfig() const override { return m_config; }
~Context() override;
public: // IMutableContext
void setResultCapture(IResultCapture* resultCapture) override { m_resultCapture = resultCapture; }
void setRunner(IRunner* runner) override { m_runner = runner; }
void setConfig(IConfigPtr const& config) override { m_config = config; }
friend IMutableContext& getCurrentMutableContext();
private:
IConfigPtr m_config;
IRunner* m_runner = nullptr;
IResultCapture* m_resultCapture = nullptr;
};
IMutableContext* IMutableContext::currentContext = nullptr;
void IMutableContext::createContext()
{
currentContext = new Context();
}
void cleanUpContext()
{
delete IMutableContext::currentContext;
IMutableContext::currentContext = nullptr;
}
IContext::~IContext() = default;
IMutableContext::~IMutableContext() = default;
Context::~Context() = default;
SimplePcg32& rng()
{
static SimplePcg32 s_rng;
return s_rng;
}
} // namespace Catch
// end catch_context.cpp
// start catch_debug_console.cpp
// start catch_debug_console.h
#include <string>
namespace Catch {
void writeToDebugConsole(std::string const& text);
}
// end catch_debug_console.h
#if defined(CATCH_CONFIG_ANDROID_LOGWRITE)
#include <android/log.h>
namespace Catch {
void writeToDebugConsole(std::string const& text)
{
__android_log_write(ANDROID_LOG_DEBUG, "Catch", text.c_str());
}
} // namespace Catch
#elif defined(CATCH_PLATFORM_WINDOWS)
namespace Catch {
void writeToDebugConsole(std::string const& text)
{
::OutputDebugStringA(text.c_str());
}
} // namespace Catch
#else
namespace Catch {
void writeToDebugConsole(std::string const& text)
{
// !TBD: Need a version for Mac/ XCode and other IDEs
Catch::cout() << text;
}
} // namespace Catch
#endif // Platform
// end catch_debug_console.cpp
// start catch_debugger.cpp
#if defined(CATCH_PLATFORM_MAC) || defined(CATCH_PLATFORM_IPHONE)
#include <cassert>
#include <sys/types.h>
#include <unistd.h>
#include <cstddef>
#include <ostream>
#ifdef __apple_build_version__
// These headers will only compile with AppleClang (XCode)
// For other compilers (Clang, GCC, ... ) we need to exclude them
#include <sys/sysctl.h>
#endif
namespace Catch {
#ifdef __apple_build_version__
// The following function is taken directly from the following technical note:
// https://developer.apple.com/library/archive/qa/qa1361/_index.html
// Returns true if the current process is being debugged (either
// running under the debugger or has a debugger attached post facto).
bool isDebuggerActive()
{
int mib[4];
struct kinfo_proc info;
std::size_t size;
// Initialize the flags so that, if sysctl fails for some bizarre
// reason, we get a predictable result.
info.kp_proc.p_flag = 0;
// Initialize mib, which tells sysctl the info we want, in this case
// we're looking for information about a specific process ID.
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
// Call sysctl.
size = sizeof(info);
if (sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &size, nullptr, 0) != 0)
{
Catch::cerr() << "\n** Call to sysctl failed - unable to determine if debugger is active **\n" << std::endl;
return false;
}
// We're being debugged if the P_TRACED flag is set.
return ((info.kp_proc.p_flag & P_TRACED) != 0);
}
#else
bool isDebuggerActive()
{
// We need to find another way to determine this for non-appleclang compilers on macOS
return false;
}
#endif
} // namespace Catch
#elif defined(CATCH_PLATFORM_LINUX)
#include <fstream>
#include <string>
namespace Catch {
// The standard POSIX way of detecting a debugger is to attempt to
// ptrace() the process, but this needs to be done from a child and not
// this process itself to still allow attaching to this process later
// if wanted, so is rather heavy. Under Linux we have the PID of the
// "debugger" (which doesn't need to be gdb, of course, it could also
// be strace, for example) in /proc/$PID/status, so just get it from
// there instead.
bool isDebuggerActive()
{
// Libstdc++ has a bug, where std::ifstream sets errno to 0
// This way our users can properly assert over errno values
ErrnoGuard guard;
std::ifstream in("/proc/self/status");
for (std::string line; std::getline(in, line);)
{
static const int PREFIX_LEN = 11;
if (line.compare(0, PREFIX_LEN, "TracerPid:\t") == 0)
{
// We're traced if the PID is not 0 and no other PID starts
// with 0 digit, so it's enough to check for just a single
// character.
return line.length() > PREFIX_LEN && line[PREFIX_LEN] != '0';
}
}
return false;
}
} // namespace Catch
#elif defined(_MSC_VER)
extern "C" __declspec(dllimport) int __stdcall IsDebuggerPresent();
namespace Catch {
bool isDebuggerActive()
{
return IsDebuggerPresent() != 0;
}
} // namespace Catch
#elif defined(__MINGW32__)
extern "C" __declspec(dllimport) int __stdcall IsDebuggerPresent();
namespace Catch {
bool isDebuggerActive()
{
return IsDebuggerPresent() != 0;
}
} // namespace Catch
#else
namespace Catch {
bool isDebuggerActive()
{
return false;
}
} // namespace Catch
#endif // Platform
// end catch_debugger.cpp
// start catch_decomposer.cpp
namespace Catch {
ITransientExpression::~ITransientExpression() = default;
void formatReconstructedExpression(std::ostream& os, std::string const& lhs, StringRef op, std::string const& rhs)
{
if (lhs.size() + rhs.size() < 40 && lhs.find('\n') == std::string::npos && rhs.find('\n') == std::string::npos)
os << lhs << " " << op << " " << rhs;
else
os << lhs << "\n" << op << "\n" << rhs;
}
} // namespace Catch
// end catch_decomposer.cpp
// start catch_enforce.cpp
#include <stdexcept>
namespace Catch {
#if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) && !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS_CUSTOM_HANDLER)
[[noreturn]] void throw_exception(std::exception const& e)
{
Catch::cerr() << "Catch will terminate because it needed to throw an exception.\n"
<< "The message was: " << e.what() << '\n';
std::terminate();
}
#endif
[[noreturn]] void throw_logic_error(std::string const& msg)
{
throw_exception(std::logic_error(msg));
}
[[noreturn]] void throw_domain_error(std::string const& msg)
{
throw_exception(std::domain_error(msg));
}
[[noreturn]] void throw_runtime_error(std::string const& msg)
{
throw_exception(std::runtime_error(msg));
}
} // namespace Catch
// end catch_enforce.cpp
// start catch_enum_values_registry.cpp
// start catch_enum_values_registry.h
#include <vector>
#include <memory>
namespace Catch {
namespace Detail {
std::unique_ptr<EnumInfo> makeEnumInfo(StringRef enumName, StringRef allValueNames, std::vector<int> const& values);
class EnumValuesRegistry : public IMutableEnumValuesRegistry
{
std::vector<std::unique_ptr<EnumInfo>> m_enumInfos;
EnumInfo const& registerEnum(StringRef enumName, StringRef allEnums, std::vector<int> const& values) override;
};
std::vector<StringRef> parseEnums(StringRef enums);
} // namespace Detail
} // namespace Catch
// end catch_enum_values_registry.h
#include <map>
#include <cassert>
namespace Catch {
IMutableEnumValuesRegistry::~IMutableEnumValuesRegistry() {}
namespace Detail {
namespace {
// Extracts the actual name part of an enum instance
// In other words, it returns the Blue part of Bikeshed::Colour::Blue
StringRef extractInstanceName(StringRef enumInstance)
{
// Find last occurrence of ":"
size_t name_start = enumInstance.size();
while (name_start > 0 && enumInstance[name_start - 1] != ':')
{
--name_start;
}
return enumInstance.substr(name_start, enumInstance.size() - name_start);
}
} // namespace
std::vector<StringRef> parseEnums(StringRef enums)
{
auto enumValues = splitStringRef(enums, ',');
std::vector<StringRef> parsed;
parsed.reserve(enumValues.size());
for (auto const& enumValue : enumValues)
{
parsed.push_back(trim(extractInstanceName(enumValue)));
}
return parsed;
}
EnumInfo::~EnumInfo() {}
StringRef EnumInfo::lookup(int value) const
{
for (auto const& valueToName : m_values)
{
if (valueToName.first == value)
return valueToName.second;
}
return "{** unexpected enum value **}"_sr;
}
std::unique_ptr<EnumInfo> makeEnumInfo(StringRef enumName, StringRef allValueNames, std::vector<int> const& values)
{
std::unique_ptr<EnumInfo> enumInfo(new EnumInfo);
enumInfo->m_name = enumName;
enumInfo->m_values.reserve(values.size());
const auto valueNames = Catch::Detail::parseEnums(allValueNames);
assert(valueNames.size() == values.size());
std::size_t i = 0;
for (auto value : values)
enumInfo->m_values.emplace_back(value, valueNames[i++]);
return enumInfo;
}
EnumInfo const&
EnumValuesRegistry::registerEnum(StringRef enumName, StringRef allValueNames, std::vector<int> const& values)
{
m_enumInfos.push_back(makeEnumInfo(enumName, allValueNames, values));
return *m_enumInfos.back();
}
} // namespace Detail
} // namespace Catch
// end catch_enum_values_registry.cpp
// start catch_errno_guard.cpp
#include <cerrno>
namespace Catch {
ErrnoGuard::ErrnoGuard()
: m_oldErrno(errno)
{}
ErrnoGuard::~ErrnoGuard()
{
errno = m_oldErrno;
}
} // namespace Catch
// end catch_errno_guard.cpp
// start catch_exception_translator_registry.cpp
// start catch_exception_translator_registry.h
#include <vector>
#include <string>
#include <memory>
namespace Catch {
class ExceptionTranslatorRegistry : public IExceptionTranslatorRegistry
{
public:
~ExceptionTranslatorRegistry();
virtual void registerTranslator(const IExceptionTranslator* translator);
std::string translateActiveException() const override;
std::string tryTranslators() const;
private:
std::vector<std::unique_ptr<IExceptionTranslator const>> m_translators;
};
} // namespace Catch
// end catch_exception_translator_registry.h
#ifdef __OBJC__
#import "Foundation/Foundation.h"
#endif
namespace Catch {
ExceptionTranslatorRegistry::~ExceptionTranslatorRegistry() {}
void ExceptionTranslatorRegistry::registerTranslator(const IExceptionTranslator* translator)
{
m_translators.push_back(std::unique_ptr<const IExceptionTranslator>(translator));
}
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
std::string ExceptionTranslatorRegistry::translateActiveException() const
{
try
{
#ifdef __OBJC__
// In Objective-C try objective-c exceptions first
@try
{
return tryTranslators();
}
@catch (NSException* exception)
{
return Catch::Detail::stringify([exception description]);
}
#else
// Compiling a mixed mode project with MSVC means that CLR
// exceptions will be caught in (...) as well. However, these
// do not fill-in std::current_exception and thus lead to crash
// when attempting rethrow.
// /EHa switch also causes structured exceptions to be caught
// here, but they fill-in current_exception properly, so
// at worst the output should be a little weird, instead of
// causing a crash.
if (std::current_exception() == nullptr)
{
return "Non C++ exception. Possibly a CLR exception.";
}
return tryTranslators();
#endif
}
catch (TestFailureException&)
{
std::rethrow_exception(std::current_exception());
}
catch (std::exception& ex)
{
return ex.what();
}
catch (std::string& msg)
{
return msg;
}
catch (const char* msg)
{
return msg;
}
catch (...)
{
return "Unknown exception";
}
}
std::string ExceptionTranslatorRegistry::tryTranslators() const
{
if (m_translators.empty())
{
std::rethrow_exception(std::current_exception());
}
else
{
return m_translators[0]->translate(m_translators.begin() + 1, m_translators.end());
}
}
#else // ^^ Exceptions are enabled // Exceptions are disabled vv
std::string ExceptionTranslatorRegistry::translateActiveException() const
{
CATCH_INTERNAL_ERROR("Attempted to translate active exception under CATCH_CONFIG_DISABLE_EXCEPTIONS!");
}
std::string ExceptionTranslatorRegistry::tryTranslators() const
{
CATCH_INTERNAL_ERROR("Attempted to use exception translators under CATCH_CONFIG_DISABLE_EXCEPTIONS!");
}
#endif
} // namespace Catch
// end catch_exception_translator_registry.cpp
// start catch_fatal_condition.cpp
#include <algorithm>
#if !defined(CATCH_CONFIG_WINDOWS_SEH) && !defined(CATCH_CONFIG_POSIX_SIGNALS)
namespace Catch {
// If neither SEH nor signal handling is required, the handler impls
// do not have to do anything, and can be empty.
void FatalConditionHandler::engage_platform() {}
void FatalConditionHandler::disengage_platform() {}
FatalConditionHandler::FatalConditionHandler() = default;
FatalConditionHandler::~FatalConditionHandler() = default;
} // end namespace Catch
#endif // !CATCH_CONFIG_WINDOWS_SEH && !CATCH_CONFIG_POSIX_SIGNALS
#if defined(CATCH_CONFIG_WINDOWS_SEH) && defined(CATCH_CONFIG_POSIX_SIGNALS)
#error "Inconsistent configuration: Windows' SEH handling and POSIX signals cannot be enabled at the same time"
#endif // CATCH_CONFIG_WINDOWS_SEH && CATCH_CONFIG_POSIX_SIGNALS
#if defined(CATCH_CONFIG_WINDOWS_SEH) || defined(CATCH_CONFIG_POSIX_SIGNALS)
namespace {
//! Signals fatal error message to the run context
void reportFatal(char const* const message)
{
Catch::getCurrentContext().getResultCapture()->handleFatalErrorCondition(message);
}
//! Minimal size Catch2 needs for its own fatal error handling.
//! Picked anecdotally, so it might not be sufficient on all
//! platforms, and for all configurations.
constexpr std::size_t minStackSizeForErrors = 32 * 1024;
} // end unnamed namespace
#endif // CATCH_CONFIG_WINDOWS_SEH || CATCH_CONFIG_POSIX_SIGNALS
#if defined(CATCH_CONFIG_WINDOWS_SEH)
namespace Catch {
struct SignalDefs
{
DWORD id;
const char* name;
};
// There is no 1-1 mapping between signals and windows exceptions.
// Windows can easily distinguish between SO and SigSegV,
// but SigInt, SigTerm, etc are handled differently.
static SignalDefs signalDefs[] = {
{static_cast<DWORD>(EXCEPTION_ILLEGAL_INSTRUCTION), "SIGILL - Illegal instruction signal"},
{static_cast<DWORD>(EXCEPTION_STACK_OVERFLOW), "SIGSEGV - Stack overflow"},
{static_cast<DWORD>(EXCEPTION_ACCESS_VIOLATION), "SIGSEGV - Segmentation violation signal"},
{static_cast<DWORD>(EXCEPTION_INT_DIVIDE_BY_ZERO), "Divide by zero error"},
};
static LONG CALLBACK handleVectoredException(PEXCEPTION_POINTERS ExceptionInfo)
{
for (auto const& def : signalDefs)
{
if (ExceptionInfo->ExceptionRecord->ExceptionCode == def.id)
{
reportFatal(def.name);
}
}
// If its not an exception we care about, pass it along.
// This stops us from eating debugger breaks etc.
return EXCEPTION_CONTINUE_SEARCH;
}
// Since we do not support multiple instantiations, we put these
// into global variables and rely on cleaning them up in outlined
// constructors/destructors
static PVOID exceptionHandlerHandle = nullptr;
// For MSVC, we reserve part of the stack memory for handling
// memory overflow structured exception.
FatalConditionHandler::FatalConditionHandler()
{
ULONG guaranteeSize = static_cast<ULONG>(minStackSizeForErrors);
if (!SetThreadStackGuarantee(&guaranteeSize))
{
// We do not want to fully error out, because needing
// the stack reserve should be rare enough anyway.
Catch::cerr() << "Failed to reserve piece of stack." << " Stack overflows will not be reported successfully.";
}
}
// We do not attempt to unset the stack guarantee, because
// Windows does not support lowering the stack size guarantee.
FatalConditionHandler::~FatalConditionHandler() = default;
void FatalConditionHandler::engage_platform()
{
// Register as first handler in current chain
exceptionHandlerHandle = AddVectoredExceptionHandler(1, handleVectoredException);
if (!exceptionHandlerHandle)
{
CATCH_RUNTIME_ERROR("Could not register vectored exception handler");
}
}
void FatalConditionHandler::disengage_platform()
{
if (!RemoveVectoredExceptionHandler(exceptionHandlerHandle))
{
CATCH_RUNTIME_ERROR("Could not unregister vectored exception handler");
}
exceptionHandlerHandle = nullptr;
}
} // end namespace Catch
#endif // CATCH_CONFIG_WINDOWS_SEH
#if defined(CATCH_CONFIG_POSIX_SIGNALS)
#include <signal.h>
namespace Catch {
struct SignalDefs
{
int id;
const char* name;
};
static SignalDefs signalDefs[] = {{SIGINT, "SIGINT - Terminal interrupt signal"},
{SIGILL, "SIGILL - Illegal instruction signal"},
{SIGFPE, "SIGFPE - Floating point error signal"},
{SIGSEGV, "SIGSEGV - Segmentation violation signal"},
{SIGTERM, "SIGTERM - Termination request signal"},
{SIGABRT, "SIGABRT - Abort (abnormal termination) signal"}};
// Older GCCs trigger -Wmissing-field-initializers for T foo = {}
// which is zero initialization, but not explicit. We want to avoid
// that.
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
static char* altStackMem = nullptr;
static std::size_t altStackSize = 0;
static stack_t oldSigStack{};
static struct sigaction oldSigActions[sizeof(signalDefs) / sizeof(SignalDefs)]{};
static void restorePreviousSignalHandlers()
{
// We set signal handlers back to the previous ones. Hopefully
// nobody overwrote them in the meantime, and doesn't expect
// their signal handlers to live past ours given that they
// installed them after ours..
for (std::size_t i = 0; i < sizeof(signalDefs) / sizeof(SignalDefs); ++i)
{
sigaction(signalDefs[i].id, &oldSigActions[i], nullptr);
}
// Return the old stack
sigaltstack(&oldSigStack, nullptr);
}
static void handleSignal(int sig)
{
char const* name = "<unknown signal>";
for (auto const& def : signalDefs)
{
if (sig == def.id)
{
name = def.name;
break;
}
}
// We need to restore previous signal handlers and let them do
// their thing, so that the users can have the debugger break
// when a signal is raised, and so on.
restorePreviousSignalHandlers();
reportFatal(name);
raise(sig);
}
FatalConditionHandler::FatalConditionHandler()
{
assert(!altStackMem && "Cannot initialize POSIX signal handler when one already exists");
if (altStackSize == 0)
{
altStackSize = std::max(static_cast<size_t>(SIGSTKSZ), minStackSizeForErrors);
}
altStackMem = new char[altStackSize]();
}
FatalConditionHandler::~FatalConditionHandler()
{
delete[] altStackMem;
// We signal that another instance can be constructed by zeroing
// out the pointer.
altStackMem = nullptr;
}
void FatalConditionHandler::engage_platform()
{
stack_t sigStack;
sigStack.ss_sp = altStackMem;
sigStack.ss_size = altStackSize;
sigStack.ss_flags = 0;
sigaltstack(&sigStack, &oldSigStack);
struct sigaction sa = {};
sa.sa_handler = handleSignal;
sa.sa_flags = SA_ONSTACK;
for (std::size_t i = 0; i < sizeof(signalDefs) / sizeof(SignalDefs); ++i)
{
sigaction(signalDefs[i].id, &sa, &oldSigActions[i]);
}
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
void FatalConditionHandler::disengage_platform()
{
restorePreviousSignalHandlers();
}
} // end namespace Catch
#endif // CATCH_CONFIG_POSIX_SIGNALS
// end catch_fatal_condition.cpp
// start catch_generators.cpp
#include <limits>
#include <set>
namespace Catch {
IGeneratorTracker::~IGeneratorTracker() {}
const char* GeneratorException::what() const noexcept
{
return m_msg;
}
namespace Generators {
GeneratorUntypedBase::~GeneratorUntypedBase() {}
auto acquireGeneratorTracker(StringRef generatorName, SourceLineInfo const& lineInfo) -> IGeneratorTracker&
{
return getResultCapture().acquireGeneratorTracker(generatorName, lineInfo);
}
} // namespace Generators
} // namespace Catch
// end catch_generators.cpp
// start catch_interfaces_capture.cpp
namespace Catch {
IResultCapture::~IResultCapture() = default;
}
// end catch_interfaces_capture.cpp
// start catch_interfaces_config.cpp
namespace Catch {
IConfig::~IConfig() = default;
}
// end catch_interfaces_config.cpp
// start catch_interfaces_exception.cpp
namespace Catch {
IExceptionTranslator::~IExceptionTranslator() = default;
IExceptionTranslatorRegistry::~IExceptionTranslatorRegistry() = default;
} // namespace Catch
// end catch_interfaces_exception.cpp
// start catch_interfaces_registry_hub.cpp
namespace Catch {
IRegistryHub::~IRegistryHub() = default;
IMutableRegistryHub::~IMutableRegistryHub() = default;
} // namespace Catch
// end catch_interfaces_registry_hub.cpp
// start catch_interfaces_reporter.cpp
// start catch_reporter_listening.h
namespace Catch {
class ListeningReporter : public IStreamingReporter
{
using Reporters = std::vector<IStreamingReporterPtr>;
Reporters m_listeners;
IStreamingReporterPtr m_reporter = nullptr;
ReporterPreferences m_preferences;
public:
ListeningReporter();
void addListener(IStreamingReporterPtr&& listener);
void addReporter(IStreamingReporterPtr&& reporter);
public: // IStreamingReporter
ReporterPreferences getPreferences() const override;
void noMatchingTestCases(std::string const& spec) override;
void reportInvalidArguments(std::string const& arg) override;
static std::set<Verbosity> getSupportedVerbosities();
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void benchmarkPreparing(std::string const& name) override;
void benchmarkStarting(BenchmarkInfo const& benchmarkInfo) override;
void benchmarkEnded(BenchmarkStats<> const& benchmarkStats) override;
void benchmarkFailed(std::string const&) override;
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
void testRunStarting(TestRunInfo const& testRunInfo) override;
void testGroupStarting(GroupInfo const& groupInfo) override;
void testCaseStarting(TestCaseInfo const& testInfo) override;
void sectionStarting(SectionInfo const& sectionInfo) override;
void assertionStarting(AssertionInfo const& assertionInfo) override;
// The return value indicates if the messages buffer should be cleared:
bool assertionEnded(AssertionStats const& assertionStats) override;
void sectionEnded(SectionStats const& sectionStats) override;
void testCaseEnded(TestCaseStats const& testCaseStats) override;
void testGroupEnded(TestGroupStats const& testGroupStats) override;
void testRunEnded(TestRunStats const& testRunStats) override;
void skipTest(TestCaseInfo const& testInfo) override;
bool isMulti() const override;
};
} // end namespace Catch
// end catch_reporter_listening.h
namespace Catch {
ReporterConfig::ReporterConfig(IConfigPtr const& _fullConfig)
: m_stream(&_fullConfig->stream())
, m_fullConfig(_fullConfig)
{}
ReporterConfig::ReporterConfig(IConfigPtr const& _fullConfig, std::ostream& _stream)
: m_stream(&_stream)
, m_fullConfig(_fullConfig)
{}
std::ostream& ReporterConfig::stream() const
{
return *m_stream;
}
IConfigPtr ReporterConfig::fullConfig() const
{
return m_fullConfig;
}
TestRunInfo::TestRunInfo(std::string const& _name)
: name(_name)
{}
GroupInfo::GroupInfo(std::string const& _name, std::size_t _groupIndex, std::size_t _groupsCount)
: name(_name)
, groupIndex(_groupIndex)
, groupsCounts(_groupsCount)
{}
AssertionStats::AssertionStats(AssertionResult const& _assertionResult,
std::vector<MessageInfo> const& _infoMessages,
Totals const& _totals)
: assertionResult(_assertionResult)
, infoMessages(_infoMessages)
, totals(_totals)
{
assertionResult.m_resultData.lazyExpression.m_transientExpression =
_assertionResult.m_resultData.lazyExpression.m_transientExpression;
if (assertionResult.hasMessage())
{
// Copy message into messages list.
// !TBD This should have been done earlier, somewhere
MessageBuilder builder(assertionResult.getTestMacroName(),
assertionResult.getSourceInfo(),
assertionResult.getResultType());
builder << assertionResult.getMessage();
builder.m_info.message = builder.m_stream.str();
infoMessages.push_back(builder.m_info);
}
}
AssertionStats::~AssertionStats() = default;
SectionStats::SectionStats(SectionInfo const& _sectionInfo,
Counts const& _assertions,
double _durationInSeconds,
bool _missingAssertions)
: sectionInfo(_sectionInfo)
, assertions(_assertions)
, durationInSeconds(_durationInSeconds)
, missingAssertions(_missingAssertions)
{}
SectionStats::~SectionStats() = default;
TestCaseStats::TestCaseStats(TestCaseInfo const& _testInfo,
Totals const& _totals,
std::string const& _stdOut,
std::string const& _stdErr,
bool _aborting)
: testInfo(_testInfo)
, totals(_totals)
, stdOut(_stdOut)
, stdErr(_stdErr)
, aborting(_aborting)
{}
TestCaseStats::~TestCaseStats() = default;
TestGroupStats::TestGroupStats(GroupInfo const& _groupInfo, Totals const& _totals, bool _aborting)
: groupInfo(_groupInfo)
, totals(_totals)
, aborting(_aborting)
{}
TestGroupStats::TestGroupStats(GroupInfo const& _groupInfo)
: groupInfo(_groupInfo)
, aborting(false)
{}
TestGroupStats::~TestGroupStats() = default;
TestRunStats::TestRunStats(TestRunInfo const& _runInfo, Totals const& _totals, bool _aborting)
: runInfo(_runInfo)
, totals(_totals)
, aborting(_aborting)
{}
TestRunStats::~TestRunStats() = default;
void IStreamingReporter::fatalErrorEncountered(StringRef) {}
bool IStreamingReporter::isMulti() const
{
return false;
}
IReporterFactory::~IReporterFactory() = default;
IReporterRegistry::~IReporterRegistry() = default;
} // end namespace Catch
// end catch_interfaces_reporter.cpp
// start catch_interfaces_runner.cpp
namespace Catch {
IRunner::~IRunner() = default;
}
// end catch_interfaces_runner.cpp
// start catch_interfaces_testcase.cpp
namespace Catch {
ITestInvoker::~ITestInvoker() = default;
ITestCaseRegistry::~ITestCaseRegistry() = default;
} // namespace Catch
// end catch_interfaces_testcase.cpp
// start catch_leak_detector.cpp
#ifdef CATCH_CONFIG_WINDOWS_CRTDBG
#include <crtdbg.h>
namespace Catch {
LeakDetector::LeakDetector()
{
int flag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
flag |= _CRTDBG_LEAK_CHECK_DF;
flag |= _CRTDBG_ALLOC_MEM_DF;
_CrtSetDbgFlag(flag);
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR);
// Change this to leaking allocation's number to break there
_CrtSetBreakAlloc(-1);
}
} // namespace Catch
#else
Catch::LeakDetector::LeakDetector() {}
#endif
Catch::LeakDetector::~LeakDetector()
{
Catch::cleanUp();
}
// end catch_leak_detector.cpp
// start catch_list.cpp
// start catch_list.h
#include <set>
namespace Catch {
std::size_t listTests(Config const& config);
std::size_t listTestsNamesOnly(Config const& config);
struct TagInfo
{
void add(std::string const& spelling);
std::string all() const;
std::set<std::string> spellings;
std::size_t count = 0;
};
std::size_t listTags(Config const& config);
std::size_t listReporters();
Option<std::size_t> list(std::shared_ptr<Config> const& config);
} // end namespace Catch
// end catch_list.h
// start catch_text.h
namespace Catch {
using namespace clara::TextFlow;
}
// end catch_text.h
#include <limits>
#include <algorithm>
#include <iomanip>
namespace Catch {
std::size_t listTests(Config const& config)
{
TestSpec const& testSpec = config.testSpec();
if (config.hasTestFilters())
Catch::cout() << "Matching test cases:\n";
else
{
Catch::cout() << "All available test cases:\n";
}
auto matchedTestCases = filterTests(getAllTestCasesSorted(config), testSpec, config);
for (auto const& testCaseInfo : matchedTestCases)
{
Colour::Code colour = testCaseInfo.isHidden() ? Colour::SecondaryText : Colour::None;
Colour colourGuard(colour);
Catch::cout() << Column(testCaseInfo.name).initialIndent(2).indent(4) << "\n";
if (config.verbosity() >= Verbosity::High)
{
Catch::cout() << Column(Catch::Detail::stringify(testCaseInfo.lineInfo)).indent(4) << std::endl;
std::string description = testCaseInfo.description;
if (description.empty())
description = "(NO DESCRIPTION)";
Catch::cout() << Column(description).indent(4) << std::endl;
}
if (!testCaseInfo.tags.empty())
Catch::cout() << Column(testCaseInfo.tagsAsString()).indent(6) << "\n";
}
if (!config.hasTestFilters())
Catch::cout() << pluralise(matchedTestCases.size(), "test case") << '\n' << std::endl;
else
Catch::cout() << pluralise(matchedTestCases.size(), "matching test case") << '\n' << std::endl;
return matchedTestCases.size();
}
std::size_t listTestsNamesOnly(Config const& config)
{
TestSpec const& testSpec = config.testSpec();
std::size_t matchedTests = 0;
std::vector<TestCase> matchedTestCases = filterTests(getAllTestCasesSorted(config), testSpec, config);
for (auto const& testCaseInfo : matchedTestCases)
{
matchedTests++;
if (startsWith(testCaseInfo.name, '#'))
Catch::cout() << '"' << testCaseInfo.name << '"';
else
Catch::cout() << testCaseInfo.name;
if (config.verbosity() >= Verbosity::High)
Catch::cout() << "\t@" << testCaseInfo.lineInfo;
Catch::cout() << std::endl;
}
return matchedTests;
}
void TagInfo::add(std::string const& spelling)
{
++count;
spellings.insert(spelling);
}
std::string TagInfo::all() const
{
size_t size = 0;
for (auto const& spelling : spellings)
{
// Add 2 for the brackes
size += spelling.size() + 2;
}
std::string out;
out.reserve(size);
for (auto const& spelling : spellings)
{
out += '[';
out += spelling;
out += ']';
}
return out;
}
std::size_t listTags(Config const& config)
{
TestSpec const& testSpec = config.testSpec();
if (config.hasTestFilters())
Catch::cout() << "Tags for matching test cases:\n";
else
{
Catch::cout() << "All available tags:\n";
}
std::map<std::string, TagInfo> tagCounts;
std::vector<TestCase> matchedTestCases = filterTests(getAllTestCasesSorted(config), testSpec, config);
for (auto const& testCase : matchedTestCases)
{
for (auto const& tagName : testCase.getTestCaseInfo().tags)
{
std::string lcaseTagName = toLower(tagName);
auto countIt = tagCounts.find(lcaseTagName);
if (countIt == tagCounts.end())
countIt = tagCounts.insert(std::make_pair(lcaseTagName, TagInfo())).first;
countIt->second.add(tagName);
}
}
for (auto const& tagCount : tagCounts)
{
ReusableStringStream rss;
rss << " " << std::setw(2) << tagCount.second.count << " ";
auto str = rss.str();
auto wrapper =
Column(tagCount.second.all()).initialIndent(0).indent(str.size()).width(CATCH_CONFIG_CONSOLE_WIDTH - 10);
Catch::cout() << str << wrapper << '\n';
}
Catch::cout() << pluralise(tagCounts.size(), "tag") << '\n' << std::endl;
return tagCounts.size();
}
std::size_t listReporters()
{
Catch::cout() << "Available reporters:\n";
IReporterRegistry::FactoryMap const& factories = getRegistryHub().getReporterRegistry().getFactories();
std::size_t maxNameLen = 0;
for (auto const& factoryKvp : factories)
maxNameLen = (std::max)(maxNameLen, factoryKvp.first.size());
for (auto const& factoryKvp : factories)
{
Catch::cout() << Column(factoryKvp.first + ":").indent(2).width(5 + maxNameLen) +
Column(factoryKvp.second->getDescription())
.initialIndent(0)
.indent(2)
.width(CATCH_CONFIG_CONSOLE_WIDTH - maxNameLen - 8)
<< "\n";
}
Catch::cout() << std::endl;
return factories.size();
}
Option<std::size_t> list(std::shared_ptr<Config> const& config)
{
Option<std::size_t> listedCount;
getCurrentMutableContext().setConfig(config);
if (config->listTests())
listedCount = listedCount.valueOr(0) + listTests(*config);
if (config->listTestNamesOnly())
listedCount = listedCount.valueOr(0) + listTestsNamesOnly(*config);
if (config->listTags())
listedCount = listedCount.valueOr(0) + listTags(*config);
if (config->listReporters())
listedCount = listedCount.valueOr(0) + listReporters();
return listedCount;
}
} // end namespace Catch
// end catch_list.cpp
// start catch_matchers.cpp
namespace Catch {
namespace Matchers {
namespace Impl {
std::string MatcherUntypedBase::toString() const
{
if (m_cachedToString.empty())
m_cachedToString = describe();
return m_cachedToString;
}
MatcherUntypedBase::~MatcherUntypedBase() = default;
} // namespace Impl
} // namespace Matchers
using namespace Matchers;
using Matchers::Impl::MatcherBase;
} // namespace Catch
// end catch_matchers.cpp
// start catch_matchers_exception.cpp
namespace Catch {
namespace Matchers {
namespace Exception {
bool ExceptionMessageMatcher::match(std::exception const& ex) const
{
return ex.what() == m_message;
}
std::string ExceptionMessageMatcher::describe() const
{
return "exception message matches \"" + m_message + "\"";
}
} // namespace Exception
Exception::ExceptionMessageMatcher Message(std::string const& message)
{
return Exception::ExceptionMessageMatcher(message);
}
// namespace Exception
} // namespace Matchers
} // namespace Catch
// end catch_matchers_exception.cpp
// start catch_matchers_floating.cpp
// start catch_polyfills.hpp
namespace Catch {
bool isnan(float f);
bool isnan(double d);
} // namespace Catch
// end catch_polyfills.hpp
// start catch_to_string.hpp
#include <string>
namespace Catch {
template<typename T>
std::string to_string(T const& t)
{
#if defined(CATCH_CONFIG_CPP11_TO_STRING)
return std::to_string(t);
#else
ReusableStringStream rss;
rss << t;
return rss.str();
#endif
}
} // end namespace Catch
// end catch_to_string.hpp
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstdint>
#include <cstring>
#include <sstream>
#include <type_traits>
#include <iomanip>
#include <limits>
namespace Catch {
namespace {
int32_t convert(float f)
{
static_assert(sizeof(float) == sizeof(int32_t), "Important ULP matcher assumption violated");
int32_t i;
std::memcpy(&i, &f, sizeof(f));
return i;
}
int64_t convert(double d)
{
static_assert(sizeof(double) == sizeof(int64_t), "Important ULP matcher assumption violated");
int64_t i;
std::memcpy(&i, &d, sizeof(d));
return i;
}
template<typename FP>
bool almostEqualUlps(FP lhs, FP rhs, uint64_t maxUlpDiff)
{
// Comparison with NaN should always be false.
