mapnik/src/tiff_reader.hpp
2024-05-18 10:22:29 +02:00

784 lines
26 KiB
C++

#pragma once
// mapnik
#include <mapnik/debug.hpp>
#include <mapnik/image_reader.hpp>
#include <mapnik/util/char_array_buffer.hpp>
extern "C" {
#include <tiffio.h>
}
#if defined(MAPNIK_MEMORY_MAPPED_FILE)
#include <mapnik/warning.hpp>
MAPNIK_DISABLE_WARNING_PUSH
#include <mapnik/warning_ignore.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/streams/bufferstream.hpp>
MAPNIK_DISABLE_WARNING_POP
#include <mapnik/mapped_memory_cache.hpp>
#endif
// stl
#include <memory>
#include <fstream>
#include <algorithm>
namespace mapnik {
namespace detail {
MAPNIK_DECL toff_t tiff_seek_proc(thandle_t handle, toff_t off, int whence);
MAPNIK_DECL int tiff_close_proc(thandle_t);
MAPNIK_DECL toff_t tiff_size_proc(thandle_t handle);
MAPNIK_DECL tsize_t tiff_read_proc(thandle_t handle, tdata_t buf, tsize_t size);
MAPNIK_DECL tsize_t tiff_write_proc(thandle_t, tdata_t, tsize_t);
MAPNIK_DECL void tiff_unmap_proc(thandle_t, tdata_t, toff_t);
MAPNIK_DECL int tiff_map_proc(thandle_t, tdata_t*, toff_t*);
template<typename T>
struct tiff_io_traits
{
using input_stream_type = std::istream;
};
#if defined(