// This way we can rule it out before getting into the ugly details
if (Catch::isnan(lhs) || Catch::isnan(rhs))
{
return false;
}
auto lc = convert(lhs);
auto rc = convert(rhs);
if ((lc < 0) != (rc < 0))
{
// Potentially we can have +0 and -0
return lhs == rhs;
}
// static cast as a workaround for IBM XLC
auto ulpDiff = std::abs(static_cast<FP>(lc - rc));
return static_cast<uint64_t>(ulpDiff) <= maxUlpDiff;
}
#if defined(CATCH_CONFIG_GLOBAL_NEXTAFTER)
float nextafter(float x, float y)
{
return ::nextafterf(x, y);
}
double nextafter(double x, double y)
{
return ::nextafter(x, y);
}
#endif // ^^^ CATCH_CONFIG_GLOBAL_NEXTAFTER ^^^
template<typename FP>
FP step(FP start, FP direction, uint64_t steps)
{
for (uint64_t i = 0; i < steps; ++i)
{
#if defined(CATCH_CONFIG_GLOBAL_NEXTAFTER)
start = Catch::nextafter(start, direction);
#else
start = std::nextafter(start, direction);
#endif
}
return start;
}
// Performs equivalent check of std::fabs(lhs - rhs) <= margin
// But without the subtraction to allow for INFINITY in comparison
bool marginComparison(double lhs, double rhs, double margin)
{
return (lhs + margin >= rhs) && (rhs + margin >= lhs);
}
template<typename FloatingPoint>
void write(std::ostream& out, FloatingPoint num)
{
out << std::scientific << std::setprecision(std::numeric_limits<FloatingPoint>::max_digits10 - 1) << num;
}
} // end anonymous namespace
namespace Matchers {
namespace Floating {
enum class FloatingPointKind : uint8_t { Float, Double };
WithinAbsMatcher::WithinAbsMatcher(double target, double margin)
: m_target{target}
, m_margin{margin}
{
CATCH_ENFORCE(margin >= 0, "Invalid margin: " << margin << '.' << " Margin has to be non-negative.");
}
// Performs equivalent check of std::fabs(lhs - rhs) <= margin
// But without the subtraction to allow for INFINITY in comparison
bool WithinAbsMatcher::match(double const& matchee) const
{
return (matchee + m_margin >= m_target) && (m_target + m_margin >= matchee);
}
std::string WithinAbsMatcher::describe() const
{
return "is within " + ::Catch::Detail::stringify(m_margin) + " of " + ::Catch::Detail::stringify(m_target);
}
WithinUlpsMatcher::WithinUlpsMatcher(double target, uint64_t ulps, FloatingPointKind baseType)
: m_target{target}
, m_ulps{ulps}
, m_type{baseType}
{
CATCH_ENFORCE(m_type == FloatingPointKind::Double || m_ulps < (std::numeric_limits<uint32_t>::max)(),
"Provided ULP is impossibly large for a float comparison.");
}
#if defined(__clang__)
#pragma clang diagnostic push
// Clang <3.5 reports on the default branch in the switch below
#pragma clang diagnostic ignored "-Wunreachable-code"
#endif
bool WithinUlpsMatcher::match(double const& matchee) const
{
switch (m_type)
{
case FloatingPointKind::Float:
return almostEqualUlps<float>(static_cast<float>(matchee), static_cast<float>(m_target), m_ulps);
case FloatingPointKind::Double:
return almostEqualUlps<double>(matchee, m_target, m_ulps);
default:
CATCH_INTERNAL_ERROR("Unknown FloatingPointKind value");
}
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
std::string WithinUlpsMatcher::describe() const
{
std::stringstream ret;
ret << "is within " << m_ulps << " ULPs of ";
if (m_type == FloatingPointKind::Float)
{
write(ret, static_cast<float>(m_target));
ret << 'f';
}
else
{
write(ret, m_target);
}
ret << " ([";
if (m_type == FloatingPointKind::Double)
{
write(ret, step(m_target, static_cast<double>(-INFINITY), m_ulps));
ret << ", ";
write(ret, step(m_target, static_cast<double>(INFINITY), m_ulps));
}
else
{
// We have to cast INFINITY to float because of MinGW, see #1782
write(ret, step(static_cast<float>(m_target), static_cast<float>(-INFINITY), m_ulps));
ret << ", ";
write(ret, step(static_cast<float>(m_target), static_cast<float>(INFINITY), m_ulps));
}
ret << "])";
return ret.str();
}
WithinRelMatcher::WithinRelMatcher(double target, double epsilon)
: m_target(target)
, m_epsilon(epsilon)
{
CATCH_ENFORCE(m_epsilon >= 0., "Relative comparison with epsilon < 0 does not make sense.");
CATCH_ENFORCE(m_epsilon < 1., "Relative comparison with epsilon >= 1 does not make sense.");
}
bool WithinRelMatcher::match(double const& matchee) const
{
const auto relMargin = m_epsilon * (std::max)(std::fabs(matchee), std::fabs(m_target));
return marginComparison(matchee, m_target, std::isinf(relMargin) ? 0 : relMargin);
}
std::string WithinRelMatcher::describe() const
{
Catch::ReusableStringStream sstr;
sstr << "and " << m_target << " are within " << m_epsilon * 100. << "% of each other";
return sstr.str();
}
} // namespace Floating
Floating::WithinUlpsMatcher WithinULP(double target, uint64_t maxUlpDiff)
{
return Floating::WithinUlpsMatcher(target, maxUlpDiff, Floating::FloatingPointKind::Double);
}
Floating::WithinUlpsMatcher WithinULP(float target, uint64_t maxUlpDiff)
{
return Floating::WithinUlpsMatcher(target, maxUlpDiff, Floating::FloatingPointKind::Float);
}
Floating::WithinAbsMatcher WithinAbs(double target, double margin)
{
return Floating::WithinAbsMatcher(target, margin);
}
Floating::WithinRelMatcher WithinRel(double target, double eps)
{
return Floating::WithinRelMatcher(target, eps);
}
Floating::WithinRelMatcher WithinRel(double target)
{
return Floating::WithinRelMatcher(target, std::numeric_limits<double>::epsilon() * 100);
}
Floating::WithinRelMatcher WithinRel(float target, float eps)
{
return Floating::WithinRelMatcher(target, eps);
}
Floating::WithinRelMatcher WithinRel(float target)
{
return Floating::WithinRelMatcher(target, std::numeric_limits<float>::epsilon() * 100);
}
} // namespace Matchers
} // namespace Catch
// end catch_matchers_floating.cpp
// start catch_matchers_generic.cpp
std::string Catch::Matchers::Generic::Detail::finalizeDescription(const std::string& desc)
{
if (desc.empty())
{
return "matches undescribed predicate";
}
else
{
return "matches predicate: \"" + desc + '"';
}
}
// end catch_matchers_generic.cpp
// start catch_matchers_string.cpp
#include <regex>
namespace Catch {
namespace Matchers {
namespace StdString {
CasedString::CasedString(std::string const& str, CaseSensitive::Choice caseSensitivity)
: m_caseSensitivity(caseSensitivity)
, m_str(adjustString(str))
{}
std::string CasedString::adjustString(std::string const& str) const
{
return m_caseSensitivity == CaseSensitive::No ? toLower(str) : str;
}
std::string CasedString::caseSensitivitySuffix() const
{
return m_caseSensitivity == CaseSensitive::No ? " (case insensitive)" : std::string();
}
StringMatcherBase::StringMatcherBase(std::string const& operation, CasedString const& comparator)
: m_comparator(comparator)
, m_operation(operation)
{}
std::string StringMatcherBase::describe() const
{
std::string description;
description.reserve(5 + m_operation.size() + m_comparator.m_str.size() +
m_comparator.caseSensitivitySuffix().size());
description += m_operation;
description += ": \"";
description += m_comparator.m_str;
description += "\"";
description += m_comparator.caseSensitivitySuffix();
return description;
}
EqualsMatcher::EqualsMatcher(CasedString const& comparator)
: StringMatcherBase("equals", comparator)
{}
bool EqualsMatcher::match(std::string const& source) const
{
return m_comparator.adjustString(source) == m_comparator.m_str;
}
ContainsMatcher::ContainsMatcher(CasedString const& comparator)
: StringMatcherBase("contains", comparator)
{}
bool ContainsMatcher::match(std::string const& source) const
{
return contains(m_comparator.adjustString(source), m_comparator.m_str);
}
StartsWithMatcher::StartsWithMatcher(CasedString const& comparator)
: StringMatcherBase("starts with", comparator)
{}
bool StartsWithMatcher::match(std::string const& source) const
{
return startsWith(m_comparator.adjustString(source), m_comparator.m_str);
}
EndsWithMatcher::EndsWithMatcher(CasedString const& comparator)
: StringMatcherBase("ends with", comparator)
{}
bool EndsWithMatcher::match(std::string const& source) const
{
return endsWith(m_comparator.adjustString(source), m_comparator.m_str);
}
RegexMatcher::RegexMatcher(std::string regex, CaseSensitive::Choice caseSensitivity)
: m_regex(std::move(regex))
, m_caseSensitivity(caseSensitivity)
{}
bool RegexMatcher::match(std::string const& matchee) const
{
auto flags = std::regex::ECMAScript; // ECMAScript is the default syntax option anyway
if (m_caseSensitivity == CaseSensitive::Choice::No)
{
flags |= std::regex::icase;
}
auto reg = std::regex(m_regex, flags);
return std::regex_match(matchee, reg);
}
std::string RegexMatcher::describe() const
{
return "matches " + ::Catch::Detail::stringify(m_regex) +
((m_caseSensitivity == CaseSensitive::Choice::Yes) ? " case sensitively" : " case insensitively");
}
} // namespace StdString
StdString::EqualsMatcher Equals(std::string const& str, CaseSensitive::Choice caseSensitivity)
{
return StdString::EqualsMatcher(StdString::CasedString(str, caseSensitivity));
}
StdString::ContainsMatcher Contains(std::string const& str, CaseSensitive::Choice caseSensitivity)
{
return StdString::ContainsMatcher(StdString::CasedString(str, caseSensitivity));
}
StdString::EndsWithMatcher EndsWith(std::string const& str, CaseSensitive::Choice caseSensitivity)
{
return StdString::EndsWithMatcher(StdString::CasedString(str, caseSensitivity));
}
StdString::StartsWithMatcher StartsWith(std::string const& str, CaseSensitive::Choice caseSensitivity)
{
return StdString::StartsWithMatcher(StdString::CasedString(str, caseSensitivity));
}
StdString::RegexMatcher Matches(std::string const& regex, CaseSensitive::Choice caseSensitivity)
{
return StdString::RegexMatcher(regex, caseSensitivity);
}
} // namespace Matchers
} // namespace Catch
// end catch_matchers_string.cpp
// start catch_message.cpp
// start catch_uncaught_exceptions.h
namespace Catch {
bool uncaught_exceptions();
} // end namespace Catch
// end catch_uncaught_exceptions.h
#include <cassert>
#include <stack>
namespace Catch {
MessageInfo::MessageInfo(StringRef const& _macroName, SourceLineInfo const& _lineInfo, ResultWas::OfType _type)
: macroName(_macroName)
, lineInfo(_lineInfo)
, type(_type)
, sequence(++globalCount)
{}
bool MessageInfo::operator==(MessageInfo const& other) const
{
return sequence == other.sequence;
}
bool MessageInfo::operator<(MessageInfo const& other) const
{
return sequence < other.sequence;
}
// This may need protecting if threading support is added
unsigned int MessageInfo::globalCount = 0;
////////////////////////////////////////////////////////////////////////////
Catch::MessageBuilder::MessageBuilder(StringRef const& macroName,
SourceLineInfo const& lineInfo,
ResultWas::OfType type)
: m_info(macroName, lineInfo, type)
{}
////////////////////////////////////////////////////////////////////////////
ScopedMessage::ScopedMessage(MessageBuilder const& builder)
: m_info(builder.m_info)
, m_moved()
{
m_info.message = builder.m_stream.str();
getResultCapture().pushScopedMessage(m_info);
}
ScopedMessage::ScopedMessage(ScopedMessage&& old)
: m_info(old.m_info)
, m_moved()
{
old.m_moved = true;
}
ScopedMessage::~ScopedMessage()
{
if (!uncaught_exceptions() && !m_moved)
{
getResultCapture().popScopedMessage(m_info);
}
}
Capturer::Capturer(StringRef macroName, SourceLineInfo const& lineInfo, ResultWas::OfType resultType, StringRef names)
{
auto trimmed = [&](size_t start, size_t end) {
while (names[start] == ',' || isspace(static_cast<unsigned char>(names[start])))
{
++start;
}
while (names[end] == ',' || isspace(static_cast<unsigned char>(names[end])))
{
--end;
}
return names.substr(start, end - start + 1);
};
auto skipq = [&](size_t start, char quote) {
for (auto i = start + 1; i < names.size(); ++i)
{
if (names[i] == quote)
return i;
if (names[i] == '\\')
++i;
}
CATCH_INTERNAL_ERROR("CAPTURE parsing encountered unmatched quote");
};
size_t start = 0;
std::stack<char> openings;
for (size_t pos = 0; pos < names.size(); ++pos)
{
char c = names[pos];
switch (c)
{
case '[':
case '{':
case '(':
// It is basically impossible to disambiguate between
// comparison and start of template args in this context
// case '<':
openings.push(c);
break;
case ']':
case '}':
case ')':
// case '>':
openings.pop();
break;
case '"':
case '\'':
pos = skipq(pos, c);
break;
case ',':
if (start != pos && openings.empty())
{
m_messages.emplace_back(macroName, lineInfo, resultType);
m_messages.back().message = static_cast<std::string>(trimmed(start, pos));
m_messages.back().message += " := ";
start = pos;
}
}
}
assert(openings.empty() && "Mismatched openings");
m_messages.emplace_back(macroName, lineInfo, resultType);
m_messages.back().message = static_cast<std::string>(trimmed(start, names.size() - 1));
m_messages.back().message += " := ";
}
Capturer::~Capturer()
{
if (!uncaught_exceptions())
{
assert(m_captured == m_messages.size());
for (size_t i = 0; i < m_captured; ++i)
m_resultCapture.popScopedMessage(m_messages[i]);
}
}
void Capturer::captureValue(size_t index, std::string const& value)
{
assert(index < m_messages.size());
m_messages[index].message += value;
m_resultCapture.pushScopedMessage(m_messages[index]);
m_captured++;
}
} // end namespace Catch
// end catch_message.cpp
// start catch_output_redirect.cpp
// start catch_output_redirect.h
#ifndef TWOBLUECUBES_CATCH_OUTPUT_REDIRECT_H
#define TWOBLUECUBES_CATCH_OUTPUT_REDIRECT_H
#include <cstdio>
#include <iosfwd>
#include <string>
namespace Catch {
class RedirectedStream
{
std::ostream& m_originalStream;
std::ostream& m_redirectionStream;
std::streambuf* m_prevBuf;
public:
RedirectedStream(std::ostream& originalStream, std::ostream& redirectionStream);
~RedirectedStream();
};
class RedirectedStdOut
{
ReusableStringStream m_rss;
RedirectedStream m_cout;
public:
RedirectedStdOut();
auto str() const -> std::string;
};
// StdErr has two constituent streams in C++, std::cerr and std::clog
// This means that we need to redirect 2 streams into 1 to keep proper
// order of writes
class RedirectedStdErr
{
ReusableStringStream m_rss;
RedirectedStream m_cerr;
RedirectedStream m_clog;
public:
RedirectedStdErr();
auto str() const -> std::string;
};
class RedirectedStreams
{
public:
RedirectedStreams(RedirectedStreams const&) = delete;
RedirectedStreams& operator=(RedirectedStreams const&) = delete;
RedirectedStreams(RedirectedStreams&&) = delete;
RedirectedStreams& operator=(RedirectedStreams&&) = delete;
RedirectedStreams(std::string& redirectedCout, std::string& redirectedCerr);
~RedirectedStreams();
private:
std::string& m_redirectedCout;
std::string& m_redirectedCerr;
RedirectedStdOut m_redirectedStdOut;
RedirectedStdErr m_redirectedStdErr;
};
#if defined(CATCH_CONFIG_NEW_CAPTURE)
// Windows's implementation of std::tmpfile is terrible (it tries
// to create a file inside system folder, thus requiring elevated
// privileges for the binary), so we have to use tmpnam(_s) and
// create the file ourselves there.
class TempFile
{
public:
TempFile(TempFile const&) = delete;
TempFile& operator=(TempFile const&) = delete;
TempFile(TempFile&&) = delete;
TempFile& operator=(TempFile&&) = delete;
TempFile();
~TempFile();
std::FILE* getFile();
std::string getContents();
private:
std::FILE* m_file = nullptr;
#if defined(_MSC_VER)
char m_buffer[L_tmpnam] = {0};
#endif
};
class OutputRedirect
{
public:
OutputRedirect(OutputRedirect const&) = delete;
OutputRedirect& operator=(OutputRedirect const&) = delete;
OutputRedirect(OutputRedirect&&) = delete;
OutputRedirect& operator=(OutputRedirect&&) = delete;
OutputRedirect(std::string& stdout_dest, std::string& stderr_dest);
~OutputRedirect();
private:
int m_originalStdout = -1;
int m_originalStderr = -1;
TempFile m_stdoutFile;
TempFile m_stderrFile;
std::string& m_stdoutDest;
std::string& m_stderrDest;
};
#endif
} // end namespace Catch
#endif // TWOBLUECUBES_CATCH_OUTPUT_REDIRECT_H
// end catch_output_redirect.h
#include <cstdio>
#include <cstring>
#include <fstream>
#include <sstream>
#include <stdexcept>
#if defined(CATCH_CONFIG_NEW_CAPTURE)
#if defined(_MSC_VER)
#include <io.h> //_dup and _dup2
#define dup _dup
#define dup2 _dup2
#define fileno _fileno
#else
#include <unistd.h> // dup and dup2
#endif
#endif
namespace Catch {
RedirectedStream::RedirectedStream(std::ostream& originalStream, std::ostream& redirectionStream)
: m_originalStream(originalStream)
, m_redirectionStream(redirectionStream)
, m_prevBuf(m_originalStream.rdbuf())
{
m_originalStream.rdbuf(m_redirectionStream.rdbuf());
}
RedirectedStream::~RedirectedStream()
{
m_originalStream.rdbuf(m_prevBuf);
}
RedirectedStdOut::RedirectedStdOut()
: m_cout(Catch::cout(), m_rss.get())
{}
auto RedirectedStdOut::str() const -> std::string
{
return m_rss.str();
}
RedirectedStdErr::RedirectedStdErr()
: m_cerr(Catch::cerr(), m_rss.get())
, m_clog(Catch::clog(), m_rss.get())
{}
auto RedirectedStdErr::str() const -> std::string
{
return m_rss.str();
}
RedirectedStreams::RedirectedStreams(std::string& redirectedCout, std::string& redirectedCerr)
: m_redirectedCout(redirectedCout)
, m_redirectedCerr(redirectedCerr)
{}
RedirectedStreams::~RedirectedStreams()
{
m_redirectedCout += m_redirectedStdOut.str();
m_redirectedCerr += m_redirectedStdErr.str();
}
#if defined(CATCH_CONFIG_NEW_CAPTURE)
#if defined(_MSC_VER)
TempFile::TempFile()
{
if (tmpnam_s(m_buffer))
{
CATCH_RUNTIME_ERROR("Could not get a temp filename");
}
if (fopen_s(&m_file, m_buffer, "w+"))
{
char buffer[100];
if (strerror_s(buffer, errno))
{
CATCH_RUNTIME_ERROR("Could not translate errno to a string");
}
CATCH_RUNTIME_ERROR("Could not open the temp file: '" << m_buffer << "' because: " << buffer);
}
}
#else
TempFile::TempFile()
{
m_file = std::tmpfile();
if (!m_file)
{
CATCH_RUNTIME_ERROR("Could not create a temp file.");
}
}
#endif
TempFile::~TempFile()
{
// TBD: What to do about errors here?
std::fclose(m_file);
// We manually create the file on Windows only, on Linux
// it will be autodeleted
#if defined(_MSC_VER)
std::remove(m_buffer);
#endif
}
FILE* TempFile::getFile()
{
return m_file;
}
std::string TempFile::getContents()
{
std::stringstream sstr;
char buffer[100] = {};
std::rewind(m_file);
while (std::fgets(buffer, sizeof(buffer), m_file))
{
sstr << buffer;
}
return sstr.str();
}
OutputRedirect::OutputRedirect(std::string& stdout_dest, std::string& stderr_dest)
: m_originalStdout(dup(1))
, m_originalStderr(dup(2))
, m_stdoutDest(stdout_dest)
, m_stderrDest(stderr_dest)
{
dup2(fileno(m_stdoutFile.getFile()), 1);
dup2(fileno(m_stderrFile.getFile()), 2);
}
OutputRedirect::~OutputRedirect()
{
Catch::cout() << std::flush;
fflush(stdout);
// Since we support overriding these streams, we flush cerr
// even though std::cerr is unbuffered
Catch::cerr() << std::flush;
Catch::clog() << std::flush;
fflush(stderr);
dup2(m_originalStdout, 1);
dup2(m_originalStderr, 2);
m_stdoutDest += m_stdoutFile.getContents();
m_stderrDest += m_stderrFile.getContents();
}
#endif // CATCH_CONFIG_NEW_CAPTURE
} // namespace Catch
#if defined(CATCH_CONFIG_NEW_CAPTURE)
#if defined(_MSC_VER)
#undef dup
#undef dup2
#undef fileno
#endif
#endif
// end catch_output_redirect.cpp
// start catch_polyfills.cpp
#include <cmath>
namespace Catch {
#if !defined(CATCH_CONFIG_POLYFILL_ISNAN)
bool isnan(float f)
{
return std::isnan(f);
}
bool isnan(double d)
{
return std::isnan(d);
}
#else
// For now we only use this for embarcadero
bool isnan(float f)
{
return std::_isnan(f);
}
bool isnan(double d)
{
return std::_isnan(d);
}
#endif
} // end namespace Catch
// end catch_polyfills.cpp
// start catch_random_number_generator.cpp
namespace Catch {
namespace {
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4146) // we negate uint32 during the rotate
#endif
// Safe rotr implementation thanks to John Regehr
uint32_t rotate_right(uint32_t val, uint32_t count)
{
const uint32_t mask = 31;
count &= mask;
return (val >> count) | (val << (-count & mask));
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
} // namespace
SimplePcg32::SimplePcg32(result_type seed_)
{
seed(seed_);
}
void SimplePcg32::seed(result_type seed_)
{
m_state = 0;
(*this)();
m_state += seed_;
(*this)();
}
void SimplePcg32::discard(uint64_t skip)
{
// We could implement this to run in O(log n) steps, but this
// should suffice for our use case.
for (uint64_t s = 0; s < skip; ++s)
{
static_cast<void>((*this)());
}
}
SimplePcg32::result_type SimplePcg32::operator()()
{
// prepare the output value
const uint32_t xorshifted = static_cast<uint32_t>(((m_state >> 18u) ^ m_state) >> 27u);
const auto output = rotate_right(xorshifted, m_state >> 59u);
// advance state
m_state = m_state * 6364136223846793005ULL + s_inc;
return output;
}
bool operator==(SimplePcg32 const& lhs, SimplePcg32 const& rhs)
{
return lhs.m_state == rhs.m_state;
}
bool operator!=(SimplePcg32 const& lhs, SimplePcg32 const& rhs)
{
return lhs.m_state != rhs.m_state;
}
} // namespace Catch
// end catch_random_number_generator.cpp
// start catch_registry_hub.cpp
// start catch_test_case_registry_impl.h
#include <vector>
#include <set>
#include <algorithm>
#include <ios>
namespace Catch {
class TestCase;
struct IConfig;
std::vector<TestCase> sortTests(IConfig const& config, std::vector<TestCase> const& unsortedTestCases);
bool isThrowSafe(TestCase const& testCase, IConfig const& config);
bool matchTest(TestCase const& testCase, TestSpec const& testSpec, IConfig const& config);
void enforceNoDuplicateTestCases(std::vector<TestCase> const& functions);
std::vector<TestCase>
filterTests(std::vector<TestCase> const& testCases, TestSpec const& testSpec, IConfig const& config);
std::vector<TestCase> const& getAllTestCasesSorted(IConfig const& config);
class TestRegistry : public ITestCaseRegistry
{
public:
virtual ~TestRegistry() = default;
virtual void registerTest(TestCase const& testCase);
std::vector<TestCase> const& getAllTests() const override;
std::vector<TestCase> const& getAllTestsSorted(IConfig const& config) const override;
private:
std::vector<TestCase> m_functions;
mutable RunTests::InWhatOrder m_currentSortOrder = RunTests::InDeclarationOrder;
mutable std::vector<TestCase> m_sortedFunctions;
std::size_t m_unnamedCount = 0;
std::ios_base::Init m_ostreamInit; // Forces cout/ cerr to be initialised
};
///////////////////////////////////////////////////////////////////////////
class TestInvokerAsFunction : public ITestInvoker
{
void (*m_testAsFunction)();
public:
TestInvokerAsFunction(void (*testAsFunction)()) noexcept;
void invoke() const override;
};
std::string extractClassName(StringRef const& classOrQualifiedMethodName);
///////////////////////////////////////////////////////////////////////////
} // end namespace Catch
// end catch_test_case_registry_impl.h
// start catch_reporter_registry.h
#include <map>
namespace Catch {
class ReporterRegistry : public IReporterRegistry
{
public:
~ReporterRegistry() override;
IStreamingReporterPtr create(std::string const& name, IConfigPtr const& config) const override;
void registerReporter(std::string const& name, IReporterFactoryPtr const& factory);
void registerListener(IReporterFactoryPtr const& factory);
FactoryMap const& getFactories() const override;
Listeners const& getListeners() const override;
private:
FactoryMap m_factories;
Listeners m_listeners;
};
} // namespace Catch
// end catch_reporter_registry.h
// start catch_tag_alias_registry.h
// start catch_tag_alias.h
#include <string>
namespace Catch {
struct TagAlias
{
TagAlias(std::string const& _tag, SourceLineInfo _lineInfo);
std::string tag;
SourceLineInfo lineInfo;
};
} // end namespace Catch
// end catch_tag_alias.h
#include <map>
namespace Catch {
class TagAliasRegistry : public ITagAliasRegistry
{
public:
~TagAliasRegistry() override;
TagAlias const* find(std::string const& alias) const override;
std::string expandAliases(std::string const& unexpandedTestSpec) const override;
void add(std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo);
private:
std::map<std::string, TagAlias> m_registry;
};
} // end namespace Catch
// end catch_tag_alias_registry.h
// start catch_startup_exception_registry.h
#include <vector>
#include <exception>
namespace Catch {
class StartupExceptionRegistry
{
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
public:
void add(std::exception_ptr const& exception) noexcept;
std::vector<std::exception_ptr> const& getExceptions() const noexcept;
private:
std::vector<std::exception_ptr> m_exceptions;
#endif
};
} // end namespace Catch
// end catch_startup_exception_registry.h
// start catch_singletons.hpp
namespace Catch {
struct ISingleton
{
virtual ~ISingleton();
};
void addSingleton(ISingleton* singleton);
void cleanupSingletons();
template<typename SingletonImplT, typename InterfaceT = SingletonImplT, typename MutableInterfaceT = InterfaceT>
class Singleton : SingletonImplT,
public ISingleton
{
static auto getInternal() -> Singleton*
{
static Singleton* s_instance = nullptr;
if (!s_instance)
{
s_instance = new Singleton;
addSingleton(s_instance);
}
return s_instance;
}
public:
static auto get() -> InterfaceT const& { return *getInternal(); }
static auto getMutable() -> MutableInterfaceT& { return *getInternal(); }
};
} // namespace Catch
// end catch_singletons.hpp
namespace Catch {
namespace {
class RegistryHub : public IRegistryHub,
public IMutableRegistryHub,
private NonCopyable
{
public: // IRegistryHub
RegistryHub() = default;
IReporterRegistry const& getReporterRegistry() const override { return m_reporterRegistry; }
ITestCaseRegistry const& getTestCaseRegistry() const override { return m_testCaseRegistry; }
IExceptionTranslatorRegistry const& getExceptionTranslatorRegistry() const override
{
return m_exceptionTranslatorRegistry;
}
ITagAliasRegistry const& getTagAliasRegistry() const override { return m_tagAliasRegistry; }
StartupExceptionRegistry const& getStartupExceptionRegistry() const override { return m_exceptionRegistry; }
public: // IMutableRegistryHub
void registerReporter(std::string const& name, IReporterFactoryPtr const& factory) override
{
m_reporterRegistry.registerReporter(name, factory);
}
void registerListener(IReporterFactoryPtr const& factory) override { m_reporterRegistry.registerListener(factory); }
void registerTest(TestCase const& testInfo) override { m_testCaseRegistry.registerTest(testInfo); }
void registerTranslator(const IExceptionTranslator* translator) override
{
m_exceptionTranslatorRegistry.registerTranslator(translator);
}
void registerTagAlias(std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo) override
{
m_tagAliasRegistry.add(alias, tag, lineInfo);
}
void registerStartupException() noexcept override
{
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
m_exceptionRegistry.add(std::current_exception());
#else
CATCH_INTERNAL_ERROR("Attempted to register active exception under CATCH_CONFIG_DISABLE_EXCEPTIONS!");
#endif
}
IMutableEnumValuesRegistry& getMutableEnumValuesRegistry() override { return m_enumValuesRegistry; }
private:
TestRegistry m_testCaseRegistry;
ReporterRegistry m_reporterRegistry;
ExceptionTranslatorRegistry m_exceptionTranslatorRegistry;
TagAliasRegistry m_tagAliasRegistry;
StartupExceptionRegistry m_exceptionRegistry;
Detail::EnumValuesRegistry m_enumValuesRegistry;
};
} // namespace
using RegistryHubSingleton = Singleton<RegistryHub, IRegistryHub, IMutableRegistryHub>;
IRegistryHub const& getRegistryHub()
{
return RegistryHubSingleton::get();
}
IMutableRegistryHub& getMutableRegistryHub()
{
return RegistryHubSingleton::getMutable();
}
void cleanUp()
{
cleanupSingletons();
cleanUpContext();
}
std::string translateActiveException()
{
return getRegistryHub().getExceptionTranslatorRegistry().translateActiveException();
}
} // end namespace Catch
// end catch_registry_hub.cpp
// start catch_reporter_registry.cpp
namespace Catch {
ReporterRegistry::~ReporterRegistry() = default;
IStreamingReporterPtr ReporterRegistry::create(std::string const& name, IConfigPtr const& config) const
{
auto it = m_factories.find(name);
if (it == m_factories.end())
return nullptr;
return it->second->create(ReporterConfig(config));
}
void ReporterRegistry::registerReporter(std::string const& name, IReporterFactoryPtr const& factory)
{
m_factories.emplace(name, factory);
}
void ReporterRegistry::registerListener(IReporterFactoryPtr const& factory)
{
m_listeners.push_back(factory);
}
IReporterRegistry::FactoryMap const& ReporterRegistry::getFactories() const
{
return m_factories;
}
IReporterRegistry::Listeners const& ReporterRegistry::getListeners() const
{
return m_listeners;
}
} // namespace Catch
// end catch_reporter_registry.cpp
// start catch_result_type.cpp
namespace Catch {
bool isOk(ResultWas::OfType resultType)
{
return (resultType & ResultWas::FailureBit) == 0;
}
bool isJustInfo(int flags)
{
return flags == ResultWas::Info;
}
ResultDisposition::Flags operator|(ResultDisposition::Flags lhs, ResultDisposition::Flags rhs)
{
return static_cast<ResultDisposition::Flags>(static_cast<int>(lhs) | static_cast<int>(rhs));
}
bool shouldContinueOnFailure(int flags)
{
return (flags & ResultDisposition::ContinueOnFailure) != 0;
}
bool shouldSuppressFailure(int flags)
{
return (flags & ResultDisposition::SuppressFail) != 0;
}
} // end namespace Catch
// end catch_result_type.cpp
// start catch_run_context.cpp
#include <cassert>
#include <algorithm>
#include <sstream>
namespace Catch {
namespace Generators {
struct GeneratorTracker : TestCaseTracking::TrackerBase,
IGeneratorTracker
{
GeneratorBasePtr m_generator;
GeneratorTracker(TestCaseTracking::NameAndLocation const& nameAndLocation, TrackerContext& ctx, ITracker* parent)
: TrackerBase(nameAndLocation, ctx, parent)
{}
~GeneratorTracker();
static GeneratorTracker& acquire(TrackerContext& ctx, TestCaseTracking::NameAndLocation const& nameAndLocation)
{
std::shared_ptr<GeneratorTracker> tracker;
ITracker& currentTracker = ctx.currentTracker();
// Under specific circumstances, the generator we want
// to acquire is also the current tracker. If this is
// the case, we have to avoid looking through current
// tracker's children, and instead return the current
// tracker.
// A case where this check is important is e.g.
// for (int i = 0; i < 5; ++i) {
// int n = GENERATE(1, 2);
// }
//
// without it, the code above creates 5 nested generators.
if (currentTracker.nameAndLocation() == nameAndLocation)
{
auto thisTracker = currentTracker.parent().findChild(nameAndLocation);
assert(thisTracker);
assert(thisTracker->isGeneratorTracker());
tracker = std::static_pointer_cast<GeneratorTracker>(thisTracker);
}
else if (TestCaseTracking::ITrackerPtr childTracker = currentTracker.findChild(nameAndLocation))
{
assert(childTracker);
assert(childTracker->isGeneratorTracker());
tracker = std::static_pointer_cast<GeneratorTracker>(childTracker);
}
else
{
tracker = std::make_shared<GeneratorTracker>(nameAndLocation, ctx, &currentTracker);
currentTracker.addChild(tracker);
}
if (!tracker->isComplete())
{
tracker->open();
}
return *tracker;
}
// TrackerBase interface
bool isGeneratorTracker() const override { return true; }
auto hasGenerator() const -> bool override { return !!m_generator; }
void close() override
{
TrackerBase::close();
// If a generator has a child (it is followed by a section)
// and none of its children have started, then we must wait
// until later to start consuming its values.
// This catches cases where `GENERATE` is placed between two
// `SECTION`s.
// **The check for m_children.empty cannot be removed**.
// doing so would break `GENERATE` _not_ followed by `SECTION`s.
const bool should_wait_for_child = [&]() {
// No children -> nobody to wait for
if (m_children.empty())
{
return false;
}
// If at least one child started executing, don't wait
if (std::find_if(m_children.begin(), m_children.end(), [](TestCaseTracking::ITrackerPtr tracker) {
return tracker->hasStarted();
}) != m_children.end())
{
return false;
}
// No children have started. We need to check if they _can_
// start, and thus we should wait for them, or they cannot
// start (due to filters), and we shouldn't wait for them
auto* parent = m_parent;
// This is safe: there is always at least one section
// tracker in a test case tracking tree
while (!parent->isSectionTracker())
{
parent = &(parent->parent());
}
assert(parent && "Missing root (test case) level section");
auto const& parentSection = static_cast<SectionTracker&>(*parent);
auto const& filters = parentSection.getFilters();
// No filters -> no restrictions on running sections
if (filters.empty())
{
return true;
}
for (auto const& child : m_children)
{
if (child->isSectionTracker() &&
std::find(filters.begin(), filters.end(), static_cast<SectionTracker&>(*child).trimmedName()) !=
filters.end())
{
return true;
}
}
return false;
}();
// This check is a bit tricky, because m_generator->next()
// has a side-effect, where it consumes generator's current
// value, but we do not want to invoke the side-effect if
// this generator is still waiting for any child to start.
if (should_wait_for_child || (m_runState == CompletedSuccessfully && m_generator->next()))
{
m_children.clear();
m_runState = Executing;
}
}
// IGeneratorTracker interface
auto getGenerator() const -> GeneratorBasePtr const& override { return m_generator; }
void setGenerator(GeneratorBasePtr&& generator) override { m_generator = std::move(generator); }
};
GeneratorTracker::~GeneratorTracker() {}
} // namespace Generators
RunContext::RunContext(IConfigPtr const& _config, IStreamingReporterPtr&& reporter)
: m_runInfo(_config->name())
, m_context(getCurrentMutableContext())
, m_config(_config)
, m_reporter(std::move(reporter))
, m_lastAssertionInfo{StringRef(), SourceLineInfo("", 0), StringRef(), ResultDisposition::Normal}
, m_includeSuccessfulResults(m_config->includeSuccessfulResults() ||
m_reporter->getPreferences().shouldReportAllAssertions)
{
m_context.setRunner(this);
m_context.setConfig(m_config);
m_context.setResultCapture(this);
m_reporter->testRunStarting(m_runInfo);
}
RunContext::~RunContext()
{
m_reporter->testRunEnded(TestRunStats(m_runInfo, m_totals, aborting()));
}
void RunContext::testGroupStarting(std::string const& testSpec, std::size_t groupIndex, std::size_t groupsCount)
{
m_reporter->testGroupStarting(GroupInfo(testSpec, groupIndex, groupsCount));
}
void RunContext::testGroupEnded(std::string const& testSpec,
Totals const& totals,
std::size_t groupIndex,
std::size_t groupsCount)
{
m_reporter->testGroupEnded(TestGroupStats(GroupInfo(testSpec, groupIndex, groupsCount), totals, aborting()));
}
Totals RunContext::runTest(TestCase const& testCase)
{
Totals prevTotals = m_totals;
std::string redirectedCout;
std::string redirectedCerr;
auto const& testInfo = testCase.getTestCaseInfo();
m_reporter->testCaseStarting(testInfo);
m_activeTestCase = &testCase;
ITracker& rootTracker = m_trackerContext.startRun();
assert(rootTracker.isSectionTracker());
static_cast<SectionTracker&>(rootTracker).addInitialFilters(m_config->getSectionsToRun());
do
{
m_trackerContext.startCycle();
m_testCaseTracker =
&SectionTracker::acquire(m_trackerContext,
TestCaseTracking::NameAndLocation(testInfo.name, testInfo.lineInfo));
runCurrentTest(redirectedCout, redirectedCerr);
} while (!m_testCaseTracker->isSuccessfullyCompleted() && !aborting());
Totals deltaTotals = m_totals.delta(prevTotals);
if (testInfo.expectedToFail() && deltaTotals.testCases.passed > 0)
{
deltaTotals.assertions.failed++;
deltaTotals.testCases.passed--;
deltaTotals.testCases.failed++;
}
m_totals.testCases += deltaTotals.testCases;
m_reporter->testCaseEnded(TestCaseStats(testInfo, deltaTotals, redirectedCout, redirectedCerr, aborting()));
m_activeTestCase = nullptr;
m_testCaseTracker = nullptr;
return deltaTotals;
}
IConfigPtr RunContext::config() const
{
return m_config;
}
IStreamingReporter& RunContext::reporter() const
{
return *m_reporter;
}
void RunContext::assertionEnded(AssertionResult const& result)
{
if (result.getResultType() == ResultWas::Ok)
{
m_totals.assertions.passed++;
m_lastAssertionPassed = true;
}
else if (!result.isOk())
{
m_lastAssertionPassed = false;
if (m_activeTestCase->getTestCaseInfo().okToFail())
m_totals.assertions.failedButOk++;
else
m_totals.assertions.failed++;
}
else
{
m_lastAssertionPassed = true;
}
// We have no use for the return value (whether messages should be cleared), because messages were made scoped
// and should be let to clear themselves out.
static_cast<void>(m_reporter->assertionEnded(AssertionStats(result, m_messages, m_totals)));
if (result.getResultType() != ResultWas::Warning)
m_messageScopes.clear();
// Reset working state
resetAssertionInfo();
m_lastResult = result;
}
void RunContext::resetAssertionInfo()
{
m_lastAssertionInfo.macroName = StringRef();
m_lastAssertionInfo.capturedExpression = "{Unknown expression after the reported line}"_sr;
}
bool RunContext::sectionStarted(SectionInfo const& sectionInfo, Counts& assertions)
{
ITracker& sectionTracker =
SectionTracker::acquire(m_trackerContext,
TestCaseTracking::NameAndLocation(sectionInfo.name, sectionInfo.lineInfo));
if (!sectionTracker.isOpen())
return false;
m_activeSections.push_back(&sectionTracker);
m_lastAssertionInfo.lineInfo = sectionInfo.lineInfo;
m_reporter->sectionStarting(sectionInfo);
assertions = m_totals.assertions;
return true;
}
auto RunContext::acquireGeneratorTracker(StringRef generatorName, SourceLineInfo const& lineInfo) -> IGeneratorTracker&
{
using namespace Generators;
GeneratorTracker& tracker =
GeneratorTracker::acquire(m_trackerContext,
TestCaseTracking::NameAndLocation(static_cast<std::string>(generatorName), lineInfo));
m_lastAssertionInfo.lineInfo = lineInfo;
return tracker;
}
bool RunContext::testForMissingAssertions(Counts& assertions)
{
if (assertions.total() != 0)
return false;
if (!m_config->warnAboutMissingAssertions())
return false;
if (m_trackerContext.currentTracker().hasChildren())
return false;
m_totals.assertions.failed++;
assertions.failed++;
return true;
}
void RunContext::sectionEnded(SectionEndInfo const& endInfo)
{
Counts assertions = m_totals.assertions - endInfo.prevAssertions;
bool missingAssertions = testForMissingAssertions(assertions);
if (!m_activeSections.empty())
{
m_activeSections.back()->close();
m_activeSections.pop_back();
}
m_reporter->sectionEnded(
SectionStats(endInfo.sectionInfo, assertions, endInfo.durationInSeconds, missingAssertions));
m_messages.clear();
m_messageScopes.clear();
}
void RunContext::sectionEndedEarly(SectionEndInfo const& endInfo)
{
if (m_unfinishedSections.empty())
m_activeSections.back()->fail();
else
m_activeSections.back()->close();
m_activeSections.pop_back();
m_unfinishedSections.push_back(endInfo);
}
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void RunContext::benchmarkPreparing(std::string const& name)
{
m_reporter->benchmarkPreparing(name);
}
void RunContext::benchmarkStarting(BenchmarkInfo const& info)
{
m_reporter->benchmarkStarting(info);
}
void RunContext::benchmarkEnded(BenchmarkStats<> const& stats)
{
m_reporter->benchmarkEnded(stats);
}
void RunContext::benchmarkFailed(std::string const& error)
{
m_reporter->benchmarkFailed(error);
}
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
void RunContext::pushScopedMessage(MessageInfo const& message)
{
m_messages.push_back(message);
}
void RunContext::popScopedMessage(MessageInfo const& message)
{
m_messages.erase(std::remove(m_messages.begin(), m_messages.end(), message), m_messages.end());
}
void RunContext::emplaceUnscopedMessage(MessageBuilder const& builder)
{
m_messageScopes.emplace_back(builder);
}
std::string RunContext::getCurrentTestName() const
{
return m_activeTestCase ? m_activeTestCase->getTestCaseInfo().name : std::string();
}
const AssertionResult* RunContext::getLastResult() const
{
return &(*m_lastResult);
}
void RunContext::exceptionEarlyReported()
{
m_shouldReportUnexpected = false;
}
void RunContext::handleFatalErrorCondition(StringRef message)
{
// First notify reporter that bad things happened
m_reporter->fatalErrorEncountered(message);
// Don't rebuild the result -- the stringification itself can cause more fatal errors
// Instead, fake a result data.
AssertionResultData tempResult(ResultWas::FatalErrorCondition, {false});
tempResult.message = static_cast<std::string>(message);
AssertionResult result(m_lastAssertionInfo, tempResult);
assertionEnded(result);
handleUnfinishedSections();
// Recreate section for test case (as we will lose the one that was in scope)
auto const& testCaseInfo = m_activeTestCase->getTestCaseInfo();
SectionInfo testCaseSection(testCaseInfo.lineInfo, testCaseInfo.name);
Counts assertions;
assertions.failed = 1;
SectionStats testCaseSectionStats(testCaseSection, assertions, 0, false);
m_reporter->sectionEnded(testCaseSectionStats);
auto const& testInfo = m_activeTestCase->getTestCaseInfo();
Totals deltaTotals;
deltaTotals.testCases.failed = 1;
deltaTotals.assertions.failed = 1;
m_reporter->testCaseEnded(TestCaseStats(testInfo, deltaTotals, std::string(), std::string(), false));
m_totals.testCases.failed++;
testGroupEnded(std::string(), m_totals, 1, 1);
m_reporter->testRunEnded(TestRunStats(m_runInfo, m_totals, false));
}
bool RunContext::lastAssertionPassed()
{
return m_lastAssertionPassed;
}
void RunContext::assertionPassed()
{
m_lastAssertionPassed = true;
++m_totals.assertions.passed;
resetAssertionInfo();
m_messageScopes.clear();
}
bool RunContext::aborting() const
{
return m_totals.assertions.failed >= static_cast<std::size_t>(m_config->abortAfter());
}
void RunContext::runCurrentTest(std::string& redirectedCout, std::string& redirectedCerr)
{
auto const& testCaseInfo = m_activeTestCase->getTestCaseInfo();
SectionInfo testCaseSection(testCaseInfo.lineInfo, testCaseInfo.name);
m_reporter->sectionStarting(testCaseSection);
Counts prevAssertions = m_totals.assertions;
double duration = 0;
m_shouldReportUnexpected = true;
m_lastAssertionInfo = {"TEST_CASE"_sr, testCaseInfo.lineInfo, StringRef(), ResultDisposition::Normal};
seedRng(*m_config);
Timer timer;
CATCH_TRY
{
if (m_reporter->getPreferences().shouldRedirectStdOut)
{
#if !defined(CATCH_CONFIG_EXPERIMENTAL_REDIRECT)
RedirectedStreams redirectedStreams(redirectedCout, redirectedCerr);
timer.start();
invokeActiveTestCase();
#else
OutputRedirect r(redirectedCout, redirectedCerr);
timer.start();
invokeActiveTestCase();
#endif
}
else
{
timer.start();
invokeActiveTestCase();
}
duration = timer.getElapsedSeconds();
}
CATCH_CATCH_ANON(TestFailureException&)
{
// This just means the test was aborted due to failure
}
CATCH_CATCH_ALL
{
// Under CATCH_CONFIG_FAST_COMPILE, unexpected exceptions under REQUIRE assertions
// are reported without translation at the point of origin.
if (m_shouldReportUnexpected)
{
AssertionReaction dummyReaction;
handleUnexpectedInflightException(m_lastAssertionInfo, translateActiveException(), dummyReaction);
}
}
Counts assertions = m_totals.assertions - prevAssertions;
bool missingAssertions = testForMissingAssertions(assertions);
m_testCaseTracker->close();
handleUnfinishedSections();
m_messages.clear();
m_messageScopes.clear();
SectionStats testCaseSectionStats(testCaseSection, assertions, duration, missingAssertions);
m_reporter->sectionEnded(testCaseSectionStats);
}
void RunContext::invokeActiveTestCase()
{
FatalConditionHandlerGuard _(&m_fatalConditionhandler);
m_activeTestCase->invoke();
}
void RunContext::handleUnfinishedSections()
{
// If sections ended prematurely due to an exception we stored their
// infos here so we can tear them down outside the unwind process.
for (auto it = m_unfinishedSections.rbegin(), itEnd = m_unfinishedSections.rend(); it != itEnd; ++it)
sectionEnded(*it);
m_unfinishedSections.clear();
}
void RunContext::handleExpr(AssertionInfo const& info, ITransientExpression const& expr, AssertionReaction& reaction)
{
m_reporter->assertionStarting(info);
bool negated = isFalseTest(info.resultDisposition);
bool result = expr.getResult() != negated;
if (result)
{
if (!m_includeSuccessfulResults)
{
assertionPassed();
}
else
{
reportExpr(info, ResultWas::Ok, &expr, negated);
}
}
else
{
reportExpr(info, ResultWas::ExpressionFailed, &expr, negated);
populateReaction(reaction);
}
}
void RunContext::reportExpr(AssertionInfo const& info,
ResultWas::OfType resultType,
ITransientExpression const* expr,
bool negated)
{
m_lastAssertionInfo = info;
AssertionResultData data(resultType, LazyExpression(negated));
AssertionResult assertionResult{info, data};
assertionResult.m_resultData.lazyExpression.m_transientExpression = expr;
assertionEnded(assertionResult);
}
void RunContext::handleMessage(AssertionInfo const& info,
ResultWas::OfType resultType,
StringRef const& message,
AssertionReaction& reaction)
{
m_reporter->assertionStarting(info);
m_lastAssertionInfo = info;
AssertionResultData data(resultType, LazyExpression(false));
data.message = static_cast<std::string>(message);
AssertionResult assertionResult{m_lastAssertionInfo, data};
assertionEnded(assertionResult);
if (!assertionResult.isOk())
populateReaction(reaction);
}
void RunContext::handleUnexpectedExceptionNotThrown(AssertionInfo const& info, AssertionReaction& reaction)
{
handleNonExpr(info, Catch::ResultWas::DidntThrowException, reaction);
}
void RunContext::handleUnexpectedInflightException(AssertionInfo const& info,
std::string const& message,
AssertionReaction& reaction)
{
m_lastAssertionInfo = info;
AssertionResultData data(ResultWas::ThrewException, LazyExpression(false));
data.message = message;
AssertionResult assertionResult{info, data};
assertionEnded(assertionResult);
populateReaction(reaction);
}
void RunContext::populateReaction(AssertionReaction& reaction)
{
reaction.shouldDebugBreak = m_config->shouldDebugBreak();
reaction.shouldThrow = aborting() || (m_lastAssertionInfo.resultDisposition & ResultDisposition::Normal);
}
void RunContext::handleIncomplete(AssertionInfo const& info)
{
m_lastAssertionInfo = info;
AssertionResultData data(ResultWas::ThrewException, LazyExpression(false));
data.message = "Exception translation was disabled by CATCH_CONFIG_FAST_COMPILE";
AssertionResult assertionResult{info, data};
assertionEnded(assertionResult);
}
void RunContext::handleNonExpr(AssertionInfo const& info, ResultWas::OfType resultType, AssertionReaction& reaction)
{
m_lastAssertionInfo = info;
AssertionResultData data(resultType, LazyExpression(false));
AssertionResult assertionResult{info, data};
assertionEnded(assertionResult);
if (!assertionResult.isOk())
populateReaction(reaction);
}
IResultCapture& getResultCapture()
{
if (auto* capture = getCurrentContext().getResultCapture())
return *capture;
else
CATCH_INTERNAL_ERROR("No result capture instance");
}
void seedRng(IConfig const& config)
{
if (config.rngSeed() != 0)
{
std::srand(config.rngSeed());
rng().seed(config.rngSeed());
}
}
unsigned int rngSeed()
{
return getCurrentContext().getConfig()->rngSeed();
}
} // namespace Catch
// end catch_run_context.cpp
// start catch_section.cpp
namespace Catch {
Section::Section(SectionInfo const& info)
: m_info(info)
, m_sectionIncluded(getResultCapture().sectionStarted(m_info, m_assertions))
{
m_timer.start();
}
Section::~Section()
{
if (m_sectionIncluded)
{
SectionEndInfo endInfo{m_info, m_assertions, m_timer.getElapsedSeconds()};
if (uncaught_exceptions())
getResultCapture().sectionEndedEarly(endInfo);
else
getResultCapture().sectionEnded(endInfo);
}
}
// This indicates whether the section should be executed or not
Section::operator bool() const
{
return m_sectionIncluded;
}
} // end namespace Catch
// end catch_section.cpp
// start catch_section_info.cpp
namespace Catch {
SectionInfo::SectionInfo(SourceLineInfo const& _lineInfo, std::string const& _name)
: name(_name)
, lineInfo(_lineInfo)
{}
} // end namespace Catch
// end catch_section_info.cpp
// start catch_session.cpp
// start catch_session.h
#include <memory>
namespace Catch {
class Session : NonCopyable
{
public:
Session();
~Session() override;
void showHelp() const;
void libIdentify();
int applyCommandLine(int argc, char const* const* argv);
#if defined(CATCH_CONFIG_WCHAR) && defined(_WIN32) && defined(UNICODE)
int applyCommandLine(int argc, wchar_t const* const* argv);
#endif
void useConfigData(ConfigData const& configData);
template<typename CharT>
int run(int argc, CharT const* const argv[])
{
if (m_startupExceptions)
return 1;
int returnCode = applyCommandLine(argc, argv);
if (returnCode == 0)
returnCode = run();
return returnCode;
}
int run();
clara::Parser const& cli() const;
void cli(clara::Parser const& newParser);
ConfigData& configData();
Config& config();
private:
int runInternal();
clara::Parser m_cli;
ConfigData m_configData;
std::shared_ptr<Config> m_config;
bool m_startupExceptions = false;
};
} // end namespace Catch
// end catch_session.h
// start catch_version.h
#include <iosfwd>
namespace Catch {
// Versioning information
struct Version
{
Version(Version const&) = delete;
Version& operator=(Version const&) = delete;
Version(unsigned int _majorVersion,
unsigned int _minorVersion,
unsigned int _patchNumber,
char const* const _branchName,
unsigned int _buildNumber);
unsigned int const majorVersion;
unsigned int const minorVersion;
unsigned int const patchNumber;
// buildNumber is only used if branchName is not null
char const* const branchName;
unsigned int const buildNumber;
friend std::ostream& operator<<(std::ostream& os, Version const& version);
};
Version const& libraryVersion();
} // namespace Catch
// end catch_version.h
#include <cstdlib>
#include <iomanip>
#include <set>
#include <iterator>
namespace Catch {
namespace {
const int MaxExitCode = 255;
IStreamingReporterPtr createReporter(std::string const& reporterName, IConfigPtr const& config)
{
auto reporter = Catch::getRegistryHub().getReporterRegistry().create(reporterName, config);
CATCH_ENFORCE(reporter, "No reporter registered with name: '" << reporterName << "'");
return reporter;
}
IStreamingReporterPtr makeReporter(std::shared_ptr<Config> const& config)
{
if (Catch::getRegistryHub().getReporterRegistry().getListeners().empty())
{
return createReporter(config->getReporterName(), config);
}
// On older platforms, returning std::unique_ptr<ListeningReporter>
// when the return type is std::unique_ptr<IStreamingReporter>
// doesn't compile without a std::move call. However, this causes
// a warning on newer platforms. Thus, we have to work around
// it a bit and downcast the pointer manually.
auto ret = std::unique_ptr<IStreamingReporter>(new ListeningReporter);
auto& multi = static_cast<ListeningReporter&>(*ret);
auto const& listeners = Catch::getRegistryHub().getReporterRegistry().getListeners();
for (auto const& listener : listeners)
{
multi.addListener(listener->create(Catch::ReporterConfig(config)));
}
multi.addReporter(createReporter(config->getReporterName(), config));
return ret;
}
class TestGroup
{
public:
explicit TestGroup(std::shared_ptr<Config> const& config)
: m_config{config}
, m_context{config, makeReporter(config)}
{
auto const& allTestCases = getAllTestCasesSorted(*m_config);
m_matches = m_config->testSpec().matchesByFilter(allTestCases, *m_config);
auto const& invalidArgs = m_config->testSpec().getInvalidArgs();
if (m_matches.empty() && invalidArgs.empty())
{
for (auto const& test : allTestCases)
if (!test.isHidden())
m_tests.emplace(&test);
}
else
{
for (auto const& match : m_matches)
m_tests.insert(match.tests.begin(), match.tests.end());
}
}
Totals execute()
{
auto const& invalidArgs = m_config->testSpec().getInvalidArgs();
Totals totals;
m_context.testGroupStarting(m_config->name(), 1, 1);
for (auto const& testCase : m_tests)
{
if (!m_context.aborting())
totals += m_context.runTest(*testCase);
else
m_context.reporter().skipTest(*testCase);
}
for (auto const& match : m_matches)
{
if (match.tests.empty())
{
m_context.reporter().noMatchingTestCases(match.name);
totals.error = -1;
}
}
if (!invalidArgs.empty())
{
for (auto const& invalidArg : invalidArgs)
m_context.reporter().reportInvalidArguments(invalidArg);
}
m_context.testGroupEnded(m_config->name(), totals, 1, 1);
return totals;
}
private:
using Tests = std::set<TestCase const*>;
std::shared_ptr<Config> m_config;
RunContext m_context;
Tests m_tests;
TestSpec::Matches m_matches;
};
void applyFilenamesAsTags(Catch::IConfig const& config)
{
auto& tests = const_cast<std::vector<TestCase>&>(getAllTestCasesSorted(config));
for (auto& testCase : tests)
{
auto tags = testCase.tags;
std::string filename = testCase.lineInfo.file;
auto lastSlash = filename.find_last_of("\\/");
if (lastSlash != std::string::npos)
{
filename.erase(0, lastSlash);
filename[0] = '#';
}
auto lastDot = filename.find_last_of('.');
if (lastDot != std::string::npos)
{
filename.erase(lastDot);
}
tags.push_back(std::move(filename));
setTags(testCase, tags);
}
}
} // namespace
Session::Session()
{
static bool alreadyInstantiated = false;
if (alreadyInstantiated)
{
CATCH_TRY
{
CATCH_INTERNAL_ERROR("Only one instance of Catch::Session can ever be used");
}
CATCH_CATCH_ALL
{
getMutableRegistryHub().registerStartupException();
}
}
// There cannot be exceptions at startup in no-exception mode.
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
const auto& exceptions = getRegistryHub().getStartupExceptionRegistry().getExceptions();
if (!exceptions.empty())
{
config();
getCurrentMutableContext().setConfig(m_config);
m_startupExceptions = true;
Colour colourGuard(Colour::Red);
Catch::cerr() << "Errors occurred during startup!" << '\n';
// iterate over all exceptions and notify user
for (const auto& ex_ptr : exceptions)
{
try
{
std::rethrow_exception(ex_ptr);
}
catch (std::exception const& ex)
{
Catch::cerr() << Column(ex.what()).indent(2) << '\n';
}
}
}
#endif
alreadyInstantiated = true;
m_cli = makeCommandLineParser(m_configData);
}
Session::~Session()
{
Catch::cleanUp();
}
void Session::showHelp() const
{
Catch::cout() << "\nCatch v" << libraryVersion() << "\n"
<< m_cli << std::endl
<< "For more detailed usage please see the project docs\n"
<< std::endl;
}
void Session::libIdentify()
{
Catch::cout() << std::left << std::setw(16) << "description: " << "A Catch2 test executable\n"
<< std::left << std::setw(16) << "category: " << "testframework\n"
<< std::left << std::setw(16) << "framework: " << "Catch Test\n"
<< std::left << std::setw(16) << "version: " << libraryVersion() << std::endl;
}
int Session::applyCommandLine(int argc, char const* const* argv)
{
if (m_startupExceptions)
return 1;
auto result = m_cli.parse(clara::Args(argc, argv));
if (!result)
{
config();
getCurrentMutableContext().setConfig(m_config);
Catch::cerr() << Colour(Colour::Red) << "\nError(s) in input:\n"
<< Column(result.errorMessage()).indent(2) << "\n\n";
Catch::cerr() << "Run with -? for usage\n" << std::endl;
return MaxExitCode;
}
if (m_configData.showHelp)
showHelp();
if (m_configData.libIdentify)
libIdentify();
m_config.reset();
return 0;
}
#if defined(CATCH_CONFIG_WCHAR) && defined(_WIN32) && defined(UNICODE)
int Session::applyCommandLine(int argc, wchar_t const* const* argv)
{
char** utf8Argv = new char*[argc];
for (int i = 0; i < argc; ++i)
{
int bufSize = WideCharToMultiByte(CP_UTF8, 0, argv[i], -1, nullptr, 0, nullptr, nullptr);
utf8Argv[i] = new char[bufSize];
WideCharToMultiByte(CP_UTF8, 0, argv[i], -1, utf8Argv[i], bufSize, nullptr, nullptr);
}
int returnCode = applyCommandLine(argc, utf8Argv);
for (int i = 0; i < argc; ++i)
delete[] utf8Argv[i];
delete[] utf8Argv;
return returnCode;
}
#endif
void Session::useConfigData(ConfigData const& configData)
{
m_configData = configData;
m_config.reset();
}
int Session::run()
{
if ((m_configData.waitForKeypress & WaitForKeypress::BeforeStart) != 0)
{
Catch::cout() << "...waiting for enter/ return before starting" << std::endl;
static_cast<void>(std::getchar());
}
int exitCode = runInternal();
if ((m_configData.waitForKeypress & WaitForKeypress::BeforeExit) != 0)
{
Catch::cout() << "...waiting for enter/ return before exiting, with code: " << exitCode << std::endl;
static_cast<void>(std::getchar());
}
return exitCode;
}
clara::Parser const& Session::cli() const
{
return m_cli;
}
void Session::cli(clara::Parser const& newParser)
{
m_cli = newParser;
}
ConfigData& Session::configData()
{
return m_configData;
}
Config& Session::config()
{
if (!m_config)
m_config = std::make_shared<Config>(m_configData);
return *m_config;
}
int Session::runInternal()
{
if (m_startupExceptions)
return 1;
if (m_configData.showHelp || m_configData.libIdentify)
{
return 0;
}
CATCH_TRY
{
config(); // Force config to be constructed
seedRng(*m_config);
if (m_configData.filenamesAsTags)
applyFilenamesAsTags(*m_config);
// Handle list request
if (Option<std::size_t> listed = list(m_config))
return static_cast<int>(*listed);
TestGroup tests{m_config};
auto const totals = tests.execute();
if (m_config->warnAboutNoTests() && totals.error == -1)
return 2;
// Note that on unices only the lower 8 bits are usually used, clamping
// the return value to 255 prevents false negative when some multiple
// of 256 tests has failed
return (std::min)(MaxExitCode, (std::max)(totals.error, static_cast<int>(totals.assertions.failed)));
}
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
catch (std::exception& ex)
{
Catch::cerr() << ex.what() << std::endl;
return MaxExitCode;
}
#endif
}
} // end namespace Catch
// end catch_session.cpp
// start catch_singletons.cpp
#include <vector>
namespace Catch {
namespace {
static auto getSingletons() -> std::vector<ISingleton*>*&
{
static std::vector<ISingleton*>* g_singletons = nullptr;
if (!g_singletons)
g_singletons = new std::vector<ISingleton*>();
return g_singletons;
}
} // namespace
ISingleton::~ISingleton() {}
void addSingleton(ISingleton* singleton)
{
getSingletons()->push_back(singleton);
}
void cleanupSingletons()
{
auto& singletons = getSingletons();
for (auto singleton : *singletons)
delete singleton;
delete singletons;
singletons = nullptr;
}
} // namespace Catch
// end catch_singletons.cpp
// start catch_startup_exception_registry.cpp
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
namespace Catch {
void StartupExceptionRegistry::add(std::exception_ptr const& exception) noexcept
{
CATCH_TRY
{
m_exceptions.push_back(exception);
}
CATCH_CATCH_ALL
{
// If we run out of memory during start-up there's really not a lot more we can do about it
std::terminate();
}
}
std::vector<std::exception_ptr> const& StartupExceptionRegistry::getExceptions() const noexcept
{
return m_exceptions;
}
} // end namespace Catch
#endif
// end catch_startup_exception_registry.cpp
// start catch_stream.cpp
#include <cstdio>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <memory>
namespace Catch {
Catch::IStream::~IStream() = default;
namespace Detail {
namespace {
template<typename WriterF, std::size_t bufferSize = 256>
class StreamBufImpl : public std::streambuf
{
char data[bufferSize];
WriterF m_writer;
public:
StreamBufImpl() { setp(data, data + sizeof(data)); }
~StreamBufImpl() noexcept { StreamBufImpl::sync(); }
private:
int overflow(int c) override
{
sync();
if (c != EOF)
{
if (pbase() == epptr())
m_writer(std::string(1, static_cast<char>(c)));
else
sputc(static_cast<char>(c));
}
return 0;
}
int sync() override
{
if (pbase() != pptr())
{
m_writer(std::string(pbase(), static_cast<std::string::size_type>(pptr() - pbase())));
setp(pbase(), epptr());
}
return 0;
}
};
///////////////////////////////////////////////////////////////////////////
struct OutputDebugWriter
{
void operator()(std::string const& str) { writeToDebugConsole(str); }
};
///////////////////////////////////////////////////////////////////////////
class FileStream : public IStream
{
mutable std::ofstream m_ofs;
public:
FileStream(StringRef filename)
{
m_ofs.open(filename.c_str());
CATCH_ENFORCE(!m_ofs.fail(), "Unable to open file: '" << filename << "'");
}
~FileStream() override = default;
public: // IStream
std::ostream& stream() const override { return m_ofs; }
};
///////////////////////////////////////////////////////////////////////////
class CoutStream : public IStream
{
mutable std::ostream m_os;
public:
// Store the streambuf from cout up-front because
// cout may get redirected when running tests
CoutStream()
: m_os(Catch::cout().rdbuf())
{}
~CoutStream() override = default;
public: // IStream
std::ostream& stream() const override { return m_os; }
};
///////////////////////////////////////////////////////////////////////////
class DebugOutStream : public IStream
{
std::unique_ptr<StreamBufImpl<OutputDebugWriter>> m_streamBuf;
mutable std::ostream m_os;
public:
DebugOutStream()
: m_streamBuf(new StreamBufImpl<OutputDebugWriter>())
, m_os(m_streamBuf.get())
{}
~DebugOutStream() override = default;
public: // IStream
std::ostream& stream() const override { return m_os; }
};
} // namespace
} // namespace Detail
///////////////////////////////////////////////////////////////////////////
auto makeStream(StringRef const& filename) -> IStream const*
{
if (filename.empty())
return new Detail::CoutStream();
else if (filename[0] == '%')
{
if (filename == "%debug")
return new Detail::DebugOutStream();
else
CATCH_ERROR("Unrecognised stream: '" << filename << "'");
}
else
return new Detail::FileStream(filename);
}
// This class encapsulates the idea of a pool of ostringstreams that can be reused.
struct StringStreams
{
std::vector<std::unique_ptr<std::ostringstream>> m_streams;
std::vector<std::size_t> m_unused;
std::ostringstream m_referenceStream; // Used for copy state/ flags from
auto add() -> std::size_t
{
if (m_unused.empty())
{
m_streams.push_back(std::unique_ptr<std::ostringstream>(new std::ostringstream));
return m_streams.size() - 1;
}
else
{
auto index = m_unused.back();
m_unused.pop_back();
return index;
}
}
void release(std::size_t index)
{
m_streams[index]->copyfmt(m_referenceStream); // Restore initial flags and other state
m_unused.push_back(index);
}
};
ReusableStringStream::ReusableStringStream()
: m_index(Singleton<StringStreams>::getMutable().add())
, m_oss(Singleton<StringStreams>::getMutable().m_streams[m_index].get())
{}
ReusableStringStream::~ReusableStringStream()
{
static_cast<std::ostringstream*>(m_oss)->str("");
m_oss->clear();
Singleton<StringStreams>::getMutable().release(m_index);
}
auto ReusableStringStream::str() const -> std::string
{
return static_cast<std::ostringstream*>(m_oss)->str();
}
///////////////////////////////////////////////////////////////////////////
#ifndef CATCH_CONFIG_NOSTDOUT // If you #define this you must implement these functions
std::ostream& cout()
{
return std::cout;
}
std::ostream& cerr()
{
return std::cerr;
}
std::ostream& clog()
{
return std::clog;
}
#endif
} // namespace Catch
// end catch_stream.cpp
// start catch_string_manip.cpp
#include <algorithm>
#include <ostream>
#include <cstring>
#include <cctype>
#include <vector>
namespace Catch {
namespace {
char toLowerCh(char c)
{
return static_cast<char>(std::tolower(static_cast<unsigned char>(c)));
}
} // namespace
bool startsWith(std::string const& s, std::string const& prefix)
{
return s.size() >= prefix.size() && std::equal(prefix.begin(), prefix.end(), s.begin());
}
bool startsWith(std::string const& s, char prefix)
{
return !s.empty() && s[0] == prefix;
}
bool endsWith(std::string const& s, std::string const& suffix)
{
return s.size() >= suffix.size() && std::equal(suffix.rbegin(), suffix.rend(), s.rbegin());
}
bool endsWith(std::string const& s, char suffix)
{
return !s.empty() && s[s.size() - 1] == suffix;
}
bool contains(std::string const& s, std::string const& infix)
{
return s.find(infix) != std::string::npos;
}
void toLowerInPlace(std::string& s)
{
std::transform(s.begin(), s.end(), s.begin(), toLowerCh);
}
std::string toLower(std::string const& s)
{
std::string lc = s;
toLowerInPlace(lc);
return lc;
}
std::string trim(std::string const& str)
{
static char const* whitespaceChars = "\n\r\t ";
std::string::size_type start = str.find_first_not_of(whitespaceChars);
std::string::size_type end = str.find_last_not_of(whitespaceChars);
return start != std::string::npos ? str.substr(start, 1 + end - start) : std::string();
}
StringRef trim(StringRef ref)
{
const auto is_ws = [](char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r';
};
size_t real_begin = 0;
while (real_begin < ref.size() && is_ws(ref[real_begin]))
{
++real_begin;
}
size_t real_end = ref.size();
while (real_end > real_begin && is_ws(ref[real_end - 1]))
{
--real_end;
}
return ref.substr(real_begin, real_end - real_begin);
}
bool replaceInPlace(std::string& str, std::string const& replaceThis, std::string const& withThis)
{
bool replaced = false;
std::size_t i = str.find(replaceThis);
while (i != std::string::npos)
{
replaced = true;
str = str.substr(0, i) + withThis + str.substr(i + replaceThis.size());
if (i < str.size() - withThis.size())
i = str.find(replaceThis, i + withThis.size());
else
i = std::string::npos;
}
return replaced;
}
std::vector<StringRef> splitStringRef(StringRef str, char delimiter)
{
std::vector<StringRef> subStrings;
std::size_t start = 0;
for (std::size_t pos = 0; pos < str.size(); ++pos)
{
if (str[pos] == delimiter)
{
if (pos - start > 1)
subStrings.push_back(str.substr(start, pos - start));
start = pos + 1;
}
}
if (start < str.size())
subStrings.push_back(str.substr(start, str.size() - start));
return subStrings;
}
pluralise::pluralise(std::size_t count, std::string const& label)
: m_count(count)
, m_label(label)
{}
std::ostream& operator<<(std::ostream& os, pluralise const& pluraliser)
{
os << pluraliser.m_count << ' ' << pluraliser.m_label;
if (pluraliser.m_count != 1)
os << 's';
return os;
}
} // namespace Catch
// end catch_string_manip.cpp
// start catch_stringref.cpp
#include <algorithm>
#include <ostream>
#include <cstring>
#include <cstdint>
namespace Catch {
StringRef::StringRef(char const* rawChars) noexcept
: StringRef(rawChars, static_cast<StringRef::size_type>(std::strlen(rawChars)))
{}
auto StringRef::c_str() const -> char const*
{
CATCH_ENFORCE(isNullTerminated(), "Called StringRef::c_str() on a non-null-terminated instance");
return m_start;
}
auto StringRef::data() const noexcept -> char const*
{
return m_start;
}
auto StringRef::substr(size_type start, size_type size) const noexcept -> StringRef
{
if (start < m_size)
{
return StringRef(m_start + start, (std::min)(m_size - start, size));
}
else
{
return StringRef();
}
}
auto StringRef::operator==(StringRef const& other) const noexcept -> bool
{
return m_size == other.m_size && (std::memcmp(m_start, other.m_start, m_size) == 0);
}
auto operator<<(std::ostream& os, StringRef const& str) -> std::ostream&
{
return os.write(str.data(), str.size());
}
auto operator+=(std::string& lhs, StringRef const& rhs) -> std::string&
{
lhs.append(rhs.data(), rhs.size());
return lhs;
}
} // namespace Catch
// end catch_stringref.cpp
// start catch_tag_alias.cpp
namespace Catch {
TagAlias::TagAlias(std::string const& _tag, SourceLineInfo _lineInfo)
: tag(_tag)
, lineInfo(_lineInfo)
{}
} // namespace Catch
// end catch_tag_alias.cpp
// start catch_tag_alias_autoregistrar.cpp
namespace Catch {
RegistrarForTagAliases::RegistrarForTagAliases(char const* alias, char const* tag, SourceLineInfo const& lineInfo)
{
CATCH_TRY
{
getMutableRegistryHub().registerTagAlias(alias, tag, lineInfo);
}
CATCH_CATCH_ALL
{
// Do not throw when constructing global objects, instead register the exception to be processed later
getMutableRegistryHub().registerStartupException();
}
}
} // namespace Catch
// end catch_tag_alias_autoregistrar.cpp
// start catch_tag_alias_registry.cpp
#include <sstream>
namespace Catch {
TagAliasRegistry::~TagAliasRegistry() {}
TagAlias const* TagAliasRegistry::find(std::string const& alias) const
{
auto it = m_registry.find(alias);
if (it != m_registry.end())
return &(it->second);
else
return nullptr;
}
std::string TagAliasRegistry::expandAliases(std::string const& unexpandedTestSpec) const
{
std::string expandedTestSpec = unexpandedTestSpec;
for (auto const& registryKvp : m_registry)
{
std::size_t pos = expandedTestSpec.find(registryKvp.first);
if (pos != std::string::npos)
{
expandedTestSpec = expandedTestSpec.substr(0, pos) + registryKvp.second.tag +
expandedTestSpec.substr(pos + registryKvp.first.size());
}
}
return expandedTestSpec;
}
void TagAliasRegistry::add(std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo)
{
CATCH_ENFORCE(startsWith(alias, "[@") && endsWith(alias, ']'),
"error: tag alias, '" << alias << "' is not of the form [@alias name].\n"
<< lineInfo);
CATCH_ENFORCE(m_registry.insert(std::make_pair(alias, TagAlias(tag, lineInfo))).second,
"error: tag alias, '" << alias << "' already registered.\n"
<< "\tFirst seen at: " << find(alias)->lineInfo << "\n"
<< "\tRedefined at: " << lineInfo);
}
ITagAliasRegistry::~ITagAliasRegistry() {}
ITagAliasRegistry const& ITagAliasRegistry::get()
{
return getRegistryHub().getTagAliasRegistry();
}
} // end namespace Catch
// end catch_tag_alias_registry.cpp
// start catch_test_case_info.cpp
#include <cctype>
#include <exception>
#include <algorithm>
#include <sstream>
namespace Catch {
namespace {
TestCaseInfo::SpecialProperties parseSpecialTag(std::string const& tag)
{
if (startsWith(tag, '.') || tag == "!hide")
return TestCaseInfo::IsHidden;
else if (tag == "!throws")
return TestCaseInfo::Throws;
else if (tag == "!shouldfail")
return TestCaseInfo::ShouldFail;
else if (tag == "!mayfail")
return TestCaseInfo::MayFail;
else if (tag == "!nonportable")
return TestCaseInfo::NonPortable;
else if (tag == "!benchmark")
return static_cast<TestCaseInfo::SpecialProperties>(TestCaseInfo::Benchmark | TestCaseInfo::IsHidden);
else
return TestCaseInfo::None;
}
bool isReservedTag(std::string const& tag)
{
return parseSpecialTag(tag) == TestCaseInfo::None && tag.size() > 0 &&
!std::isalnum(static_cast<unsigned char>(tag[0]));
}
void enforceNotReservedTag(std::string const& tag, SourceLineInfo const& _lineInfo)
{
CATCH_ENFORCE(!isReservedTag(tag),
"Tag name: [" << tag << "] is not allowed.\n"
<< "Tag names starting with non alphanumeric characters are reserved\n"
<< _lineInfo);
}
} // namespace
TestCase makeTestCase(ITestInvoker* _testCase,
std::string const& _className,
NameAndTags const& nameAndTags,
SourceLineInfo const& _lineInfo)
{
bool isHidden = false;
// Parse out tags
std::vector<std::string> tags;
std::string desc, tag;
bool inTag = false;
for (char c : nameAndTags.tags)
{
if (!inTag)
{
if (c == '[')
inTag = true;
else
desc += c;
}
else
{
if (c == ']')
{
TestCaseInfo::SpecialProperties prop = parseSpecialTag(tag);
if ((prop & TestCaseInfo::IsHidden) != 0)
isHidden = true;
else if (prop == TestCaseInfo::None)
enforceNotReservedTag(tag, _lineInfo);
// Merged hide tags like `[.approvals]` should be added as
// `[.][approvals]`. The `[.]` is added at later point, so
// we only strip the prefix
if (startsWith(tag, '.') && tag.size() > 1)
{
tag.erase(0, 1);
}
tags.push_back(tag);
tag.clear();
inTag = false;
}
else
tag += c;
}
}
if (isHidden)
{
// Add all "hidden" tags to make them behave identically
tags.insert(tags.end(), {".", "!hide"});
}
TestCaseInfo info(static_cast<std::string>(nameAndTags.name), _className, desc, tags, _lineInfo);
return TestCase(_testCase, std::move(info));
}
void setTags(TestCaseInfo& testCaseInfo, std::vector<std::string> tags)
{
std::sort(begin(tags), end(tags));
tags.erase(std::unique(begin(tags), end(tags)), end(tags));
testCaseInfo.lcaseTags.clear();
for (auto const& tag : tags)
{
std::string lcaseTag = toLower(tag);
testCaseInfo.properties =
static_cast<TestCaseInfo::SpecialProperties>(testCaseInfo.properties | parseSpecialTag(lcaseTag));
testCaseInfo.lcaseTags.push_back(lcaseTag);
}
testCaseInfo.tags = std::move(tags);
}
TestCaseInfo::TestCaseInfo(std::string const& _name,
std::string const& _className,
std::string const& _description,
std::vector<std::string> const& _tags,
SourceLineInfo const& _lineInfo)
: name(_name)
, className(_className)
, description(_description)
, lineInfo(_lineInfo)
, properties(None)
{
setTags(*this, _tags);
}
bool TestCaseInfo::isHidden() const
{
return (properties & IsHidden) != 0;
}
bool TestCaseInfo::throws() const
{
return (properties & Throws) != 0;
}
bool TestCaseInfo::okToFail() const
{
return (properties & (ShouldFail | MayFail)) != 0;
}
bool TestCaseInfo::expectedToFail() const
{
return (properties & (ShouldFail)) != 0;
}
std::string TestCaseInfo::tagsAsString() const
{
std::string ret;
// '[' and ']' per tag
std::size_t full_size = 2 * tags.size();
for (const auto& tag : tags)
{
full_size += tag.size();
}
ret.reserve(full_size);
for (const auto& tag : tags)
{
ret.push_back('[');
ret.append(tag);
ret.push_back(']');
}
return ret;
}
TestCase::TestCase(ITestInvoker* testCase, TestCaseInfo&& info)
: TestCaseInfo(std::move(info))
, test(testCase)
{}
TestCase TestCase::withName(std::string const& _newName) const
{
TestCase other(*this);
other.name = _newName;
return other;
}
void TestCase::invoke() const
{
test->invoke();
}
bool TestCase::operator==(TestCase const& other) const
{
return test.get() == other.test.get() && name == other.name && className == other.className;
}
bool TestCase::operator<(TestCase const& other) const
{
return name < other.name;
}
TestCaseInfo const& TestCase::getTestCaseInfo() const
{
return *this;
}
} // end namespace Catch
// end catch_test_case_info.cpp
// start catch_test_case_registry_impl.cpp
#include <algorithm>
#include <sstream>
namespace Catch {
namespace {
struct TestHasher
{
using hash_t = uint64_t;
explicit TestHasher(hash_t hashSuffix)
: m_hashSuffix{hashSuffix}
{}
uint32_t operator()(TestCase const& t) const
{
// FNV-1a hash with multiplication fold.
const hash_t prime = 1099511628211u;
hash_t hash = 14695981039346656037u;
for (const char c : t.name)
{
hash ^= c;
hash *= prime;
}
hash ^= m_hashSuffix;
hash *= prime;
const uint32_t low{static_cast<uint32_t>(hash)};
const uint32_t high{static_cast<uint32_t>(hash >> 32)};
return low * high;
}
private:
hash_t m_hashSuffix;
};
} // end unnamed namespace
std::vector<TestCase> sortTests(IConfig const& config, std::vector<TestCase> const& unsortedTestCases)
{
switch (config.runOrder())
{
case RunTests::InDeclarationOrder:
// already in declaration order
break;
case RunTests::InLexicographicalOrder: {
std::vector<TestCase> sorted = unsortedTestCases;
std::sort(sorted.begin(), sorted.end());
return sorted;
}
case RunTests::InRandomOrder: {
seedRng(config);
TestHasher h{config.rngSeed()};
using hashedTest = std::pair<TestHasher::hash_t, TestCase const*>;
std::vector<hashedTest> indexed_tests;
indexed_tests.reserve(unsortedTestCases.size());
for (auto const& testCase : unsortedTestCases)
{
indexed_tests.emplace_back(h(testCase), &testCase);
}
std::sort(indexed_tests.begin(), indexed_tests.end(), [](hashedTest const& lhs, hashedTest const& rhs) {
if (lhs.first == rhs.first)
{
return lhs.second->name < rhs.second->name;
}
return lhs.first < rhs.first;
});
std::vector<TestCase> sorted;
sorted.reserve(indexed_tests.size());
for (auto const& hashed : indexed_tests)
{
sorted.emplace_back(*hashed.second);
}
return sorted;
}
}
return unsortedTestCases;
}
bool isThrowSafe(TestCase const& testCase, IConfig const& config)
{
return !testCase.throws() || config.allowThrows();
}
bool matchTest(TestCase const& testCase, TestSpec const& testSpec, IConfig const& config)
{
return testSpec.matches(testCase) && isThrowSafe(testCase, config);
}
void enforceNoDuplicateTestCases(std::vector<TestCase> const& functions)
{
std::set<TestCase> seenFunctions;
for (auto const& function : functions)
{
auto prev = seenFunctions.insert(function);
CATCH_ENFORCE(prev.second,
"error: TEST_CASE( \"" << function.name << "\" ) already defined.\n"
<< "\tFirst seen at " << prev.first->getTestCaseInfo().lineInfo << "\n"
<< "\tRedefined at " << function.getTestCaseInfo().lineInfo);
}
}
std::vector<TestCase>
filterTests(std::vector<TestCase> const& testCases, TestSpec const& testSpec, IConfig const& config)
{
std::vector<TestCase> filtered;
filtered.reserve(testCases.size());
for (auto const& testCase : testCases)
{
if ((!testSpec.hasFilters() && !testCase.isHidden()) ||
(testSpec.hasFilters() && matchTest(testCase, testSpec, config)))
{
filtered.push_back(testCase);
}
}
return filtered;
}
std::vector<TestCase> const& getAllTestCasesSorted(IConfig const& config)
{
return getRegistryHub().getTestCaseRegistry().getAllTestsSorted(config);
}
void TestRegistry::registerTest(TestCase const& testCase)
{
std::string name = testCase.getTestCaseInfo().name;
if (name.empty())
{
ReusableStringStream rss;
rss << "Anonymous test case " << ++m_unnamedCount;
return registerTest(testCase.withName(rss.str()));
}
m_functions.push_back(testCase);
}
std::vector<TestCase> const& TestRegistry::getAllTests() const
{
return m_functions;
}
std::vector<TestCase> const& TestRegistry::getAllTestsSorted(IConfig const& config) const
{
if (m_sortedFunctions.empty())
enforceNoDuplicateTestCases(m_functions);
if (m_currentSortOrder != config.runOrder() || m_sortedFunctions.empty())
{
m_sortedFunctions = sortTests(config, m_functions);
m_currentSortOrder = config.runOrder();
}
return m_sortedFunctions;
}
///////////////////////////////////////////////////////////////////////////
TestInvokerAsFunction::TestInvokerAsFunction(void (*testAsFunction)()) noexcept
: m_testAsFunction(testAsFunction)
{}
void TestInvokerAsFunction::invoke() const
{
m_testAsFunction();
}
std::string extractClassName(StringRef const& classOrQualifiedMethodName)
{
std::string className(classOrQualifiedMethodName);
if (startsWith(className, '&'))
{
std::size_t lastColons = className.rfind("::");
std::size_t penultimateColons = className.rfind("::", lastColons - 1);
if (penultimateColons == std::string::npos)
penultimateColons = 1;
className = className.substr(penultimateColons, lastColons - penultimateColons);
}
return className;
}
} // end namespace Catch
// end catch_test_case_registry_impl.cpp
// start catch_test_case_tracker.cpp
#include <algorithm>
#include <cassert>
#include <stdexcept>
#include <memory>
#include <sstream>
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wexit-time-destructors"
#endif
namespace Catch {
namespace TestCaseTracking {
NameAndLocation::NameAndLocation(std::string const& _name, SourceLineInfo const& _location)
: name(_name)
, location(_location)
{}
ITracker::~ITracker() = default;
ITracker& TrackerContext::startRun()
{
m_rootTracker =
std::make_shared<SectionTracker>(NameAndLocation("{root}", CATCH_INTERNAL_LINEINFO), *this, nullptr);
m_currentTracker = nullptr;
m_runState = Executing;
return *m_rootTracker;
}
void TrackerContext::endRun()
{
m_rootTracker.reset();
m_currentTracker = nullptr;
m_runState = NotStarted;
}
void TrackerContext::startCycle()
{
m_currentTracker = m_rootTracker.get();
m_runState = Executing;
}
void TrackerContext::completeCycle()
{
m_runState = CompletedCycle;
}
bool TrackerContext::completedCycle() const
{
return m_runState == CompletedCycle;
}
ITracker& TrackerContext::currentTracker()
{
return *m_currentTracker;
}
void TrackerContext::setCurrentTracker(ITracker* tracker)
{
m_currentTracker = tracker;
}
TrackerBase::TrackerBase(NameAndLocation const& nameAndLocation, TrackerContext& ctx, ITracker* parent)
: ITracker(nameAndLocation)
, m_ctx(ctx)
, m_parent(parent)
{}
bool TrackerBase::isComplete() const
{
return m_runState == CompletedSuccessfully || m_runState == Failed;
}
bool TrackerBase::isSuccessfullyCompleted() const
{
return m_runState == CompletedSuccessfully;
}
bool TrackerBase::isOpen() const
{
return m_runState != NotStarted && !isComplete();
}
bool TrackerBase::hasChildren() const
{
return !m_children.empty();
}
void TrackerBase::addChild(ITrackerPtr const& child)
{
m_children.push_back(child);
}
ITrackerPtr TrackerBase::findChild(NameAndLocation const& nameAndLocation)
{
auto it = std::find_if(m_children.begin(), m_children.end(), [&nameAndLocation](ITrackerPtr const& tracker) {
return tracker->nameAndLocation().location == nameAndLocation.location &&
tracker->nameAndLocation().name == nameAndLocation.name;
});
return (it != m_children.end()) ? *it : nullptr;
}
ITracker& TrackerBase::parent()
{
assert(m_parent); // Should always be non-null except for root
return *m_parent;
}
void TrackerBase::openChild()
{
if (m_runState != ExecutingChildren)
{
m_runState = ExecutingChildren;
if (m_parent)
m_parent->openChild();
}
}
bool TrackerBase::isSectionTracker() const
{
return false;
}
bool TrackerBase::isGeneratorTracker() const
{
return false;
}
void TrackerBase::open()
{
m_runState = Executing;
moveToThis();
if (m_parent)
m_parent->openChild();
}
void TrackerBase::close()
{
// Close any still open children (e.g. generators)
while (&m_ctx.currentTracker() != this)
m_ctx.currentTracker().close();
switch (m_runState)
{
case NeedsAnotherRun:
break;
case Executing:
m_runState = CompletedSuccessfully;
break;
case ExecutingChildren:
if (std::all_of(m_children.begin(), m_children.end(), [](ITrackerPtr const& t) { return t->isComplete(); }))
m_runState = CompletedSuccessfully;
break;
case NotStarted:
case CompletedSuccessfully:
case Failed:
CATCH_INTERNAL_ERROR("Illogical state: " << m_runState);
default:
CATCH_INTERNAL_ERROR("Unknown state: " << m_runState);
}
moveToParent();
m_ctx.completeCycle();
}
void TrackerBase::fail()
{
m_runState = Failed;
if (m_parent)
m_parent->markAsNeedingAnotherRun();
moveToParent();
m_ctx.completeCycle();
}
void TrackerBase::markAsNeedingAnotherRun()
{
m_runState = NeedsAnotherRun;
}
void TrackerBase::moveToParent()
{
assert(m_parent);
m_ctx.setCurrentTracker(m_parent);
}
void TrackerBase::moveToThis()
{
m_ctx.setCurrentTracker(this);
}
SectionTracker::SectionTracker(NameAndLocation const& nameAndLocation, TrackerContext& ctx, ITracker* parent)
: TrackerBase(nameAndLocation, ctx, parent)
, m_trimmed_name(trim(nameAndLocation.name))
{
if (parent)
{
while (!parent->isSectionTracker())
parent = &parent->parent();
SectionTracker& parentSection = static_cast<SectionTracker&>(*parent);
addNextFilters(parentSection.m_filters);
}
}
bool SectionTracker::isComplete() const
{
bool complete = true;
if (m_filters.empty() || m_filters[0] == "" ||
std::find(m_filters.begin(), m_filters.end(), m_trimmed_name) != m_filters.end())
{
complete = TrackerBase::isComplete();
}
return complete;
}
bool SectionTracker::isSectionTracker() const
{
return true;
}
SectionTracker& SectionTracker::acquire(TrackerContext& ctx, NameAndLocation const& nameAndLocation)
{
std::shared_ptr<SectionTracker> section;
ITracker& currentTracker = ctx.currentTracker();
if (ITrackerPtr childTracker = currentTracker.findChild(nameAndLocation))
{
assert(childTracker);
assert(childTracker->isSectionTracker());
section = std::static_pointer_cast<SectionTracker>(childTracker);
}
else
{
section = std::make_shared<SectionTracker>(nameAndLocation, ctx, &currentTracker);
currentTracker.addChild(section);
}
if (!ctx.completedCycle())
section->tryOpen();
return *section;
}
void SectionTracker::tryOpen()
{
if (!isComplete())
open();
}
void SectionTracker::addInitialFilters(std::vector<std::string> const& filters)
{
if (!filters.empty())
{
m_filters.reserve(m_filters.size() + filters.size() + 2);
m_filters.emplace_back(""); // Root - should never be consulted
m_filters.emplace_back(""); // Test Case - not a section filter
m_filters.insert(m_filters.end(), filters.begin(), filters.end());
}
}
void SectionTracker::addNextFilters(std::vector<std::string> const& filters)
{
if (filters.size() > 1)
m_filters.insert(m_filters.end(), filters.begin() + 1, filters.end());
}
std::vector<std::string> const& SectionTracker::getFilters() const
{
return m_filters;
}
std::string const& SectionTracker::trimmedName() const
{
return m_trimmed_name;
}
} // namespace TestCaseTracking
using TestCaseTracking::ITracker;
using TestCaseTracking::SectionTracker;
using TestCaseTracking::TrackerContext;
} // namespace Catch
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
// end catch_test_case_tracker.cpp
// start catch_test_registry.cpp
namespace Catch {
auto makeTestInvoker(void (*testAsFunction)()) noexcept -> ITestInvoker*
{
return new (std::nothrow) TestInvokerAsFunction(testAsFunction);
}
NameAndTags::NameAndTags(StringRef const& name_, StringRef const& tags_) noexcept
: name(name_)
, tags(tags_)
{}
AutoReg::AutoReg(ITestInvoker* invoker,
SourceLineInfo const& lineInfo,
StringRef const& classOrMethod,
NameAndTags const& nameAndTags) noexcept
{
CATCH_TRY
{
getMutableRegistryHub().registerTest(
makeTestCase(invoker, extractClassName(classOrMethod), nameAndTags, lineInfo));
}
CATCH_CATCH_ALL
{
// Do not throw when constructing global objects, instead register the exception to be processed later
getMutableRegistryHub().registerStartupException();
}
}
AutoReg::~AutoReg() = default;
} // namespace Catch
// end catch_test_registry.cpp
// start catch_test_spec.cpp
#include <algorithm>
#include <string>
#include <vector>
#include <memory>
namespace Catch {
TestSpec::Pattern::Pattern(std::string const& name)
: m_name(name)
{}
TestSpec::Pattern::~Pattern() = default;
std::string const& TestSpec::Pattern::name() const
{
return m_name;
}
TestSpec::NamePattern::NamePattern(std::string const& name, std::string const& filterString)
: Pattern(filterString)
, m_wildcardPattern(toLower(name), CaseSensitive::No)
{}
bool TestSpec::NamePattern::matches(TestCaseInfo const& testCase) const
{
return m_wildcardPattern.matches(testCase.name);
}
TestSpec::TagPattern::TagPattern(std::string const& tag, std::string const& filterString)
: Pattern(filterString)
, m_tag(toLower(tag))
{}
bool TestSpec::TagPattern::matches(TestCaseInfo const& testCase) const
{
return std::find(begin(testCase.lcaseTags), end(testCase.lcaseTags), m_tag) != end(testCase.lcaseTags);
}
TestSpec::ExcludedPattern::ExcludedPattern(PatternPtr const& underlyingPattern)
: Pattern(underlyingPattern->name())
, m_underlyingPattern(underlyingPattern)
{}
bool TestSpec::ExcludedPattern::matches(TestCaseInfo const& testCase) const
{
return !m_underlyingPattern->matches(testCase);
}
bool TestSpec::Filter::matches(TestCaseInfo const& testCase) const
{
return std::all_of(m_patterns.begin(), m_patterns.end(), [&](PatternPtr const& p) { return p->matches(testCase); });
}
std::string TestSpec::Filter::name() const
{
std::string name;
for (auto const& p : m_patterns)
name += p->name();
return name;
}
bool TestSpec::hasFilters() const
{
return !m_filters.empty();
}
bool TestSpec::matches(TestCaseInfo const& testCase) const
{
return std::any_of(m_filters.begin(), m_filters.end(), [&](Filter const& f) { return f.matches(testCase); });
}
TestSpec::Matches TestSpec::matchesByFilter(std::vector<TestCase> const& testCases, IConfig const& config) const
{
Matches matches(m_filters.size());
std::transform(m_filters.begin(), m_filters.end(), matches.begin(), [&](Filter const& filter) {
std::vector<TestCase const*> currentMatches;
for (auto const& test : testCases)
if (isThrowSafe(test, config) && filter.matches(test))
currentMatches.emplace_back(&test);
return FilterMatch{filter.name(), currentMatches};
});
return matches;
}
const TestSpec::vectorStrings& TestSpec::getInvalidArgs() const
{
return (m_invalidArgs);
}
} // namespace Catch
// end catch_test_spec.cpp
// start catch_test_spec_parser.cpp
namespace Catch {
TestSpecParser::TestSpecParser(ITagAliasRegistry const& tagAliases)
: m_tagAliases(&tagAliases)
{}
TestSpecParser& TestSpecParser::parse(std::string const& arg)
{
m_mode = None;
m_exclusion = false;
m_arg = m_tagAliases->expandAliases(arg);
m_escapeChars.clear();
m_substring.reserve(m_arg.size());
m_patternName.reserve(m_arg.size());
m_realPatternPos = 0;
for (m_pos = 0; m_pos < m_arg.size(); ++m_pos)
// if visitChar fails
if (!visitChar(m_arg[m_pos]))
{
m_testSpec.m_invalidArgs.push_back(arg);
break;
}
endMode();
return *this;
}
TestSpec TestSpecParser::testSpec()
{
addFilter();
return m_testSpec;
}
bool TestSpecParser::visitChar(char c)
{
if ((m_mode != EscapedName) && (c == '\\'))
{
escape();
addCharToPattern(c);
return true;
}
else if ((m_mode != EscapedName) && (c == ','))
{
return separate();
}
switch (m_mode)
{
case None:
if (processNoneChar(c))
return true;
break;
case Name:
processNameChar(c);
break;
case EscapedName:
endMode();
addCharToPattern(c);
return true;
default:
case Tag:
case QuotedName:
if (processOtherChar(c))
return true;
break;
}
m_substring += c;
if (!isControlChar(c))
{
m_patternName += c;
m_realPatternPos++;
}
return true;
}
// Two of the processing methods return true to signal the caller to return
// without adding the given character to the current pattern strings
bool TestSpecParser::processNoneChar(char c)
{
switch (c)
{
case ' ':
return true;
case '~':
m_exclusion = true;
return false;
case '[':
startNewMode(Tag);
return false;
case '"':
startNewMode(QuotedName);
return false;
default:
startNewMode(Name);
return false;
}
}
void TestSpecParser::processNameChar(char c)
{
if (c == '[')
{
if (m_substring == "exclude:")
m_exclusion = true;
else
endMode();
startNewMode(Tag);
}
}
bool TestSpecParser::processOtherChar(char c)
{
if (!isControlChar(c))
return false;
m_substring += c;
endMode();
return true;
}
void TestSpecParser::startNewMode(Mode mode)
{
m_mode = mode;
}
void TestSpecParser::endMode()
{
switch (m_mode)
{
case Name:
case QuotedName:
return addNamePattern();
case Tag:
return addTagPattern();
case EscapedName:
revertBackToLastMode();
return;
case None:
default:
return startNewMode(None);
}
}
void TestSpecParser::escape()
{
saveLastMode();
m_mode = EscapedName;
m_escapeChars.push_back(m_realPatternPos);
}
bool TestSpecParser::isControlChar(char c) const
{
switch (m_mode)
{
default:
return false;
case None:
return c == '~';
case Name:
return c == '[';
case EscapedName:
return true;
case QuotedName:
return c == '"';
case Tag:
return c == '[' || c == ']';
}
}
void TestSpecParser::addFilter()
{
if (!m_currentFilter.m_patterns.empty())
{
m_testSpec.m_filters.push_back(m_currentFilter);
m_currentFilter = TestSpec::Filter();
}
}
void TestSpecParser::saveLastMode()
{
lastMode = m_mode;
}
void TestSpecParser::revertBackToLastMode()
{
m_mode = lastMode;
}
bool TestSpecParser::separate()
{
if ((m_mode == QuotedName) || (m_mode == Tag))
{
// invalid argument, signal failure to previous scope.
m_mode = None;
m_pos = m_arg.size();
m_substring.clear();
m_patternName.clear();
m_realPatternPos = 0;
return false;
}
endMode();
addFilter();
return true; // success
}
std::string TestSpecParser::preprocessPattern()
{
std::string token = m_patternName;
for (std::size_t i = 0; i < m_escapeChars.size(); ++i)
token = token.substr(0, m_escapeChars[i] - i) + token.substr(m_escapeChars[i] - i + 1);
m_escapeChars.clear();
if (startsWith(token, "exclude:"))
{
m_exclusion = true;
token = token.substr(8);
}
m_patternName.clear();
m_realPatternPos = 0;
return token;
}
void TestSpecParser::addNamePattern()
{
auto token = preprocessPattern();
if (!token.empty())
{
TestSpec::PatternPtr pattern = std::make_shared<TestSpec::NamePattern>(token, m_substring);
if (m_exclusion)
pattern = std::make_shared<TestSpec::ExcludedPattern>(pattern);
m_currentFilter.m_patterns.push_back(pattern);
}
m_substring.clear();
m_exclusion = false;
m_mode = None;
}
void TestSpecParser::addTagPattern()
{
auto token = preprocessPattern();
if (!token.empty())
{
// If the tag pattern is the "hide and tag" shorthand (e.g. [.foo])
// we have to create a separate hide tag and shorten the real one
if (token.size() > 1 && token[0] == '.')
{
token.erase(token.begin());
TestSpec::PatternPtr pattern = std::make_shared<TestSpec::TagPattern>(".", m_substring);
if (m_exclusion)
{
pattern = std::make_shared<TestSpec::ExcludedPattern>(pattern);
}
m_currentFilter.m_patterns.push_back(pattern);
}
TestSpec::PatternPtr pattern = std::make_shared<TestSpec::TagPattern>(token, m_substring);
if (m_exclusion)
{
pattern = std::make_shared<TestSpec::ExcludedPattern>(pattern);
}
m_currentFilter.m_patterns.push_back(pattern);
}
m_substring.clear();
m_exclusion = false;
m_mode = None;
}
TestSpec parseTestSpec(std::string const& arg)
{
return TestSpecParser(ITagAliasRegistry::get()).parse(arg).testSpec();
}
} // namespace Catch
// end catch_test_spec_parser.cpp
// start catch_timer.cpp
#include <chrono>
static const uint64_t nanosecondsInSecond = 1000000000;
namespace Catch {
auto getCurrentNanosecondsSinceEpoch() -> uint64_t
{
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::high_resolution_clock::now().time_since_epoch())
.count();
}
namespace {
auto estimateClockResolution() -> uint64_t
{
uint64_t sum = 0;
static const uint64_t iterations = 1000000;
auto startTime = getCurrentNanosecondsSinceEpoch();
for (std::size_t i = 0; i < iterations; ++i)
{
uint64_t ticks;
uint64_t baseTicks = getCurrentNanosecondsSinceEpoch();
do
{
ticks = getCurrentNanosecondsSinceEpoch();
} while (ticks == baseTicks);
auto delta = ticks - baseTicks;
sum += delta;
// If we have been calibrating for over 3 seconds -- the clock
// is terrible and we should move on.
// TBD: How to signal that the measured resolution is probably wrong?
if (ticks > startTime + 3 * nanosecondsInSecond)
{
return sum / (i + 1u);
}
}
// We're just taking the mean, here. To do better we could take the std. dev and exclude outliers
// - and potentially do more iterations if there's a high variance.
return sum / iterations;
}
} // namespace
auto getEstimatedClockResolution() -> uint64_t
{
static auto s_resolution = estimateClockResolution();
return s_resolution;
}
void Timer::start()
{
m_nanoseconds = getCurrentNanosecondsSinceEpoch();
}
auto Timer::getElapsedNanoseconds() const -> uint64_t
{
return getCurrentNanosecondsSinceEpoch() - m_nanoseconds;
}
auto Timer::getElapsedMicroseconds() const -> uint64_t
{
return getElapsedNanoseconds() / 1000;
}
auto Timer::getElapsedMilliseconds() const -> unsigned int
{
return static_cast<unsigned int>(getElapsedMicroseconds() / 1000);
}
auto Timer::getElapsedSeconds() const -> double
{
return getElapsedMicroseconds() / 1000000.0;
}
} // namespace Catch
// end catch_timer.cpp
// start catch_tostring.cpp
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wexit-time-destructors"
#pragma clang diagnostic ignored "-Wglobal-constructors"
#endif
// Enable specific decls locally
#if !defined(CATCH_CONFIG_ENABLE_CHRONO_STRINGMAKER)
#define CATCH_CONFIG_ENABLE_CHRONO_STRINGMAKER
#endif
#include <cmath>
#include <iomanip>
namespace Catch {
namespace Detail {
const std::string unprintableString = "{?}";
namespace {
const int hexThreshold = 255;
struct Endianness
{
enum Arch { Big, Little };
static Arch which()
{
int one = 1;
// If the lowest byte we read is non-zero, we can assume
// that little endian format is used.
auto value = *reinterpret_cast<char*>(&one);
return value ? Little : Big;
}
};
} // namespace
std::string rawMemoryToString(const void* object, std::size_t size)
{
// Reverse order for little endian architectures
int i = 0, end = static_cast<int>(size), inc = 1;
if (Endianness::which() == Endianness::Little)
{
i = end - 1;
end = inc = -1;
}
unsigned char const* bytes = static_cast<unsigned char const*>(object);
ReusableStringStream rss;
rss << "0x" << std::setfill('0') << std::hex;
for (; i != end; i += inc)
rss << std::setw(2) << static_cast<unsigned>(bytes[i]);
return rss.str();
}
} // namespace Detail
template<typename T>
std::string fpToString(T value, int precision)
{
if (Catch::isnan(value))
{
return "nan";
}
ReusableStringStream rss;
rss << std::setprecision(precision) << std::fixed << value;
std::string d = rss.str();
std::size_t i = d.find_last_not_of('0');
if (i != std::string::npos && i != d.size() - 1)
{
if (d[i] == '.')
i++;
d = d.substr(0, i + 1);
}
return d;
}
//// ======================================================= ////
//
// Out-of-line defs for full specialization of StringMaker
//
//// ======================================================= ////
std::string StringMaker<std::string>::convert(const std::string& str)
{
if (!getCurrentContext().getConfig()->showInvisibles())
{
return '"' + str + '"';
}
std::string s("\"");
for (char c : str)
{
switch (c)
{
case '\n':
s.append("\\n");
break;
case '\t':
s.append("\\t");
break;
default:
s.push_back(c);
break;
}
}
s.append("\"");
return s;
}
#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
std::string StringMaker<std::string_view>::convert(std::string_view str)
{
return ::Catch::Detail::stringify(std::string{str});
}
#endif
std::string StringMaker<char const*>::convert(char const* str)
{
if (str)
{
return ::Catch::Detail::stringify(std::string{str});
}
else
{
return {"{null string}"};
}
}
std::string StringMaker<char*>::convert(char* str)
{
if (str)
{
return ::Catch::Detail::stringify(std::string{str});
}
else
{
return {"{null string}"};
}
}
#ifdef CATCH_CONFIG_WCHAR
std::string StringMaker<std::wstring>::convert(const std::wstring& wstr)
{
std::string s;
s.reserve(wstr.size());
for (auto c : wstr)
{
s += (c <= 0xff) ? static_cast<char>(c) : '?';
}
return ::Catch::Detail::stringify(s);
}
#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
std::string StringMaker<std::wstring_view>::convert(std::wstring_view str)
{
return StringMaker<std::wstring>::convert(std::wstring(str));
}
#endif
std::string StringMaker<wchar_t const*>::convert(wchar_t const* str)
{
if (str)
{
return ::Catch::Detail::stringify(std::wstring{str});
}
else
{
return {"{null string}"};
}
}
std::string StringMaker<wchar_t*>::convert(wchar_t* str)
{
if (str)
{
return ::Catch::Detail::stringify(std::wstring{str});
}
else
{
return {"{null string}"};
}
}
#endif
#if defined(CATCH_CONFIG_CPP17_BYTE)
#include <cstddef>
std::string StringMaker<std::byte>::convert(std::byte value)
{
return ::Catch::Detail::stringify(std::to_integer<unsigned long long>(value));
}
#endif // defined(CATCH_CONFIG_CPP17_BYTE)
std::string StringMaker<int>::convert(int value)
{
return ::Catch::Detail::stringify(static_cast<long long>(value));
}
std::string StringMaker<long>::convert(long value)
{
return ::Catch::Detail::stringify(static_cast<long long>(value));
}
std::string StringMaker<long long>::convert(long long value)
{
ReusableStringStream rss;
rss << value;
if (value > Detail::hexThreshold)
{
rss << " (0x" << std::hex << value << ')';
}
return rss.str();
}
std::string StringMaker<unsigned int>::convert(unsigned int value)
{
return ::Catch::Detail::stringify(static_cast<unsigned long long>(value));
}
std::string StringMaker<unsigned long>::convert(unsigned long value)
{
return ::Catch::Detail::stringify(static_cast<unsigned long long>(value));
}
std::string StringMaker<unsigned long long>::convert(unsigned long long value)
{
ReusableStringStream rss;
rss << value;
if (value > Detail::hexThreshold)
{
rss << " (0x" << std::hex << value << ')';
}
return rss.str();
}
std::string StringMaker<bool>::convert(bool b)
{
return b ? "true" : "false";
}
std::string StringMaker<signed char>::convert(signed char value)
{
if (value == '\r')
{
return "'\\r'";
}
else if (value == '\f')
{
return "'\\f'";
}
else if (value == '\n')
{
return "'\\n'";
}
else if (value == '\t')
{
return "'\\t'";
}
else if ('\0' <= value && value < ' ')
{
return ::Catch::Detail::stringify(static_cast<unsigned int>(value));
}
else
{
char chstr[] = "' '";
chstr[1] = value;
return chstr;
}
}
std::string StringMaker<char>::convert(char c)
{
return ::Catch::Detail::stringify(static_cast<signed char>(c));
}
std::string StringMaker<unsigned char>::convert(unsigned char c)
{
return ::Catch::Detail::stringify(static_cast<char>(c));
}
std::string StringMaker<std::nullptr_t>::convert(std::nullptr_t)
{
return "nullptr";
}
int StringMaker<float>::precision = 5;
std::string StringMaker<float>::convert(float value)
{
return fpToString(value, precision) + 'f';
}
int StringMaker<double>::precision = 10;
std::string StringMaker<double>::convert(double value)
{
return fpToString(value, precision);
}
std::string ratio_string<std::atto>::symbol()
{
return "a";
}
std::string ratio_string<std::femto>::symbol()
{
return "f";
}
std::string ratio_string<std::pico>::symbol()
{
return "p";
}
std::string ratio_string<std::nano>::symbol()
{
return "n";
}
std::string ratio_string<std::micro>::symbol()
{
return "u";
}
std::string ratio_string<std::milli>::symbol()
{
return "m";
}
} // end namespace Catch
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
// end catch_tostring.cpp
// start catch_totals.cpp
namespace Catch {
Counts Counts::operator-(Counts const& other) const
{
Counts diff;
diff.passed = passed - other.passed;
diff.failed = failed - other.failed;
diff.failedButOk = failedButOk - other.failedButOk;
return diff;
}
Counts& Counts::operator+=(Counts const& other)
{
passed += other.passed;
failed += other.failed;
failedButOk += other.failedButOk;
return *this;
}
std::size_t Counts::total() const
{
return passed + failed + failedButOk;
}
bool Counts::allPassed() const
{
return failed == 0 && failedButOk == 0;
}
bool Counts::allOk() const
{
return failed == 0;
}
Totals Totals::operator-(Totals const& other) const
{
Totals diff;
diff.assertions = assertions - other.assertions;
diff.testCases = testCases - other.testCases;
return diff;
}
Totals& Totals::operator+=(Totals const& other)
{
assertions += other.assertions;
testCases += other.testCases;
return *this;
}
Totals Totals::delta(Totals const& prevTotals) const
{
Totals diff = *this - prevTotals;
if (diff.assertions.failed > 0)
++diff.testCases.failed;
else if (diff.assertions.failedButOk > 0)
++diff.testCases.failedButOk;
else
++diff.testCases.passed;
return diff;
}
} // namespace Catch
// end catch_totals.cpp
// start catch_uncaught_exceptions.cpp
// start catch_config_uncaught_exceptions.hpp
// Copyright Catch2 Authors
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
// SPDX-License-Identifier: BSL-1.0
#ifndef CATCH_CONFIG_UNCAUGHT_EXCEPTIONS_HPP
#define CATCH_CONFIG_UNCAUGHT_EXCEPTIONS_HPP
#if defined(_MSC_VER)
#if _MSC_VER >= 1900 // Visual Studio 2015 or newer
#define CATCH_INTERNAL_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS
#endif
#endif
#include <exception>
#if defined(__cpp_lib_uncaught_exceptions) && !defined(CATCH_INTERNAL_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS)
#define CATCH_INTERNAL_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS
#endif // __cpp_lib_uncaught_exceptions
#if defined(CATCH_INTERNAL_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS) && !defined(CATCH_CONFIG_NO_CPP17_UNCAUGHT_EXCEPTIONS) && \
!defined(CATCH_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS)
#define CATCH_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS
#endif
#endif // CATCH_CONFIG_UNCAUGHT_EXCEPTIONS_HPP
// end catch_config_uncaught_exceptions.hpp
#include <exception>
namespace Catch {
bool uncaught_exceptions()
{
#if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
return false;
#elif defined(CATCH_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS)
return std::uncaught_exceptions() > 0;
#else
return std::uncaught_exception();
#endif
}
} // end namespace Catch
// end catch_uncaught_exceptions.cpp
// start catch_version.cpp
#include <ostream>
namespace Catch {
Version::Version(unsigned int _majorVersion,
unsigned int _minorVersion,
unsigned int _patchNumber,
char const* const _branchName,
unsigned int _buildNumber)
: majorVersion(_majorVersion)
, minorVersion(_minorVersion)
, patchNumber(_patchNumber)
, branchName(_branchName)
, buildNumber(_buildNumber)
{}
std::ostream& operator<<(std::ostream& os, Version const& version)
{
os << version.majorVersion << '.' << version.minorVersion << '.' << version.patchNumber;
// branchName is never null -> 0th char is \0 if it is empty
if (version.branchName[0])
{
os << '-' << version.branchName << '.' << version.buildNumber;
}
return os;
}
Version const& libraryVersion()
{
static Version version(2, 13, 7, "", 0);
return version;
}
} // namespace Catch
// end catch_version.cpp
// start catch_wildcard_pattern.cpp
namespace Catch {
WildcardPattern::WildcardPattern(std::string const& pattern, CaseSensitive::Choice caseSensitivity)
: m_caseSensitivity(caseSensitivity)
, m_pattern(normaliseString(pattern))
{
if (startsWith(m_pattern, '*'))
{
m_pattern = m_pattern.substr(1);
m_wildcard = WildcardAtStart;
}
if (endsWith(m_pattern, '*'))
{
m_pattern = m_pattern.substr(0, m_pattern.size() - 1);
m_wildcard = static_cast<WildcardPosition>(m_wildcard | WildcardAtEnd);
}
}
bool WildcardPattern::matches(std::string const& str) const
{
switch (m_wildcard)
{
case NoWildcard:
return m_pattern == normaliseString(str);
case WildcardAtStart:
return endsWith(normaliseString(str), m_pattern);
case WildcardAtEnd:
return startsWith(normaliseString(str), m_pattern);
case WildcardAtBothEnds:
return contains(normaliseString(str), m_pattern);
default:
CATCH_INTERNAL_ERROR("Unknown enum");
}
}
std::string WildcardPattern::normaliseString(std::string const& str) const
{
return trim(m_caseSensitivity == CaseSensitive::No ? toLower(str) : str);
}
} // namespace Catch
// end catch_wildcard_pattern.cpp
// start catch_xmlwriter.cpp
#include <iomanip>
#include <type_traits>
namespace Catch {
namespace {
size_t trailingBytes(unsigned char c)
{
if ((c & 0xE0) == 0xC0)
{
return 2;
}
if ((c & 0xF0) == 0xE0)
{
return 3;
}
if ((c & 0xF8) == 0xF0)
{
return 4;
}
CATCH_INTERNAL_ERROR("Invalid multibyte utf-8 start byte encountered");
}
uint32_t headerValue(unsigned char c)
{
if ((c & 0xE0) == 0xC0)
{
return c & 0x1F;
}
if ((c & 0xF0) == 0xE0)
{
return c & 0x0F;
}
if ((c & 0xF8) == 0xF0)
{
return c & 0x07;
}
CATCH_INTERNAL_ERROR("Invalid multibyte utf-8 start byte encountered");
}
void hexEscapeChar(std::ostream& os, unsigned char c)
{
std::ios_base::fmtflags f(os.flags());
os << "\\x" << std::uppercase << std::hex << std::setfill('0') << std::setw(2) << static_cast<int>(c);
os.flags(f);
}
bool shouldNewline(XmlFormatting fmt)
{
return !!(static_cast<std::underlying_type<XmlFormatting>::type>(fmt & XmlFormatting::Newline));
}
bool shouldIndent(XmlFormatting fmt)
{
return !!(static_cast<std::underlying_type<XmlFormatting>::type>(fmt & XmlFormatting::Indent));
}
} // anonymous namespace
XmlFormatting operator|(XmlFormatting lhs, XmlFormatting rhs)
{
return static_cast<XmlFormatting>(static_cast<std::underlying_type<XmlFormatting>::type>(lhs) |
static_cast<std::underlying_type<XmlFormatting>::type>(rhs));
}
XmlFormatting operator&(XmlFormatting lhs, XmlFormatting rhs)
{
return static_cast<XmlFormatting>(static_cast<std::underlying_type<XmlFormatting>::type>(lhs) &
static_cast<std::underlying_type<XmlFormatting>::type>(rhs));
}
XmlEncode::XmlEncode(std::string const& str, ForWhat forWhat)
: m_str(str)
, m_forWhat(forWhat)
{}
void XmlEncode::encodeTo(std::ostream& os) const
{
// Apostrophe escaping not necessary if we always use " to write attributes
// (see: http://www.w3.org/TR/xml/#syntax)
for (std::size_t idx = 0; idx < m_str.size(); ++idx)
{
unsigned char c = m_str[idx];
switch (c)
{
case '<':
os << "&lt;";
break;
case '&':
os << "&amp;";
break;
case '>':
// See: http://www.w3.org/TR/xml/#syntax
if (idx > 2 && m_str[idx - 1] == ']' && m_str[idx - 2] == ']')
os << "&gt;";
else
os << c;
break;
case '\"':
if (m_forWhat == ForAttributes)
os << "&quot;";
else
os << c;
break;
default:
// Check for control characters and invalid utf-8
// Escape control characters in standard ascii
// see http://stackoverflow.com/questions/404107/why-are-control-characters-illegal-in-xml-1-0
if (c < 0x09 || (c > 0x0D && c < 0x20) || c == 0x7F)
{
hexEscapeChar(os, c);
break;
}
// Plain ASCII: Write it to stream
if (c < 0x7F)
{
os << c;
break;
}
// UTF-8 territory
// Check if the encoding is valid and if it is not, hex escape bytes.
// Important: We do not check the exact decoded values for validity, only the encoding format
// First check that this bytes is a valid lead byte:
// This means that it is not encoded as 1111 1XXX
// Or as 10XX XXXX
if (c < 0xC0 || c >= 0xF8)
{
hexEscapeChar(os, c);
break;
}
auto encBytes = trailingBytes(c);
// Are there enough bytes left to avoid accessing out-of-bounds memory?
if (idx + encBytes - 1 >= m_str.size())
{
hexEscapeChar(os, c);
break;
}
// The header is valid, check data
// The next encBytes bytes must together be a valid utf-8
// This means: bitpattern 10XX XXXX and the extracted value is sane (ish)
bool valid = true;
uint32_t value = headerValue(c);
for (std::size_t n = 1; n < encBytes; ++n)
{
unsigned char nc = m_str[idx + n];
valid &= ((nc & 0xC0) == 0x80);
value = (value << 6) | (nc & 0x3F);
}
if (
// Wrong bit pattern of following bytes
(!valid) ||
// Overlong encodings
(value < 0x80) || (0x80 <= value && value < 0x800 && encBytes > 2) ||
(0x800 < value && value < 0x10000 && encBytes > 3) ||
// Encoded value out of range
(value >= 0x110000))
{
hexEscapeChar(os, c);
break;
}
// If we got here, this is in fact a valid(ish) utf-8 sequence
for (std::size_t n = 0; n < encBytes; ++n)
{
os << m_str[idx + n];
}
idx += encBytes - 1;
break;
}
}
}
std::ostream& operator<<(std::ostream& os, XmlEncode const& xmlEncode)
{
xmlEncode.encodeTo(os);
return os;
}
XmlWriter::ScopedElement::ScopedElement(XmlWriter* writer, XmlFormatting fmt)
: m_writer(writer)
, m_fmt(fmt)
{}
XmlWriter::ScopedElement::ScopedElement(ScopedElement&& other) noexcept
: m_writer(other.m_writer)
, m_fmt(other.m_fmt)
{
other.m_writer = nullptr;
other.m_fmt = XmlFormatting::None;
}
XmlWriter::ScopedElement& XmlWriter::ScopedElement::operator=(ScopedElement&& other) noexcept
{
if (m_writer)
{
m_writer->endElement();
}
m_writer = other.m_writer;
other.m_writer = nullptr;
m_fmt = other.m_fmt;
other.m_fmt = XmlFormatting::None;
return *this;
}
XmlWriter::ScopedElement::~ScopedElement()
{
if (m_writer)
{
m_writer->endElement(m_fmt);
}
}
XmlWriter::ScopedElement& XmlWriter::ScopedElement::writeText(std::string const& text, XmlFormatting fmt)
{
m_writer->writeText(text, fmt);
return *this;
}
XmlWriter::XmlWriter(std::ostream& os)
: m_os(os)
{
writeDeclaration();
}
XmlWriter::~XmlWriter()
{
while (!m_tags.empty())
{
endElement();
}
newlineIfNecessary();
}
XmlWriter& XmlWriter::startElement(std::string const& name, XmlFormatting fmt)
{
ensureTagClosed();
newlineIfNecessary();
if (shouldIndent(fmt))
{
m_os << m_indent;
m_indent += " ";
}
m_os << '<' << name;
m_tags.push_back(name);
m_tagIsOpen = true;
applyFormatting(fmt);
return *this;
}
XmlWriter::ScopedElement XmlWriter::scopedElement(std::string const& name, XmlFormatting fmt)
{
ScopedElement scoped(this, fmt);
startElement(name, fmt);
return scoped;
}
XmlWriter& XmlWriter::endElement(XmlFormatting fmt)
{
m_indent = m_indent.substr(0, m_indent.size() - 2);
if (m_tagIsOpen)
{
m_os << "/>";
m_tagIsOpen = false;
}
else
{
newlineIfNecessary();
if (shouldIndent(fmt))
{
m_os << m_indent;
}
m_os << "</" << m_tags.back() << ">";
}
m_os << std::flush;
applyFormatting(fmt);
m_tags.pop_back();
return *this;
}
XmlWriter& XmlWriter::writeAttribute(std::string const& name, std::string const& attribute)
{
if (!name.empty() && !attribute.empty())
m_os << ' ' << name << "=\"" << XmlEncode(attribute, XmlEncode::ForAttributes) << '"';
return *this;
}
XmlWriter& XmlWriter::writeAttribute(std::string const& name, bool attribute)
{
m_os << ' ' << name << "=\"" << (attribute ? "true" : "false") << '"';
return *this;
}
XmlWriter& XmlWriter::writeText(std::string const& text, XmlFormatting fmt)
{
if (!text.empty())
{
bool tagWasOpen = m_tagIsOpen;
ensureTagClosed();
if (tagWasOpen && shouldIndent(fmt))
{
m_os << m_indent;
}
m_os << XmlEncode(text);
applyFormatting(fmt);
}
return *this;
}
XmlWriter& XmlWriter::writeComment(std::string const& text, XmlFormatting fmt)
{
ensureTagClosed();
if (shouldIndent(fmt))
{
m_os << m_indent;
}
m_os << "<!--" << text << "-->";
applyFormatting(fmt);
return *this;
}
void XmlWriter::writeStylesheetRef(std::string const& url)
{
m_os << "<?xml-stylesheet type=\"text/xsl\" href=\"" << url << "\"?>\n";
}
XmlWriter& XmlWriter::writeBlankLine()
{
ensureTagClosed();
m_os << '\n';
return *this;
}
void XmlWriter::ensureTagClosed()
{
if (m_tagIsOpen)
{
m_os << '>' << std::flush;
newlineIfNecessary();
m_tagIsOpen = false;
}
}
void XmlWriter::applyFormatting(XmlFormatting fmt)
{
m_needsNewline = shouldNewline(fmt);
}
void XmlWriter::writeDeclaration()
{
m_os << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
}
void XmlWriter::newlineIfNecessary()
{
if (m_needsNewline)
{
m_os << std::endl;
m_needsNewline = false;
}
}
} // namespace Catch
// end catch_xmlwriter.cpp
// start catch_reporter_bases.cpp
#include <cstring>
#include <cfloat>
#include <cstdio>
#include <cassert>
#include <memory>
namespace Catch {
void prepareExpandedExpression(AssertionResult& result)
{
result.getExpandedExpression();
}
// Because formatting using c++ streams is stateful, drop down to C is required
// Alternatively we could use stringstream, but its performance is... not good.
std::string getFormattedDuration(double duration)
{
// Max exponent + 1 is required to represent the whole part
// + 1 for decimal point
// + 3 for the 3 decimal places
// + 1 for null terminator
const std::size_t maxDoubleSize = DBL_MAX_10_EXP + 1 + 1 + 3 + 1;
char buffer[maxDoubleSize];
// Save previous errno, to prevent sprintf from overwriting it
ErrnoGuard guard;
#ifdef _MSC_VER
sprintf_s(buffer, "%.3f", duration);
#else
std::sprintf(buffer, "%.3f", duration);
#endif
return std::string(buffer);
}
bool shouldShowDuration(IConfig const& config, double duration)
{
if (config.showDurations() == ShowDurations::Always)
{
return true;
}
if (config.showDurations() == ShowDurations::Never)
{
return false;
}
const double min = config.minDuration();
return min >= 0 && duration >= min;
}
std::string serializeFilters(std::vector<std::string> const& container)
{
ReusableStringStream oss;
bool first = true;
for (auto&& filter : container)
{
if (!first)
oss << ' ';
else
first = false;
oss << filter;
}
return oss.str();
}
TestEventListenerBase::TestEventListenerBase(ReporterConfig const& _config)
: StreamingReporterBase(_config)
{}
std::set<Verbosity> TestEventListenerBase::getSupportedVerbosities()
{
return {Verbosity::Quiet, Verbosity::Normal, Verbosity::High};
}
void TestEventListenerBase::assertionStarting(AssertionInfo const&) {}
bool TestEventListenerBase::assertionEnded(AssertionStats const&)
{
return false;
}
} // end namespace Catch
// end catch_reporter_bases.cpp
// start catch_reporter_compact.cpp
namespace {
#ifdef CATCH_PLATFORM_MAC
const char* failedString()
{
return "FAILED";
}
const char* passedString()
{
return "PASSED";
}
#else
const char* failedString()
{
return "failed";
}
const char* passedString()
{
return "passed";
}
#endif
// Colour::LightGrey
Catch::Colour::Code dimColour()
{
return Catch::Colour::FileName;
}
std::string bothOrAll(std::size_t count)
{
return count == 1 ? std::string() : count == 2 ? "both " : "all ";
}
} // namespace
namespace Catch {
namespace {
// Colour, message variants:
// - white: No tests ran.
// - red: Failed [both/all] N test cases, failed [both/all] M assertions.
// - white: Passed [both/all] N test cases (no assertions).
// - red: Failed N tests cases, failed M assertions.
// - green: Passed [both/all] N tests cases with M assertions.
void printTotals(std::ostream& out, const Totals& totals)
{
if (totals.testCases.total() == 0)
{
out << "No tests ran.";
}
else if (totals.testCases.failed == totals.testCases.total())
{
Colour colour(Colour::ResultError);
const std::string qualify_assertions_failed =
totals.assertions.failed == totals.assertions.total() ? bothOrAll(totals.assertions.failed) : std::string();
out << "Failed " << bothOrAll(totals.testCases.failed) << pluralise(totals.testCases.failed, "test case")
<< ", "
"failed "
<< qualify_assertions_failed << pluralise(totals.assertions.failed, "assertion") << '.';
}
else if (totals.assertions.total() == 0)
{
out << "Passed " << bothOrAll(totals.testCases.total()) << pluralise(totals.testCases.total(), "test case")
<< " (no assertions).";
}
else if (totals.assertions.failed)
{
Colour colour(Colour::ResultError);
out << "Failed " << pluralise(totals.testCases.failed, "test case")
<< ", "
"failed "
<< pluralise(totals.assertions.failed, "assertion") << '.';
}
else
{
Colour colour(Colour::ResultSuccess);
out << "Passed " << bothOrAll(totals.testCases.passed) << pluralise(totals.testCases.passed, "test case")
<< " with " << pluralise(totals.assertions.passed, "assertion") << '.';
}
}
// Implementation of CompactReporter formatting
class AssertionPrinter
{
public:
AssertionPrinter& operator=(AssertionPrinter const&) = delete;
AssertionPrinter(AssertionPrinter const&) = delete;
AssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, bool _printInfoMessages)
: stream(_stream)
, result(_stats.assertionResult)
, messages(_stats.infoMessages)
, itMessage(_stats.infoMessages.begin())
, printInfoMessages(_printInfoMessages)
{}
void print()
{
printSourceInfo();
itMessage = messages.begin();
switch (result.getResultType())
{
case ResultWas::Ok:
printResultType(Colour::ResultSuccess, passedString());
printOriginalExpression();
printReconstructedExpression();
if (!result.hasExpression())
printRemainingMessages(Colour::None);
else
printRemainingMessages();
break;
case ResultWas::ExpressionFailed:
if (result.isOk())
printResultType(Colour::ResultSuccess, failedString() + std::string(" - but was ok"));
else
printResultType(Colour::Error, failedString());
printOriginalExpression();
printReconstructedExpression();
printRemainingMessages();
break;
case ResultWas::ThrewException:
printResultType(Colour::Error, failedString());
printIssue("unexpected exception with message:");
printMessage();
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::FatalErrorCondition:
printResultType(Colour::Error, failedString());
printIssue("fatal error condition with message:");
printMessage();
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::DidntThrowException:
printResultType(Colour::Error, failedString());
printIssue("expected exception, got none");
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::Info:
printResultType(Colour::None, "info");
printMessage();
printRemainingMessages();
break;
case ResultWas::Warning:
printResultType(Colour::None, "warning");
printMessage();
printRemainingMessages();
break;
case ResultWas::ExplicitFailure:
printResultType(Colour::Error, failedString());
printIssue("explicitly");
printRemainingMessages(Colour::None);
break;
// These cases are here to prevent compiler warnings
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
printResultType(Colour::Error, "** internal error **");
break;
}
}
private:
void printSourceInfo() const
{
Colour colourGuard(Colour::FileName);
stream << result.getSourceInfo() << ':';
}
void printResultType(Colour::Code colour, std::string const& passOrFail) const
{
if (!passOrFail.empty())
{
{
Colour colourGuard(colour);
stream << ' ' << passOrFail;
}
stream << ':';
}
}
void printIssue(std::string const& issue) const { stream << ' ' << issue; }
void printExpressionWas()
{
if (result.hasExpression())
{
stream << ';';
{
Colour colour(dimColour());
stream << " expression was:";
}
printOriginalExpression();
}
}
void printOriginalExpression() const
{
if (result.hasExpression())
{
stream << ' ' << result.getExpression();
}
}
void printReconstructedExpression() const
{
if (result.hasExpandedExpression())
{
{
Colour colour(dimColour());
stream << " for: ";
}
stream << result.getExpandedExpression();
}
}
void printMessage()
{
if (itMessage != messages.end())
{
stream << " '" << itMessage->message << '\'';
++itMessage;
}
}
void printRemainingMessages(Colour::Code colour = dimColour())
{
if (itMessage == messages.end())
return;
const auto itEnd = messages.cend();
const auto N = static_cast<std::size_t>(std::distance(itMessage, itEnd));
{
Colour colourGuard(colour);
stream << " with " << pluralise(N, "message") << ':';
}
while (itMessage != itEnd)
{
// If this assertion is a warning ignore any INFO messages
if (printInfoMessages || itMessage->type != ResultWas::Info)
{
printMessage();
if (itMessage != itEnd)
{
Colour colourGuard(dimColour());
stream << " and";
}
continue;
}
++itMessage;
}
}
private:
std::ostream& stream;
AssertionResult const& result;
std::vector<MessageInfo> messages;
std::vector<MessageInfo>::const_iterator itMessage;
bool printInfoMessages;
};
} // namespace
std::string CompactReporter::getDescription()
{
return "Reports test results on a single line, suitable for IDEs";
}
void CompactReporter::noMatchingTestCases(std::string const& spec)
{
stream << "No test cases matched '" << spec << '\'' << std::endl;
}
void CompactReporter::assertionStarting(AssertionInfo const&) {}
bool CompactReporter::assertionEnded(AssertionStats const& _assertionStats)
{
AssertionResult const& result = _assertionStats.assertionResult;
bool printInfoMessages = true;
// Drop out if result was successful and we're not printing those
if (!m_config->includeSuccessfulResults() && result.isOk())
{
if (result.getResultType() != ResultWas::Warning)
return false;
printInfoMessages = false;
}
AssertionPrinter printer(stream, _assertionStats, printInfoMessages);
printer.print();
stream << std::endl;
return true;
}
void CompactReporter::sectionEnded(SectionStats const& _sectionStats)
{
double dur = _sectionStats.durationInSeconds;
if (shouldShowDuration(*m_config, dur))
{
stream << getFormattedDuration(dur) << " s: " << _sectionStats.sectionInfo.name << std::endl;
}
}
void CompactReporter::testRunEnded(TestRunStats const& _testRunStats)
{
printTotals(stream, _testRunStats.totals);
stream << '\n' << std::endl;
StreamingReporterBase::testRunEnded(_testRunStats);
}
CompactReporter::~CompactReporter() {}
CATCH_REGISTER_REPORTER("compact", CompactReporter)
} // end namespace Catch
// end catch_reporter_compact.cpp
// start catch_reporter_console.cpp
#include <cfloat>
#include <cstdio>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4061) // Not all labels are EXPLICITLY handled in switch
// Note that 4062 (not all labels are handled and default is missing) is enabled
#endif
#if defined(__clang__)
#pragma clang diagnostic push
// For simplicity, benchmarking-only helpers are always enabled
#pragma clang diagnostic ignored "-Wunused-function"
#endif
namespace Catch {
namespace {
// Formatter impl for ConsoleReporter
class ConsoleAssertionPrinter
{
public:
ConsoleAssertionPrinter& operator=(ConsoleAssertionPrinter const&) = delete;
ConsoleAssertionPrinter(ConsoleAssertionPrinter const&) = delete;
ConsoleAssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, bool _printInfoMessages)
: stream(_stream)
, stats(_stats)
, result(_stats.assertionResult)
, colour(Colour::None)
, message(result.getMessage())
, messages(_stats.infoMessages)
, printInfoMessages(_printInfoMessages)
{
switch (result.getResultType())
{
case ResultWas::Ok:
colour = Colour::Success;
passOrFail = "PASSED";
// if( result.hasMessage() )
if (_stats.infoMessages.size() == 1)
messageLabel = "with message";
if (_stats.infoMessages.size() > 1)
messageLabel = "with messages";
break;
case ResultWas::ExpressionFailed:
if (result.isOk())
{
colour = Colour::Success;
passOrFail = "FAILED - but was ok";
}
else
{
colour = Colour::Error;
passOrFail = "FAILED";
}
if (_stats.infoMessages.size() == 1)
messageLabel = "with message";
if (_stats.infoMessages.size() > 1)
messageLabel = "with messages";
break;
case ResultWas::ThrewException:
colour = Colour::Error;
passOrFail = "FAILED";
messageLabel = "due to unexpected exception with ";
if (_stats.infoMessages.size() == 1)
messageLabel += "message";
if (_stats.infoMessages.size() > 1)
messageLabel += "messages";
break;
case ResultWas::FatalErrorCondition:
colour = Colour::Error;
passOrFail = "FAILED";
messageLabel = "due to a fatal error condition";
break;
case ResultWas::DidntThrowException:
colour = Colour::Error;
passOrFail = "FAILED";
messageLabel = "because no exception was thrown where one was expected";
break;
case ResultWas::Info:
messageLabel = "info";
break;
case ResultWas::Warning:
messageLabel = "warning";
break;
case ResultWas::ExplicitFailure:
passOrFail = "FAILED";
colour = Colour::Error;
if (_stats.infoMessages.size() == 1)
messageLabel = "explicitly with message";
if (_stats.infoMessages.size() > 1)
messageLabel = "explicitly with messages";
break;
// These cases are here to prevent compiler warnings
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
passOrFail = "** internal error **";
colour = Colour::Error;
break;
}
}
void print() const
{
printSourceInfo();
if (stats.totals.assertions.total() > 0)
{
printResultType();
printOriginalExpression();
printReconstructedExpression();
}
else
{
stream << '\n';
}
printMessage();
}
private:
void printResultType() const
{
if (!passOrFail.empty())
{
Colour colourGuard(colour);
stream << passOrFail << ":\n";
}
}
void printOriginalExpression() const
{
if (result.hasExpression())
{
Colour colourGuard(Colour::OriginalExpression);
stream << " ";
stream << result.getExpressionInMacro();
stream << '\n';
}
}
void printReconstructedExpression() const
{
if (result.hasExpandedExpression())
{
stream << "with expansion:\n";
Colour colourGuard(Colour::ReconstructedExpression);
stream << Column(result.getExpandedExpression()).indent(2) << '\n';
}
}
void printMessage() const
{
if (!messageLabel.empty())
stream << messageLabel << ':' << '\n';
for (auto const& msg : messages)
{
// If this assertion is a warning ignore any INFO messages
if (printInfoMessages || msg.type != ResultWas::Info)
stream << Column(msg.message).indent(2) << '\n';
}
}
void printSourceInfo() const
{
Colour colourGuard(Colour::FileName);
stream << result.getSourceInfo() << ": ";
}
std::ostream& stream;
AssertionStats const& stats;
AssertionResult const& result;
Colour::Code colour;
std::string passOrFail;
std::string messageLabel;
std::string message;
std::vector<MessageInfo> messages;
bool printInfoMessages;
};
std::size_t makeRatio(std::size_t number, std::size_t total)
{
std::size_t ratio = total > 0 ? CATCH_CONFIG_CONSOLE_WIDTH * number / total : 0;
return (ratio == 0 && number > 0) ? 1 : ratio;
}
std::size_t& findMax(std::size_t& i, std::size_t& j, std::size_t& k)
{
if (i > j && i > k)
return i;
else if (j > k)
return j;
else
return k;
}
struct ColumnInfo
{
enum Justification { Left, Right };
std::string name;
int width;
Justification justification;
};
struct ColumnBreak
{};
struct RowBreak
{};
class Duration
{
enum class Unit { Auto, Nanoseconds, Microseconds, Milliseconds, Seconds, Minutes };
static const uint64_t s_nanosecondsInAMicrosecond = 1000;
static const uint64_t s_nanosecondsInAMillisecond = 1000 * s_nanosecondsInAMicrosecond;
static const uint64_t s_nanosecondsInASecond = 1000 * s_nanosecondsInAMillisecond;
static const uint64_t s_nanosecondsInAMinute = 60 * s_nanosecondsInASecond;
double m_inNanoseconds;
Unit m_units;
public:
explicit Duration(double inNanoseconds, Unit units = Unit::Auto)
: m_inNanoseconds(inNanoseconds)
, m_units(units)
{
if (m_units == Unit::Auto)
{
if (m_inNanoseconds < s_nanosecondsInAMicrosecond)
m_units = Unit::Nanoseconds;
else if (m_inNanoseconds < s_nanosecondsInAMillisecond)
m_units = Unit::Microseconds;
else if (m_inNanoseconds < s_nanosecondsInASecond)
m_units = Unit::Milliseconds;
else if (m_inNanoseconds < s_nanosecondsInAMinute)
m_units = Unit::Seconds;
else
m_units = Unit::Minutes;
}
}
auto value() const -> double
{
switch (m_units)
{
case Unit::Microseconds:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInAMicrosecond);
case Unit::Milliseconds:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInAMillisecond);
case Unit::Seconds:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInASecond);
case Unit::Minutes:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInAMinute);
default:
return m_inNanoseconds;
}
}
auto unitsAsString() const -> std::string
{
switch (m_units)
{
case Unit::Nanoseconds:
return "ns";
case Unit::Microseconds:
return "us";
case Unit::Milliseconds:
return "ms";
case Unit::Seconds:
return "s";
case Unit::Minutes:
return "m";
default:
return "** internal error **";
}
}
friend auto operator<<(std::ostream& os, Duration const& duration) -> std::ostream&
{
return os << duration.value() << ' ' << duration.unitsAsString();
}
};
} // namespace
class TablePrinter
{
std::ostream& m_os;
std::vector<ColumnInfo> m_columnInfos;
std::ostringstream m_oss;
int m_currentColumn = -1;
bool m_isOpen = false;
public:
TablePrinter(std::ostream& os, std::vector<ColumnInfo> columnInfos)
: m_os(os)
, m_columnInfos(std::move(columnInfos))
{}
auto columnInfos() const -> std::vector<ColumnInfo> const& { return m_columnInfos; }
void open()
{
if (!m_isOpen)
{
m_isOpen = true;
*this << RowBreak();
Columns headerCols;
Spacer spacer(2);
for (auto const& info : m_columnInfos)
{
headerCols += Column(info.name).width(static_cast<std::size_t>(info.width - 2));
headerCols += spacer;
}
m_os << headerCols << '\n';
m_os << Catch::getLineOfChars<'-'>() << '\n';
}
}
void close()
{
if (m_isOpen)
{
*this << RowBreak();
m_os << std::endl;
m_isOpen = false;
}
}
template<typename T>
friend TablePrinter& operator<<(TablePrinter& tp, T const& value)
{
tp.m_oss << value;
return tp;
}
friend TablePrinter& operator<<(TablePrinter& tp, ColumnBreak)
{
auto colStr = tp.m_oss.str();
const auto strSize = colStr.size();
tp.m_oss.str("");
tp.open();
if (tp.m_currentColumn == static_cast<int>(tp.m_columnInfos.size() - 1))
{
tp.m_currentColumn = -1;
tp.m_os << '\n';
}
tp.m_currentColumn++;
auto colInfo = tp.m_columnInfos[tp.m_currentColumn];
auto padding = (strSize + 1 < static_cast<std::size_t>(colInfo.width))
? std::string(colInfo.width - (strSize + 1), ' ')
: std::string();
if (colInfo.justification == ColumnInfo::Left)
tp.m_os << colStr << padding << ' ';
else
tp.m_os << padding << colStr << ' ';
return tp;
}
friend TablePrinter& operator<<(TablePrinter& tp, RowBreak)
{
if (tp.m_currentColumn > 0)
{
tp.m_os << '\n';
tp.m_currentColumn = -1;
}
return tp;
}
};
ConsoleReporter::ConsoleReporter(ReporterConfig const& config)
: StreamingReporterBase(config)
, m_tablePrinter(new TablePrinter(config.stream(), [&config]() -> std::vector<ColumnInfo> {
if (config.fullConfig()->benchmarkNoAnalysis())
{
return {{"benchmark name", CATCH_CONFIG_CONSOLE_WIDTH - 43, ColumnInfo::Left},
{" samples", 14, ColumnInfo::Right},
{" iterations", 14, ColumnInfo::Right},
{" mean", 14, ColumnInfo::Right}};
}
else
{
return {{"benchmark name", CATCH_CONFIG_CONSOLE_WIDTH - 43, ColumnInfo::Left},
{"samples mean std dev", 14, ColumnInfo::Right},
{"iterations low mean low std dev", 14, ColumnInfo::Right},
{"estimated high mean high std dev", 14, ColumnInfo::Right}};
}
}()))
{}
ConsoleReporter::~ConsoleReporter() = default;
std::string ConsoleReporter::getDescription()
{
return "Reports test results as plain lines of text";
}
void ConsoleReporter::noMatchingTestCases(std::string const& spec)
{
stream << "No test cases matched '" << spec << '\'' << std::endl;
}
void ConsoleReporter::reportInvalidArguments(std::string const& arg)
{
stream << "Invalid Filter: " << arg << std::endl;
}
void ConsoleReporter::assertionStarting(AssertionInfo const&) {}
bool ConsoleReporter::assertionEnded(AssertionStats const& _assertionStats)
{
AssertionResult const& result = _assertionStats.assertionResult;
bool includeResults = m_config->includeSuccessfulResults() || !result.isOk();
// Drop out if result was successful but we're not printing them.
if (!includeResults && result.getResultType() != ResultWas::Warning)
return false;
lazyPrint();
ConsoleAssertionPrinter printer(stream, _assertionStats, includeResults);
printer.print();
stream << std::endl;
return true;
}
void ConsoleReporter::sectionStarting(SectionInfo const& _sectionInfo)
{
m_tablePrinter->close();
m_headerPrinted = false;
StreamingReporterBase::sectionStarting(_sectionInfo);
}
void ConsoleReporter::sectionEnded(SectionStats const& _sectionStats)
{
m_tablePrinter->close();
if (_sectionStats.missingAssertions)
{
lazyPrint();
Colour colour(Colour::ResultError);
if (m_sectionStack.size() > 1)
stream << "\nNo assertions in section";
else
stream << "\nNo assertions in test case";
stream << " '" << _sectionStats.sectionInfo.name << "'\n" << std::endl;
}
double dur = _sectionStats.durationInSeconds;
if (shouldShowDuration(*m_config, dur))
{
stream << getFormattedDuration(dur) << " s: " << _sectionStats.sectionInfo.name << std::endl;
}
if (m_headerPrinted)
{
m_headerPrinted = false;
}
StreamingReporterBase::sectionEnded(_sectionStats);
}
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void ConsoleReporter::benchmarkPreparing(std::string const& name)
{
lazyPrintWithoutClosingBenchmarkTable();
auto nameCol = Column(name).width(static_cast<std::size_t>(m_tablePrinter->columnInfos()[0].width - 2));
bool firstLine = true;
for (auto line : nameCol)
{
if (!firstLine)
(*m_tablePrinter) << ColumnBreak() << ColumnBreak() << ColumnBreak();
else
firstLine = false;
(*m_tablePrinter) << line << ColumnBreak();
}
}
void ConsoleReporter::benchmarkStarting(BenchmarkInfo const& info)
{
(*m_tablePrinter) << info.samples << ColumnBreak() << info.iterations << ColumnBreak();
if (!m_config->benchmarkNoAnalysis())
(*m_tablePrinter) << Duration(info.estimatedDuration) << ColumnBreak();
}
void ConsoleReporter::benchmarkEnded(BenchmarkStats<> const& stats)
{
if (m_config->benchmarkNoAnalysis())
{
(*m_tablePrinter) << Duration(stats.mean.point.count()) << ColumnBreak();
}
else
{
(*m_tablePrinter) << ColumnBreak() << Duration(stats.mean.point.count()) << ColumnBreak()
<< Duration(stats.mean.lower_bound.count()) << ColumnBreak()
<< Duration(stats.mean.upper_bound.count()) << ColumnBreak() << ColumnBreak()
<< Duration(stats.standardDeviation.point.count()) << ColumnBreak()
<< Duration(stats.standardDeviation.lower_bound.count()) << ColumnBreak()
<< Duration(stats.standardDeviation.upper_bound.count()) << ColumnBreak() << ColumnBreak()
<< ColumnBreak() << ColumnBreak() << ColumnBreak();
}
}
void ConsoleReporter::benchmarkFailed(std::string const& error)
{
Colour colour(Colour::Red);
(*m_tablePrinter) << "Benchmark failed (" << error << ')' << ColumnBreak() << RowBreak();
}
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
void ConsoleReporter::testCaseEnded(TestCaseStats const& _testCaseStats)
{
m_tablePrinter->close();
StreamingReporterBase::testCaseEnded(_testCaseStats);
m_headerPrinted = false;
}
void ConsoleReporter::testGroupEnded(TestGroupStats const& _testGroupStats)
{
if (currentGroupInfo.used)
{
printSummaryDivider();
stream << "Summary for group '" << _testGroupStats.groupInfo.name << "':\n";
printTotals(_testGroupStats.totals);
stream << '\n' << std::endl;
}
StreamingReporterBase::testGroupEnded(_testGroupStats);
}
void ConsoleReporter::testRunEnded(TestRunStats const& _testRunStats)
{
printTotalsDivider(_testRunStats.totals);
printTotals(_testRunStats.totals);
stream << std::endl;
StreamingReporterBase::testRunEnded(_testRunStats);
}
void ConsoleReporter::testRunStarting(TestRunInfo const& _testInfo)
{
StreamingReporterBase::testRunStarting(_testInfo);
printTestFilters();
}
void ConsoleReporter::lazyPrint()
{
m_tablePrinter->close();
lazyPrintWithoutClosingBenchmarkTable();
}
void ConsoleReporter::lazyPrintWithoutClosingBenchmarkTable()
{
if (!currentTestRunInfo.used)
lazyPrintRunInfo();
if (!currentGroupInfo.used)
lazyPrintGroupInfo();
if (!m_headerPrinted)
{
printTestCaseAndSectionHeader();
m_headerPrinted = true;
}
}
void ConsoleReporter::lazyPrintRunInfo()
{
stream << '\n' << getLineOfChars<'~'>() << '\n';
Colour colour(Colour::SecondaryText);
stream << currentTestRunInfo->name << " is a Catch v" << libraryVersion() << " host application.\n"
<< "Run with -? for options\n\n";
if (m_config->rngSeed() != 0)
stream << "Randomness seeded to: " << m_config->rngSeed() << "\n\n";
currentTestRunInfo.used = true;
}
void ConsoleReporter::lazyPrintGroupInfo()
{
if (!currentGroupInfo->name.empty() && currentGroupInfo->groupsCounts > 1)
{
printClosedHeader("Group: " + currentGroupInfo->name);
currentGroupInfo.used = true;
}
}
void ConsoleReporter::printTestCaseAndSectionHeader()
{
assert(!m_sectionStack.empty());
printOpenHeader(currentTestCaseInfo->name);
if (m_sectionStack.size() > 1)
{
Colour colourGuard(Colour::Headers);
auto it = m_sectionStack.begin() + 1, // Skip first section (test case)
itEnd = m_sectionStack.end();
for (; it != itEnd; ++it)
printHeaderString(it->name, 2);
}
SourceLineInfo lineInfo = m_sectionStack.back().lineInfo;
stream << getLineOfChars<'-'>() << '\n';
Colour colourGuard(Colour::FileName);
stream << lineInfo << '\n';
stream << getLineOfChars<'.'>() << '\n' << std::endl;
}
void ConsoleReporter::printClosedHeader(std::string const& _name)
{
printOpenHeader(_name);
stream << getLineOfChars<'.'>() << '\n';
}
void ConsoleReporter::printOpenHeader(std::string const& _name)
{
stream << getLineOfChars<'-'>() << '\n';
{
Colour colourGuard(Colour::Headers);
printHeaderString(_name);
}
}
// if string has a : in first line will set indent to follow it on
// subsequent lines
void ConsoleReporter::printHeaderString(std::string const& _string, std::size_t indent)
{
std::size_t i = _string.find(": ");
if (i != std::string::npos)
i += 2;
else
i = 0;
stream << Column(_string).indent(indent + i).initialIndent(indent) << '\n';
}
struct SummaryColumn
{
SummaryColumn(std::string _label, Colour::Code _colour)
: label(std::move(_label))
, colour(_colour)
{}
SummaryColumn addRow(std::size_t count)
{
ReusableStringStream rss;
rss << count;
std::string row = rss.str();
for (auto& oldRow : rows)
{
while (oldRow.size() < row.size())
oldRow = ' ' + oldRow;
while (oldRow.size() > row.size())
row = ' ' + row;
}
rows.push_back(row);
return *this;
}
std::string label;
Colour::Code colour;
std::vector<std::string> rows;
};
void ConsoleReporter::printTotals(Totals const& totals)
{
if (totals.testCases.total() == 0)
{
stream << Colour(Colour::Warning) << "No tests ran\n";
}
else if (totals.assertions.total() > 0 && totals.testCases.allPassed())
{
stream << Colour(Colour::ResultSuccess) << "All tests passed";
stream << " (" << pluralise(totals.assertions.passed, "assertion") << " in "
<< pluralise(totals.testCases.passed, "test case") << ')' << '\n';
}
else
{
std::vector<SummaryColumn> columns;
columns.push_back(
SummaryColumn("", Colour::None).addRow(totals.testCases.total()).addRow(totals.assertions.total()));
columns.push_back(
SummaryColumn("passed", Colour::Success).addRow(totals.testCases.passed).addRow(totals.assertions.passed));
columns.push_back(SummaryColumn("failed", Colour::ResultError)
.addRow(totals.testCases.failed)
.addRow(totals.assertions.failed));
columns.push_back(SummaryColumn("failed as expected", Colour::ResultExpectedFailure)
.addRow(totals.testCases.failedButOk)
.addRow(totals.assertions.failedButOk));
printSummaryRow("test cases", columns, 0);
printSummaryRow("assertions", columns, 1);
}
}
void ConsoleReporter::printSummaryRow(std::string const& label, std::vector<SummaryColumn> const& cols, std::size_t row)
{
for (auto col : cols)
{
std::string value = col.rows[row];
if (col.label.empty())
{
stream << label << ": ";
if (value != "0")
stream << value;
else
stream << Colour(Colour::Warning) << "- none -";
}
else if (value != "0")
{
stream << Colour(Colour::LightGrey) << " | ";
stream << Colour(col.colour) << value << ' ' << col.label;
}
}
stream << '\n';
}
void ConsoleReporter::printTotalsDivider(Totals const& totals)
{
if (totals.testCases.total() > 0)
{
std::size_t failedRatio = makeRatio(totals.testCases.failed, totals.testCases.total());
std::size_t failedButOkRatio = makeRatio(totals.testCases.failedButOk, totals.testCases.total());
std::size_t passedRatio = makeRatio(totals.testCases.passed, totals.testCases.total());
while (failedRatio + failedButOkRatio + passedRatio < CATCH_CONFIG_CONSOLE_WIDTH - 1)
findMax(failedRatio, failedButOkRatio, passedRatio)++;
while (failedRatio + failedButOkRatio + passedRatio > CATCH_CONFIG_CONSOLE_WIDTH - 1)
findMax(failedRatio, failedButOkRatio, passedRatio)--;
stream << Colour(Colour::Error) << std::string(failedRatio, '=');
stream << Colour(Colour::ResultExpectedFailure) << std::string(failedButOkRatio, '=');
if (totals.testCases.allPassed())
stream << Colour(Colour::ResultSuccess) << std::string(passedRatio, '=');
else
stream << Colour(Colour::Success) << std::string(passedRatio, '=');
}
else
{
stream << Colour(Colour::Warning) << std::string(CATCH_CONFIG_CONSOLE_WIDTH - 1, '=');
}
stream << '\n';
}
void ConsoleReporter::printSummaryDivider()
{
stream << getLineOfChars<'-'>() << '\n';
}
void ConsoleReporter::printTestFilters()
{
if (m_config->testSpec().hasFilters())
{
Colour guard(Colour::BrightYellow);
stream << "Filters: " << serializeFilters(m_config->getTestsOrTags()) << '\n';
}
}
CATCH_REGISTER_REPORTER("console", ConsoleReporter)
} // end namespace Catch
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
// end catch_reporter_console.cpp
// start catch_reporter_junit.cpp
#include <cassert>
#include <sstream>
#include <ctime>
#include <algorithm>
#include <iomanip>
namespace Catch {
namespace {
std::string getCurrentTimestamp()
{
// Beware, this is not reentrant because of backward compatibility issues
// Also, UTC only, again because of backward compatibility (%z is C++11)
time_t rawtime;
std::time(&rawtime);
auto const timeStampSize = sizeof("2017-01-16T17:06:45Z");
#ifdef _MSC_VER
std::tm timeInfo = {};
gmtime_s(&timeInfo, &rawtime);
#else
std::tm* timeInfo;
timeInfo = std::gmtime(&rawtime);
#endif
char timeStamp[timeStampSize];
const char* const fmt = "%Y-%m-%dT%H:%M:%SZ";
#ifdef _MSC_VER
std::strftime(timeStamp, timeStampSize, fmt, &timeInfo);
#else
std::strftime(timeStamp, timeStampSize, fmt, timeInfo);
#endif
return std::string(timeStamp, timeStampSize - 1);
}
std::string fileNameTag(const std::vector<std::string>& tags)
{
auto it = std::find_if(begin(tags), end(tags), [](std::string const& tag) { return tag.front() == '#'; });
if (it != tags.end())
return it->substr(1);
return std::string();
}
// Formats the duration in seconds to 3 decimal places.
// This is done because some genius defined Maven Surefire schema
// in a way that only accepts 3 decimal places, and tools like
// Jenkins use that schema for validation JUnit reporter output.
std::string formatDuration(double seconds)
{
ReusableStringStream rss;
rss << std::fixed << std::setprecision(3) << seconds;
return rss.str();
}
} // anonymous namespace
JunitReporter::JunitReporter(ReporterConfig const& _config)
: CumulativeReporterBase(_config)
, xml(_config.stream())
{
m_reporterPrefs.shouldRedirectStdOut = true;
m_reporterPrefs.shouldReportAllAssertions = true;
}
JunitReporter::~JunitReporter() {}
std::string JunitReporter::getDescription()
{
return "Reports test results in an XML format that looks like Ant's junitreport target";
}
void JunitReporter::noMatchingTestCases(std::string const& /*spec*/) {}
void JunitReporter::testRunStarting(TestRunInfo const& runInfo)
{
CumulativeReporterBase::testRunStarting(runInfo);
xml.startElement("testsuites");
}
void JunitReporter::testGroupStarting(GroupInfo const& groupInfo)
{
suiteTimer.start();
stdOutForSuite.clear();
stdErrForSuite.clear();
unexpectedExceptions = 0;
CumulativeReporterBase::testGroupStarting(groupInfo);
}
void JunitReporter::testCaseStarting(TestCaseInfo const& testCaseInfo)
{
m_okToFail = testCaseInfo.okToFail();
}
bool JunitReporter::assertionEnded(AssertionStats const& assertionStats)
{
if (assertionStats.assertionResult.getResultType() == ResultWas::ThrewException && !m_okToFail)
unexpectedExceptions++;
return CumulativeReporterBase::assertionEnded(assertionStats);
}
void JunitReporter::testCaseEnded(TestCaseStats const& testCaseStats)
{
stdOutForSuite += testCaseStats.stdOut;
stdErrForSuite += testCaseStats.stdErr;
CumulativeReporterBase::testCaseEnded(testCaseStats);
}
void JunitReporter::testGroupEnded(TestGroupStats const& testGroupStats)
{
double suiteTime = suiteTimer.getElapsedSeconds();
CumulativeReporterBase::testGroupEnded(testGroupStats);
writeGroup(*m_testGroups.back(), suiteTime);
}
void JunitReporter::testRunEndedCumulative()
{
xml.endElement();
}
void JunitReporter::writeGroup(TestGroupNode const& groupNode, double suiteTime)
{
XmlWriter::ScopedElement e = xml.scopedElement("testsuite");
TestGroupStats const& stats = groupNode.value;
xml.writeAttribute("name", stats.groupInfo.name);
xml.writeAttribute("errors", unexpectedExceptions);
xml.writeAttribute("failures", stats.totals.assertions.failed - unexpectedExceptions);
xml.writeAttribute("tests", stats.totals.assertions.total());
xml.writeAttribute("hostname", "tbd"); // !TBD
if (m_config->showDurations() == ShowDurations::Never)
xml.writeAttribute("time", "");
else
xml.writeAttribute("time", formatDuration(suiteTime));
xml.writeAttribute("timestamp", getCurrentTimestamp());
// Write properties if there are any
if (m_config->hasTestFilters() || m_config->rngSeed() != 0)
{
auto properties = xml.scopedElement("properties");
if (m_config->hasTestFilters())
{
xml.scopedElement("property")
.writeAttribute("name", "filters")
.writeAttribute("value", serializeFilters(m_config->getTestsOrTags()));
}
if (m_config->rngSeed() != 0)
{
xml.scopedElement("property")
.writeAttribute("name", "random-seed")
.writeAttribute("value", m_config->rngSeed());
}
}
// Write test cases
for (auto const& child : groupNode.children)
writeTestCase(*child);
xml.scopedElement("system-out").writeText(trim(stdOutForSuite), XmlFormatting::Newline);
xml.scopedElement("system-err").writeText(trim(stdErrForSuite), XmlFormatting::Newline);
}
void JunitReporter::writeTestCase(TestCaseNode const& testCaseNode)
{
TestCaseStats const& stats = testCaseNode.value;
// All test cases have exactly one section - which represents the
// test case itself. That section may have 0-n nested sections
assert(testCaseNode.children.size() == 1);
SectionNode const& rootSection = *testCaseNode.children.front();
std::string className = stats.testInfo.className;
if (className.empty())
{
className = fileNameTag(stats.testInfo.tags);
if (className.empty())
className = "global";
}
if (!m_config->name().empty())
className = m_config->name() + "." + className;
writeSection(className, "", rootSection, stats.testInfo.okToFail());
}
void JunitReporter::writeSection(std::string const& className,
std::string const& rootName,
SectionNode const& sectionNode,
bool testOkToFail)
{
std::string name = trim(sectionNode.stats.sectionInfo.name);
if (!rootName.empty())
name = rootName + '/' + name;
if (!sectionNode.assertions.empty() || !sectionNode.stdOut.empty() || !sectionNode.stdErr.empty())
{
XmlWriter::ScopedElement e = xml.scopedElement("testcase");
if (className.empty())
{
xml.writeAttribute("classname", name);
xml.writeAttribute("name", "root");
}
else
{
xml.writeAttribute("classname", className);
xml.writeAttribute("name", name);
}
xml.writeAttribute("time", formatDuration(sectionNode.stats.durationInSeconds));
// This is not ideal, but it should be enough to mimic gtest's
// junit output.
// Ideally the JUnit reporter would also handle `skipTest`
// events and write those out appropriately.
xml.writeAttribute("status", "run");
if (sectionNode.stats.assertions.failedButOk)
{
xml.scopedElement("skipped").writeAttribute("message", "TEST_CASE tagged with !mayfail");
}
writeAssertions(sectionNode);
if (!sectionNode.stdOut.empty())
xml.scopedElement("system-out").writeText(trim(sectionNode.stdOut), XmlFormatting::Newline);
if (!sectionNode.stdErr.empty())
xml.scopedElement("system-err").writeText(trim(sectionNode.stdErr), XmlFormatting::Newline);
}
for (auto const& childNode : sectionNode.childSections)
if (className.empty())
writeSection(name, "", *childNode, testOkToFail);
else
writeSection(className, name, *childNode, testOkToFail);
}
void JunitReporter::writeAssertions(SectionNode const& sectionNode)
{
for (auto const& assertion : sectionNode.assertions)
writeAssertion(assertion);
}
void JunitReporter::writeAssertion(AssertionStats const& stats)
{
AssertionResult const& result = stats.assertionResult;
if (!result.isOk())
{
std::string elementName;
switch (result.getResultType())
{
case ResultWas::ThrewException:
case ResultWas::FatalErrorCondition:
elementName = "error";
break;
case ResultWas::ExplicitFailure:
case ResultWas::ExpressionFailed:
case ResultWas::DidntThrowException:
elementName = "failure";
break;
// We should never see these here:
case ResultWas::Info:
case ResultWas::Warning:
case ResultWas::Ok:
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
elementName = "internalError";
break;
}
XmlWriter::ScopedElement e = xml.scopedElement(elementName);
xml.writeAttribute("message", result.getExpression());
xml.writeAttribute("type", result.getTestMacroName());
ReusableStringStream rss;
if (stats.totals.assertions.total() > 0)
{
rss << "FAILED" << ":\n";
if (result.hasExpression())
{
rss << " ";
rss << result.getExpressionInMacro();
rss << '\n';
}
if (result.hasExpandedExpression())
{
rss << "with expansion:\n";
rss << Column(result.getExpandedExpression()).indent(2) << '\n';
}
}
else
{
rss << '\n';
}
if (!result.getMessage().empty())
rss << result.getMessage() << '\n';
for (auto const& msg : stats.infoMessages)
if (msg.type == ResultWas::Info)
rss << msg.message << '\n';
rss << "at " << result.getSourceInfo();
xml.writeText(rss.str(), XmlFormatting::Newline);
}
}
CATCH_REGISTER_REPORTER("junit", JunitReporter)
} // end namespace Catch
// end catch_reporter_junit.cpp
// start catch_reporter_listening.cpp
#include <cassert>
namespace Catch {
ListeningReporter::ListeningReporter()
{
// We will assume that listeners will always want all assertions
m_preferences.shouldReportAllAssertions = true;
}
void ListeningReporter::addListener(IStreamingReporterPtr&& listener)
{
m_listeners.push_back(std::move(listener));
}
void ListeningReporter::addReporter(IStreamingReporterPtr&& reporter)
{
assert(!m_reporter && "Listening reporter can wrap only 1 real reporter");
m_reporter = std::move(reporter);
m_preferences.shouldRedirectStdOut = m_reporter->getPreferences().shouldRedirectStdOut;
}
ReporterPreferences ListeningReporter::getPreferences() const
{
return m_preferences;
}
std::set<Verbosity> ListeningReporter::getSupportedVerbosities()
{
return std::set<Verbosity>{};
}
void ListeningReporter::noMatchingTestCases(std::string const& spec)
{
for (auto const& listener : m_listeners)
{
listener->noMatchingTestCases(spec);
}
m_reporter->noMatchingTestCases(spec);
}
void ListeningReporter::reportInvalidArguments(std::string const& arg)
{
for (auto const& listener : m_listeners)
{
listener->reportInvalidArguments(arg);
}
m_reporter->reportInvalidArguments(arg);
}
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void ListeningReporter::benchmarkPreparing(std::string const& name)
{
for (auto const& listener : m_listeners)
{
listener->benchmarkPreparing(name);
}
m_reporter->benchmarkPreparing(name);
}
void ListeningReporter::benchmarkStarting(BenchmarkInfo const& benchmarkInfo)
{
for (auto const& listener : m_listeners)
{
listener->benchmarkStarting(benchmarkInfo);
}
m_reporter->benchmarkStarting(benchmarkInfo);
}
void ListeningReporter::benchmarkEnded(BenchmarkStats<> const& benchmarkStats)
{
for (auto const& listener : m_listeners)
{
listener->benchmarkEnded(benchmarkStats);
}
m_reporter->benchmarkEnded(benchmarkStats);
}
void ListeningReporter::benchmarkFailed(std::string const& error)
{
for (auto const& listener : m_listeners)
{
listener->benchmarkFailed(error);
}
m_reporter->benchmarkFailed(error);
}
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
void ListeningReporter::testRunStarting(TestRunInfo const& testRunInfo)
{
for (auto const& listener : m_listeners)
{
listener->testRunStarting(testRunInfo);
}
m_reporter->testRunStarting(testRunInfo);
}
void ListeningReporter::testGroupStarting(GroupInfo const& groupInfo)
{
for (auto const& listener : m_listeners)
{
listener->testGroupStarting(groupInfo);
}
m_reporter->testGroupStarting(groupInfo);
}
void ListeningReporter::testCaseStarting(TestCaseInfo const& testInfo)
{
for (auto const& listener : m_listeners)
{
listener->testCaseStarting(testInfo);
}
m_reporter->testCaseStarting(testInfo);
}
void ListeningReporter::sectionStarting(SectionInfo const& sectionInfo)
{
for (auto const& listener : m_listeners)
{
listener->sectionStarting(sectionInfo);
}
m_reporter->sectionStarting(sectionInfo);
}
void ListeningReporter::assertionStarting(AssertionInfo const& assertionInfo)
{
for (auto const& listener : m_listeners)
{
listener->assertionStarting(assertionInfo);
}
m_reporter->assertionStarting(assertionInfo);
}
// The return value indicates if the messages buffer should be cleared:
bool ListeningReporter::assertionEnded(AssertionStats const& assertionStats)
{
for (auto const& listener : m_listeners)
{
static_cast<void>(listener->assertionEnded(assertionStats));
}
return m_reporter->assertionEnded(assertionStats);
}
void ListeningReporter::sectionEnded(SectionStats const& sectionStats)
{
for (auto const& listener : m_listeners)
{
listener->sectionEnded(sectionStats);
}
m_reporter->sectionEnded(sectionStats);
}
void ListeningReporter::testCaseEnded(TestCaseStats const& testCaseStats)
{
for (auto const& listener : m_listeners)
{
listener->testCaseEnded(testCaseStats);
}
m_reporter->testCaseEnded(testCaseStats);
}
void ListeningReporter::testGroupEnded(TestGroupStats const& testGroupStats)
{
for (auto const& listener : m_listeners)
{
listener->testGroupEnded(testGroupStats);
}
m_reporter->testGroupEnded(testGroupStats);
}
void ListeningReporter::testRunEnded(TestRunStats const& testRunStats)
{
for (auto const& listener : m_listeners)
{
listener->testRunEnded(testRunStats);
}
m_reporter->testRunEnded(testRunStats);
}
void ListeningReporter::skipTest(TestCaseInfo const& testInfo)
{
for (auto const& listener : m_listeners)
{
listener->skipTest(testInfo);
}
m_reporter->skipTest(testInfo);
}
bool ListeningReporter::isMulti() const
{
return true;
}
} // end namespace Catch
// end catch_reporter_listening.cpp
// start catch_reporter_xml.cpp
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4061) // Not all labels are EXPLICITLY handled in switch
// Note that 4062 (not all labels are handled
// and default is missing) is enabled
#endif
namespace Catch {
XmlReporter::XmlReporter(ReporterConfig const& _config)
: StreamingReporterBase(_config)
, m_xml(_config.stream())
{
m_reporterPrefs.shouldRedirectStdOut = true;
m_reporterPrefs.shouldReportAllAssertions = true;
}
XmlReporter::~XmlReporter() = default;
std::string XmlReporter::getDescription()
{
return "Reports test results as an XML document";
}
std::string XmlReporter::getStylesheetRef() const
{
return std::string();
}
void XmlReporter::writeSourceInfo(SourceLineInfo const& sourceInfo)
{
m_xml.writeAttribute("filename", sourceInfo.file).writeAttribute("line", sourceInfo.line);
}
void XmlReporter::noMatchingTestCases(std::string const& s)
{
StreamingReporterBase::noMatchingTestCases(s);
}
void XmlReporter::testRunStarting(TestRunInfo const& testInfo)
{
StreamingReporterBase::testRunStarting(testInfo);
std::string stylesheetRef = getStylesheetRef();
if (!stylesheetRef.empty())
m_xml.writeStylesheetRef(stylesheetRef);
m_xml.startElement("Catch");
if (!m_config->name().empty())
m_xml.writeAttribute("name", m_config->name());
if (m_config->testSpec().hasFilters())
m_xml.writeAttribute("filters", serializeFilters(m_config->getTestsOrTags()));
if (m_config->rngSeed() != 0)
m_xml.scopedElement("Randomness").writeAttribute("seed", m_config->rngSeed());
}
void XmlReporter::testGroupStarting(GroupInfo const& groupInfo)
{
StreamingReporterBase::testGroupStarting(groupInfo);
m_xml.startElement("Group").writeAttribute("name", groupInfo.name);
}
void XmlReporter::testCaseStarting(TestCaseInfo const& testInfo)
{
StreamingReporterBase::testCaseStarting(testInfo);
m_xml.startElement("TestCase")
.writeAttribute("name", trim(testInfo.name))
.writeAttribute("description", testInfo.description)
.writeAttribute("tags", testInfo.tagsAsString());
writeSourceInfo(testInfo.lineInfo);
if (m_config->showDurations() == ShowDurations::Always)
m_testCaseTimer.start();
m_xml.ensureTagClosed();
}
void XmlReporter::sectionStarting(SectionInfo const& sectionInfo)
{
StreamingReporterBase::sectionStarting(sectionInfo);
if (m_sectionDepth++ > 0)
{
m_xml.startElement("Section").writeAttribute("name", trim(sectionInfo.name));
writeSourceInfo(sectionInfo.lineInfo);
m_xml.ensureTagClosed();
}
}
void XmlReporter::assertionStarting(AssertionInfo const&) {}
bool XmlReporter::assertionEnded(AssertionStats const& assertionStats)
{
AssertionResult const& result = assertionStats.assertionResult;
bool includeResults = m_config->includeSuccessfulResults() || !result.isOk();
if (includeResults || result.getResultType() == ResultWas::Warning)
{
// Print any info messages in <Info> tags.
for (auto const& msg : assertionStats.infoMessages)
{
if (msg.type == ResultWas::Info && includeResults)
{
m_xml.scopedElement("Info").writeText(msg.message);
}
else if (msg.type == ResultWas::Warning)
{
m_xml.scopedElement("Warning").writeText(msg.message);
}
}
}
// Drop out if result was successful but we're not printing them.
if (!includeResults && result.getResultType() != ResultWas::Warning)
return true;
// Print the expression if there is one.
if (result.hasExpression())
{
m_xml.startElement("Expression")
.writeAttribute("success", result.succeeded())
.writeAttribute("type", result.getTestMacroName());
writeSourceInfo(result.getSourceInfo());
m_xml.scopedElement("Original").writeText(result.getExpression());
m_xml.scopedElement("Expanded").writeText(result.getExpandedExpression());
}
// And... Print a result applicable to each result type.
switch (result.getResultType())
{
case ResultWas::ThrewException:
m_xml.startElement("Exception");
writeSourceInfo(result.getSourceInfo());
m_xml.writeText(result.getMessage());
m_xml.endElement();
break;
case ResultWas::FatalErrorCondition:
m_xml.startElement("FatalErrorCondition");
writeSourceInfo(result.getSourceInfo());
m_xml.writeText(result.getMessage());
m_xml.endElement();
break;
case ResultWas::Info:
m_xml.scopedElement("Info").writeText(result.getMessage());
break;
case ResultWas::Warning:
// Warning will already have been written
break;
case ResultWas::ExplicitFailure:
m_xml.startElement("Failure");
writeSourceInfo(result.getSourceInfo());
m_xml.writeText(result.getMessage());
m_xml.endElement();
break;
default:
break;
}
if (result.hasExpression())
m_xml.endElement();
return true;
}
void XmlReporter::sectionEnded(SectionStats const& sectionStats)
{
StreamingReporterBase::sectionEnded(sectionStats);
if (--m_sectionDepth > 0)
{
XmlWriter::ScopedElement e = m_xml.scopedElement("OverallResults");
e.writeAttribute("successes", sectionStats.assertions.passed);
e.writeAttribute("failures", sectionStats.assertions.failed);
e.writeAttribute("expectedFailures", sectionStats.assertions.failedButOk);
if (m_config->showDurations() == ShowDurations::Always)
e.writeAttribute("durationInSeconds", sectionStats.durationInSeconds);
m_xml.endElement();
}
}
void XmlReporter::testCaseEnded(TestCaseStats const& testCaseStats)
{
StreamingReporterBase::testCaseEnded(testCaseStats);
XmlWriter::ScopedElement e = m_xml.scopedElement("OverallResult");
e.writeAttribute("success", testCaseStats.totals.assertions.allOk());
if (m_config->showDurations() == ShowDurations::Always)
e.writeAttribute("durationInSeconds", m_testCaseTimer.getElapsedSeconds());
if (!testCaseStats.stdOut.empty())
m_xml.scopedElement("StdOut").writeText(trim(testCaseStats.stdOut), XmlFormatting::Newline);
if (!testCaseStats.stdErr.empty())
m_xml.scopedElement("StdErr").writeText(trim(testCaseStats.stdErr), XmlFormatting::Newline);
m_xml.endElement();
}
void XmlReporter::testGroupEnded(TestGroupStats const& testGroupStats)
{
StreamingReporterBase::testGroupEnded(testGroupStats);
// TODO: Check testGroupStats.aborting and act accordingly.
m_xml.scopedElement("OverallResults")
.writeAttribute("successes", testGroupStats.totals.assertions.passed)
.writeAttribute("failures", testGroupStats.totals.assertions.failed)
.writeAttribute("expectedFailures", testGroupStats.totals.assertions.failedButOk);
m_xml.scopedElement("OverallResultsCases")
.writeAttribute("successes", testGroupStats.totals.testCases.passed)
.writeAttribute("failures", testGroupStats.totals.testCases.failed)
.writeAttribute("expectedFailures", testGroupStats.totals.testCases.failedButOk);
m_xml.endElement();
}
void XmlReporter::testRunEnded(TestRunStats const& testRunStats)
{
StreamingReporterBase::testRunEnded(testRunStats);
m_xml.scopedElement("OverallResults")
.writeAttribute("successes", testRunStats.totals.assertions.passed)
.writeAttribute("failures", testRunStats.totals.assertions.failed)
.writeAttribute("expectedFailures", testRunStats.totals.assertions.failedButOk);
m_xml.scopedElement("OverallResultsCases")
.writeAttribute("successes", testRunStats.totals.testCases.passed)
.writeAttribute("failures", testRunStats.totals.testCases.failed)
.writeAttribute("expectedFailures", testRunStats.totals.testCases.failedButOk);
m_xml.endElement();
}
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
void XmlReporter::benchmarkPreparing(std::string const& name)
{
m_xml.startElement("BenchmarkResults").writeAttribute("name", name);
}
void XmlReporter::benchmarkStarting(BenchmarkInfo const& info)
{
m_xml.writeAttribute("samples", info.samples)
.writeAttribute("resamples", info.resamples)
.writeAttribute("iterations", info.iterations)
.writeAttribute("clockResolution", info.clockResolution)
.writeAttribute("estimatedDuration", info.estimatedDuration)
.writeComment("All values in nano seconds");
}
void XmlReporter::benchmarkEnded(BenchmarkStats<> const& benchmarkStats)
{
m_xml.startElement("mean")
.writeAttribute("value", benchmarkStats.mean.point.count())
.writeAttribute("lowerBound", benchmarkStats.mean.lower_bound.count())
.writeAttribute("upperBound", benchmarkStats.mean.upper_bound.count())
.writeAttribute("ci", benchmarkStats.mean.confidence_interval);
m_xml.endElement();
m_xml.startElement("standardDeviation")
.writeAttribute("value", benchmarkStats.standardDeviation.point.count())
.writeAttribute("lowerBound", benchmarkStats.standardDeviation.lower_bound.count())
.writeAttribute("upperBound", benchmarkStats.standardDeviation.upper_bound.count())
.writeAttribute("ci", benchmarkStats.standardDeviation.confidence_interval);
m_xml.endElement();
m_xml.startElement("outliers")
.writeAttribute("variance", benchmarkStats.outlierVariance)
.writeAttribute("lowMild", benchmarkStats.outliers.low_mild)
.writeAttribute("lowSevere", benchmarkStats.outliers.low_severe)
.writeAttribute("highMild", benchmarkStats.outliers.high_mild)
.writeAttribute("highSevere", benchmarkStats.outliers.high_severe);
m_xml.endElement();
m_xml.endElement();
}
void XmlReporter::benchmarkFailed(std::string const& error)
{
m_xml.scopedElement("failed").writeAttribute("message", error);
m_xml.endElement();
}
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
CATCH_REGISTER_REPORTER("xml", XmlReporter)
} // end namespace Catch
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
// end catch_reporter_xml.cpp
namespace Catch {
LeakDetector leakDetector;
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
// end catch_impl.hpp
#endif
#ifdef CATCH_CONFIG_MAIN
// start catch_default_main.hpp
#ifndef __OBJC__
#if defined(CATCH_CONFIG_WCHAR) && defined(CATCH_PLATFORM_WINDOWS) && defined(_UNICODE) && !defined(DO_NOT_USE_WMAIN)
// Standard C/C++ Win32 Unicode wmain entry point
extern "C" int wmain(int argc, wchar_t* argv[], wchar_t*[])
{
#else
// Standard C/C++ main entry point
int main(int argc, char* argv[])
{
#endif
return Catch::Session().run(argc, argv);
}
#else // __OBJC__
// Objective-C entry point
int main(int argc, char* const argv[])
{
#if !CATCH_ARC_ENABLED
NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
#endif
Catch::registerTestMethods();
int result = Catch::Session().run(argc, (char**)argv);
#if !CATCH_ARC_ENABLED
[pool drain];
#endif
return result;
}
#endif // __OBJC__
// end catch_default_main.hpp
#endif
#if !defined(CATCH_CONFIG_IMPL_ONLY)
#ifdef CLARA_CONFIG_MAIN_NOT_DEFINED
#undef CLARA_CONFIG_MAIN
#endif
#if !defined(CATCH_CONFIG_DISABLE)
//////
// If this config identifier is defined then all CATCH macros are prefixed with CATCH_
#ifdef CATCH_CONFIG_PREFIX_ALL
#define CATCH_REQUIRE(...) INTERNAL_CATCH_TEST("CATCH_REQUIRE", Catch::ResultDisposition::Normal, __VA_ARGS__)
#define CATCH_REQUIRE_FALSE(...) \
INTERNAL_CATCH_TEST("CATCH_REQUIRE_FALSE", \
Catch::ResultDisposition::Normal | Catch::ResultDisposition::FalseTest, \
__VA_ARGS__)
#define CATCH_REQUIRE_THROWS(...) \
INTERNAL_CATCH_THROWS("CATCH_REQUIRE_THROWS", Catch::ResultDisposition::Normal, __VA_ARGS__)
#define CATCH_REQUIRE_THROWS_AS(expr, exceptionType) \
INTERNAL_CATCH_THROWS_AS("CATCH_REQUIRE_THROWS_AS", exceptionType, Catch::ResultDisposition::Normal, expr)
#define CATCH_REQUIRE_THROWS_WITH(expr, matcher) \
INTERNAL_CATCH_THROWS_STR_MATCHES("CATCH_REQUIRE_THROWS_WITH", Catch::ResultDisposition::Normal, matcher, expr)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CATCH_REQUIRE_THROWS_MATCHES(expr, exceptionType, matcher) \
INTERNAL_CATCH_THROWS_MATCHES("CATCH_REQUIRE_THROWS_MATCHES", \
exceptionType, \
Catch::ResultDisposition::Normal, \
matcher, \
expr)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CATCH_REQUIRE_NOTHROW(...) \
INTERNAL_CATCH_NO_THROW("CATCH_REQUIRE_NOTHROW", Catch::ResultDisposition::Normal, __VA_ARGS__)
#define CATCH_CHECK(...) INTERNAL_CATCH_TEST("CATCH_CHECK", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CATCH_CHECK_FALSE(...) \
INTERNAL_CATCH_TEST("CATCH_CHECK_FALSE", \
Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::FalseTest, \
__VA_ARGS__)
#define CATCH_CHECKED_IF(...) \
INTERNAL_CATCH_IF("CATCH_CHECKED_IF", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CATCH_CHECKED_ELSE(...) \
INTERNAL_CATCH_ELSE("CATCH_CHECKED_ELSE", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CATCH_CHECK_NOFAIL(...) \
INTERNAL_CATCH_TEST("CATCH_CHECK_NOFAIL", \
Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::SuppressFail, \
__VA_ARGS__)
#define CATCH_CHECK_THROWS(...) \
INTERNAL_CATCH_THROWS("CATCH_CHECK_THROWS", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CATCH_CHECK_THROWS_AS(expr, exceptionType) \
INTERNAL_CATCH_THROWS_AS("CATCH_CHECK_THROWS_AS", exceptionType, Catch::ResultDisposition::ContinueOnFailure, expr)
#define CATCH_CHECK_THROWS_WITH(expr, matcher) \
INTERNAL_CATCH_THROWS_STR_MATCHES("CATCH_CHECK_THROWS_WITH", \
Catch::ResultDisposition::ContinueOnFailure, \
matcher, \
expr)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CATCH_CHECK_THROWS_MATCHES(expr, exceptionType, matcher) \
INTERNAL_CATCH_THROWS_MATCHES("CATCH_CHECK_THROWS_MATCHES", \
exceptionType, \
Catch::ResultDisposition::ContinueOnFailure, \
matcher, \
expr)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CATCH_CHECK_NOTHROW(...) \
INTERNAL_CATCH_NO_THROW("CATCH_CHECK_NOTHROW", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CATCH_CHECK_THAT(arg, matcher) \
INTERNAL_CHECK_THAT("CATCH_CHECK_THAT", matcher, Catch::ResultDisposition::ContinueOnFailure, arg)
#define CATCH_REQUIRE_THAT(arg, matcher) \
INTERNAL_CHECK_THAT("CATCH_REQUIRE_THAT", matcher, Catch::ResultDisposition::Normal, arg)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CATCH_INFO(msg) INTERNAL_CATCH_INFO("CATCH_INFO", msg)
#define CATCH_UNSCOPED_INFO(msg) INTERNAL_CATCH_UNSCOPED_INFO("CATCH_UNSCOPED_INFO", msg)
#define CATCH_WARN(msg) \
INTERNAL_CATCH_MSG("CATCH_WARN", Catch::ResultWas::Warning, Catch::ResultDisposition::ContinueOnFailure, msg)
#define CATCH_CAPTURE(...) INTERNAL_CATCH_CAPTURE(INTERNAL_CATCH_UNIQUE_NAME(capturer), "CATCH_CAPTURE", __VA_ARGS__)
#define CATCH_TEST_CASE(...) INTERNAL_CATCH_TESTCASE(__VA_ARGS__)
#define CATCH_TEST_CASE_METHOD(className, ...) INTERNAL_CATCH_TEST_CASE_METHOD(className, __VA_ARGS__)
#define CATCH_METHOD_AS_TEST_CASE(method, ...) INTERNAL_CATCH_METHOD_AS_TEST_CASE(method, __VA_ARGS__)
#define CATCH_REGISTER_TEST_CASE(Function, ...) INTERNAL_CATCH_REGISTER_TESTCASE(Function, __VA_ARGS__)
#define CATCH_SECTION(...) INTERNAL_CATCH_SECTION(__VA_ARGS__)
#define CATCH_DYNAMIC_SECTION(...) INTERNAL_CATCH_DYNAMIC_SECTION(__VA_ARGS__)
#define CATCH_FAIL(...) \
INTERNAL_CATCH_MSG("CATCH_FAIL", Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::Normal, __VA_ARGS__)
#define CATCH_FAIL_CHECK(...) \
INTERNAL_CATCH_MSG("CATCH_FAIL_CHECK", \
Catch::ResultWas::ExplicitFailure, \
Catch::ResultDisposition::ContinueOnFailure, \
__VA_ARGS__)
#define CATCH_SUCCEED(...) \
INTERNAL_CATCH_MSG("CATCH_SUCCEED", Catch::ResultWas::Ok, Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CATCH_ANON_TEST_CASE() INTERNAL_CATCH_TESTCASE()
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define CATCH_TEMPLATE_TEST_CASE(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__)
#define CATCH_TEMPLATE_TEST_CASE_SIG(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG(__VA_ARGS__)
#define CATCH_TEMPLATE_TEST_CASE_METHOD(className, ...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#define CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, __VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE(...) INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE(__VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(...) INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(__VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, __VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, __VA_ARGS__)
#else
#define CATCH_TEMPLATE_TEST_CASE(...) INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__))
#define CATCH_TEMPLATE_TEST_CASE_SIG(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG(__VA_ARGS__))
#define CATCH_TEMPLATE_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__))
#define CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, __VA_ARGS__))
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE(__VA_ARGS__))
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(__VA_ARGS__))
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, __VA_ARGS__))
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, __VA_ARGS__))
#endif
#if !defined(CATCH_CONFIG_RUNTIME_STATIC_REQUIRE)
#define CATCH_STATIC_REQUIRE(...) \
static_assert(__VA_ARGS__, #__VA_ARGS__); \
CATCH_SUCCEED(#__VA_ARGS__)
#define CATCH_STATIC_REQUIRE_FALSE(...) \
static_assert(!(__VA_ARGS__), "!(" #__VA_ARGS__ ")"); \
CATCH_SUCCEED(#__VA_ARGS__)
#else
#define CATCH_STATIC_REQUIRE(...) CATCH_REQUIRE(__VA_ARGS__)
#define CATCH_STATIC_REQUIRE_FALSE(...) CATCH_REQUIRE_FALSE(__VA_ARGS__)
#endif
// "BDD-style" convenience wrappers
#define CATCH_SCENARIO(...) CATCH_TEST_CASE("Scenario: " __VA_ARGS__)
#define CATCH_SCENARIO_METHOD(className, ...) INTERNAL_CATCH_TEST_CASE_METHOD(className, "Scenario: " __VA_ARGS__)
#define CATCH_GIVEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" Given: " << desc)
#define CATCH_AND_GIVEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION("And given: " << desc)
#define CATCH_WHEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" When: " << desc)
#define CATCH_AND_WHEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" And when: " << desc)
#define CATCH_THEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" Then: " << desc)
#define CATCH_AND_THEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" And: " << desc)
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
#define CATCH_BENCHMARK(...) \
INTERNAL_CATCH_BENCHMARK(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____B_E_N_C_H____), \
INTERNAL_CATCH_GET_1_ARG(__VA_ARGS__, , ), \
INTERNAL_CATCH_GET_2_ARG(__VA_ARGS__, , ))
#define CATCH_BENCHMARK_ADVANCED(name) \
INTERNAL_CATCH_BENCHMARK_ADVANCED(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____B_E_N_C_H____), name)
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
// If CATCH_CONFIG_PREFIX_ALL is not defined then the CATCH_ prefix is not required
#else
#define REQUIRE(...) INTERNAL_CATCH_TEST("REQUIRE", Catch::ResultDisposition::Normal, __VA_ARGS__)
#define REQUIRE_FALSE(...) \
INTERNAL_CATCH_TEST("REQUIRE_FALSE", \
Catch::ResultDisposition::Normal | Catch::ResultDisposition::FalseTest, \
__VA_ARGS__)
#define REQUIRE_THROWS(...) INTERNAL_CATCH_THROWS("REQUIRE_THROWS", Catch::ResultDisposition::Normal, __VA_ARGS__)
#define REQUIRE_THROWS_AS(expr, exceptionType) \
INTERNAL_CATCH_THROWS_AS("REQUIRE_THROWS_AS", exceptionType, Catch::ResultDisposition::Normal, expr)
#define REQUIRE_THROWS_WITH(expr, matcher) \
INTERNAL_CATCH_THROWS_STR_MATCHES("REQUIRE_THROWS_WITH", Catch::ResultDisposition::Normal, matcher, expr)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define REQUIRE_THROWS_MATCHES(expr, exceptionType, matcher) \
INTERNAL_CATCH_THROWS_MATCHES("REQUIRE_THROWS_MATCHES", \
exceptionType, \
Catch::ResultDisposition::Normal, \
matcher, \
expr)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define REQUIRE_NOTHROW(...) INTERNAL_CATCH_NO_THROW("REQUIRE_NOTHROW", Catch::ResultDisposition::Normal, __VA_ARGS__)
#define CHECK(...) INTERNAL_CATCH_TEST("CHECK", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CHECK_FALSE(...) \
INTERNAL_CATCH_TEST("CHECK_FALSE", \
Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::FalseTest, \
__VA_ARGS__)
#define CHECKED_IF(...) INTERNAL_CATCH_IF("CHECKED_IF", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CHECKED_ELSE(...) INTERNAL_CATCH_ELSE("CHECKED_ELSE", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CHECK_NOFAIL(...) \
INTERNAL_CATCH_TEST("CHECK_NOFAIL", \
Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::SuppressFail, \
__VA_ARGS__)
#define CHECK_THROWS(...) \
INTERNAL_CATCH_THROWS("CHECK_THROWS", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define CHECK_THROWS_AS(expr, exceptionType) \
INTERNAL_CATCH_THROWS_AS("CHECK_THROWS_AS", exceptionType, Catch::ResultDisposition::ContinueOnFailure, expr)
#define CHECK_THROWS_WITH(expr, matcher) \
INTERNAL_CATCH_THROWS_STR_MATCHES("CHECK_THROWS_WITH", Catch::ResultDisposition::ContinueOnFailure, matcher, expr)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CHECK_THROWS_MATCHES(expr, exceptionType, matcher) \
INTERNAL_CATCH_THROWS_MATCHES("CHECK_THROWS_MATCHES", \
exceptionType, \
Catch::ResultDisposition::ContinueOnFailure, \
matcher, \
expr)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CHECK_NOTHROW(...) \
INTERNAL_CATCH_NO_THROW("CHECK_NOTHROW", Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CHECK_THAT(arg, matcher) \
INTERNAL_CHECK_THAT("CHECK_THAT", matcher, Catch::ResultDisposition::ContinueOnFailure, arg)
#define REQUIRE_THAT(arg, matcher) INTERNAL_CHECK_THAT("REQUIRE_THAT", matcher, Catch::ResultDisposition::Normal, arg)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define INFO(msg) INTERNAL_CATCH_INFO("INFO", msg)
#define UNSCOPED_INFO(msg) INTERNAL_CATCH_UNSCOPED_INFO("UNSCOPED_INFO", msg)
#define WARN(msg) \
INTERNAL_CATCH_MSG("WARN", Catch::ResultWas::Warning, Catch::ResultDisposition::ContinueOnFailure, msg)
#define CAPTURE(...) INTERNAL_CATCH_CAPTURE(INTERNAL_CATCH_UNIQUE_NAME(capturer), "CAPTURE", __VA_ARGS__)
#define TEST_CASE(...) INTERNAL_CATCH_TESTCASE(__VA_ARGS__)
#define TEST_CASE_METHOD(className, ...) INTERNAL_CATCH_TEST_CASE_METHOD(className, __VA_ARGS__)
#define METHOD_AS_TEST_CASE(method, ...) INTERNAL_CATCH_METHOD_AS_TEST_CASE(method, __VA_ARGS__)
#define REGISTER_TEST_CASE(Function, ...) INTERNAL_CATCH_REGISTER_TESTCASE(Function, __VA_ARGS__)
#define SECTION(...) INTERNAL_CATCH_SECTION(__VA_ARGS__)
#define DYNAMIC_SECTION(...) INTERNAL_CATCH_DYNAMIC_SECTION(__VA_ARGS__)
#define FAIL(...) \
INTERNAL_CATCH_MSG("FAIL", Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::Normal, __VA_ARGS__)
#define FAIL_CHECK(...) \
INTERNAL_CATCH_MSG("FAIL_CHECK", \
Catch::ResultWas::ExplicitFailure, \
Catch::ResultDisposition::ContinueOnFailure, \
__VA_ARGS__)
#define SUCCEED(...) \
INTERNAL_CATCH_MSG("SUCCEED", Catch::ResultWas::Ok, Catch::ResultDisposition::ContinueOnFailure, __VA_ARGS__)
#define ANON_TEST_CASE() INTERNAL_CATCH_TESTCASE()
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define TEMPLATE_TEST_CASE(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__)
#define TEMPLATE_TEST_CASE_SIG(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG(__VA_ARGS__)
#define TEMPLATE_TEST_CASE_METHOD(className, ...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#define TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, __VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE(...) INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE(__VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_SIG(...) INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(__VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, __VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, __VA_ARGS__)
#define TEMPLATE_LIST_TEST_CASE(...) INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE(__VA_ARGS__)
#define TEMPLATE_LIST_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE_METHOD(className, __VA_ARGS__)
#else
#define TEMPLATE_TEST_CASE(...) INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__))
#define TEMPLATE_TEST_CASE_SIG(...) INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG(__VA_ARGS__))
#define TEMPLATE_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__))
#define TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, __VA_ARGS__))
#define TEMPLATE_PRODUCT_TEST_CASE(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE(__VA_ARGS__))
#define TEMPLATE_PRODUCT_TEST_CASE_SIG(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(__VA_ARGS__))
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, __VA_ARGS__))
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, __VA_ARGS__))
#define TEMPLATE_LIST_TEST_CASE(...) INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE(__VA_ARGS__))
#define TEMPLATE_LIST_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_LIST_TEST_CASE_METHOD(className, __VA_ARGS__))
#endif
#if !defined(CATCH_CONFIG_RUNTIME_STATIC_REQUIRE)
#define STATIC_REQUIRE(...) \
static_assert(__VA_ARGS__, #__VA_ARGS__); \
SUCCEED(#__VA_ARGS__)
#define STATIC_REQUIRE_FALSE(...) \
static_assert(!(__VA_ARGS__), "!(" #__VA_ARGS__ ")"); \
SUCCEED("!(" #__VA_ARGS__ ")")
#else
#define STATIC_REQUIRE(...) REQUIRE(__VA_ARGS__)
#define STATIC_REQUIRE_FALSE(...) REQUIRE_FALSE(__VA_ARGS__)
#endif
#endif
#define CATCH_TRANSLATE_EXCEPTION(signature) INTERNAL_CATCH_TRANSLATE_EXCEPTION(signature)
// "BDD-style" convenience wrappers
#define SCENARIO(...) TEST_CASE("Scenario: " __VA_ARGS__)
#define SCENARIO_METHOD(className, ...) INTERNAL_CATCH_TEST_CASE_METHOD(className, "Scenario: " __VA_ARGS__)
#define GIVEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" Given: " << desc)
#define AND_GIVEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION("And given: " << desc)
#define WHEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" When: " << desc)
#define AND_WHEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" And when: " << desc)
#define THEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" Then: " << desc)
#define AND_THEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" And: " << desc)
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
#define BENCHMARK(...) \
INTERNAL_CATCH_BENCHMARK(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____B_E_N_C_H____), \
INTERNAL_CATCH_GET_1_ARG(__VA_ARGS__, , ), \
INTERNAL_CATCH_GET_2_ARG(__VA_ARGS__, , ))
#define BENCHMARK_ADVANCED(name) \
INTERNAL_CATCH_BENCHMARK_ADVANCED(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____B_E_N_C_H____), name)
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
using Catch::Detail::Approx;
#else // CATCH_CONFIG_DISABLE
//////
// If this config identifier is defined then all CATCH macros are prefixed with CATCH_
#ifdef CATCH_CONFIG_PREFIX_ALL
#define CATCH_REQUIRE(...) (void)(0)
#define CATCH_REQUIRE_FALSE(...) (void)(0)
#define CATCH_REQUIRE_THROWS(...) (void)(0)
#define CATCH_REQUIRE_THROWS_AS(expr, exceptionType) (void)(0)
#define CATCH_REQUIRE_THROWS_WITH(expr, matcher) (void)(0)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CATCH_REQUIRE_THROWS_MATCHES(expr, exceptionType, matcher) (void)(0)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CATCH_REQUIRE_NOTHROW(...) (void)(0)
#define CATCH_CHECK(...) (void)(0)
#define CATCH_CHECK_FALSE(...) (void)(0)
#define CATCH_CHECKED_IF(...) if (__VA_ARGS__)
#define CATCH_CHECKED_ELSE(...) if (!(__VA_ARGS__))
#define CATCH_CHECK_NOFAIL(...) (void)(0)
#define CATCH_CHECK_THROWS(...) (void)(0)
#define CATCH_CHECK_THROWS_AS(expr, exceptionType) (void)(0)
#define CATCH_CHECK_THROWS_WITH(expr, matcher) (void)(0)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CATCH_CHECK_THROWS_MATCHES(expr, exceptionType, matcher) (void)(0)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CATCH_CHECK_NOTHROW(...) (void)(0)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CATCH_CHECK_THAT(arg, matcher) (void)(0)
#define CATCH_REQUIRE_THAT(arg, matcher) (void)(0)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CATCH_INFO(msg) (void)(0)
#define CATCH_UNSCOPED_INFO(msg) (void)(0)
#define CATCH_WARN(msg) (void)(0)
#define CATCH_CAPTURE(msg) (void)(0)
#define CATCH_TEST_CASE(...) \
INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#define CATCH_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#define CATCH_METHOD_AS_TEST_CASE(method, ...)
#define CATCH_REGISTER_TEST_CASE(Function, ...) (void)(0)
#define CATCH_SECTION(...)
#define CATCH_DYNAMIC_SECTION(...)
#define CATCH_FAIL(...) (void)(0)
#define CATCH_FAIL_CHECK(...) (void)(0)
#define CATCH_SUCCEED(...) (void)(0)
#define CATCH_ANON_TEST_CASE() \
INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define CATCH_TEMPLATE_TEST_CASE(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION(__VA_ARGS__)
#define CATCH_TEMPLATE_TEST_CASE_SIG(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG_NO_REGISTRATION(__VA_ARGS__)
#define CATCH_TEMPLATE_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION(className, __VA_ARGS__)
#define CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG_NO_REGISTRATION(className, __VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE(...) CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(...) CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) \
CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#else
#define CATCH_TEMPLATE_TEST_CASE(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION(__VA_ARGS__))
#define CATCH_TEMPLATE_TEST_CASE_SIG(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG_NO_REGISTRATION(__VA_ARGS__))
#define CATCH_TEMPLATE_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION(className, __VA_ARGS__))
#define CATCH_TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG_NO_REGISTRATION(className, __VA_ARGS__))
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE(...) CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_SIG(...) CATCH_TEMPLATE_TEST_CASE(__VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#define CATCH_TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) \
CATCH_TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#endif
// "BDD-style" convenience wrappers
#define CATCH_SCENARIO(...) \
INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#define CATCH_SCENARIO_METHOD(className, ...) \
INTERNAL_CATCH_TESTCASE_METHOD_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____), className)
#define CATCH_GIVEN(desc)
#define CATCH_AND_GIVEN(desc)
#define CATCH_WHEN(desc)
#define CATCH_AND_WHEN(desc)
#define CATCH_THEN(desc)
#define CATCH_AND_THEN(desc)
#define CATCH_STATIC_REQUIRE(...) (void)(0)
#define CATCH_STATIC_REQUIRE_FALSE(...) (void)(0)
// If CATCH_CONFIG_PREFIX_ALL is not defined then the CATCH_ prefix is not required
#else
#define REQUIRE(...) (void)(0)
#define REQUIRE_FALSE(...) (void)(0)
#define REQUIRE_THROWS(...) (void)(0)
#define REQUIRE_THROWS_AS(expr, exceptionType) (void)(0)
#define REQUIRE_THROWS_WITH(expr, matcher) (void)(0)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define REQUIRE_THROWS_MATCHES(expr, exceptionType, matcher) (void)(0)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define REQUIRE_NOTHROW(...) (void)(0)
#define CHECK(...) (void)(0)
#define CHECK_FALSE(...) (void)(0)
#define CHECKED_IF(...) if (__VA_ARGS__)
#define CHECKED_ELSE(...) if (!(__VA_ARGS__))
#define CHECK_NOFAIL(...) (void)(0)
#define CHECK_THROWS(...) (void)(0)
#define CHECK_THROWS_AS(expr, exceptionType) (void)(0)
#define CHECK_THROWS_WITH(expr, matcher) (void)(0)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CHECK_THROWS_MATCHES(expr, exceptionType, matcher) (void)(0)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define CHECK_NOTHROW(...) (void)(0)
#if !defined(CATCH_CONFIG_DISABLE_MATCHERS)
#define CHECK_THAT(arg, matcher) (void)(0)
#define REQUIRE_THAT(arg, matcher) (void)(0)
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#define INFO(msg) (void)(0)
#define UNSCOPED_INFO(msg) (void)(0)
#define WARN(msg) (void)(0)
#define CAPTURE(msg) (void)(0)
#define TEST_CASE(...) INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#define TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#define METHOD_AS_TEST_CASE(method, ...)
#define REGISTER_TEST_CASE(Function, ...) (void)(0)
#define SECTION(...)
#define DYNAMIC_SECTION(...)
#define FAIL(...) (void)(0)
#define FAIL_CHECK(...) (void)(0)
#define SUCCEED(...) (void)(0)
#define ANON_TEST_CASE() \
INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#ifndef CATCH_CONFIG_TRADITIONAL_MSVC_PREPROCESSOR
#define TEMPLATE_TEST_CASE(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION(__VA_ARGS__)
#define TEMPLATE_TEST_CASE_SIG(...) INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG_NO_REGISTRATION(__VA_ARGS__)
#define TEMPLATE_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION(className, __VA_ARGS__)
#define TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG_NO_REGISTRATION(className, __VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE(...) TEMPLATE_TEST_CASE(__VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_SIG(...) TEMPLATE_TEST_CASE(__VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#else
#define TEMPLATE_TEST_CASE(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_NO_REGISTRATION(__VA_ARGS__))
#define TEMPLATE_TEST_CASE_SIG(...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_SIG_NO_REGISTRATION(__VA_ARGS__))
#define TEMPLATE_TEST_CASE_METHOD(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_NO_REGISTRATION(className, __VA_ARGS__))
#define TEMPLATE_TEST_CASE_METHOD_SIG(className, ...) \
INTERNAL_CATCH_EXPAND_VARGS(INTERNAL_CATCH_TEMPLATE_TEST_CASE_METHOD_SIG_NO_REGISTRATION(className, __VA_ARGS__))
#define TEMPLATE_PRODUCT_TEST_CASE(...) TEMPLATE_TEST_CASE(__VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_SIG(...) TEMPLATE_TEST_CASE(__VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD(className, ...) TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#define TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(className, ...) TEMPLATE_TEST_CASE_METHOD(className, __VA_ARGS__)
#endif
#define STATIC_REQUIRE(...) (void)(0)
#define STATIC_REQUIRE_FALSE(...) (void)(0)
#endif
#define CATCH_TRANSLATE_EXCEPTION(signature) \
INTERNAL_CATCH_TRANSLATE_EXCEPTION_NO_REG(INTERNAL_CATCH_UNIQUE_NAME(catch_internal_ExceptionTranslator), signature)
// "BDD-style" convenience wrappers
#define SCENARIO(...) INTERNAL_CATCH_TESTCASE_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____))
#define SCENARIO_METHOD(className, ...) \
INTERNAL_CATCH_TESTCASE_METHOD_NO_REGISTRATION(INTERNAL_CATCH_UNIQUE_NAME(____C_A_T_C_H____T_E_S_T____), className)
#define GIVEN(desc)
#define AND_GIVEN(desc)
#define WHEN(desc)
#define AND_WHEN(desc)
#define THEN(desc)
#define AND_THEN(desc)
using Catch::Detail::Approx;
#endif
#endif // ! CATCH_CONFIG_IMPL_ONLY
// start catch_reenable_warnings.h
#ifdef __clang__
#ifdef __ICC // icpc defines the __clang__ macro
#pragma warning(pop)
#else
#pragma clang diagnostic pop
#endif
#elif defined __GNUC__
#pragma GCC diagnostic pop
#endif
// end catch_reenable_warnings.h
// end catch.hpp
#endif // TWOBLUECUBES_SINGLE_INCLUDE_CATCH_HPP_INCLUDED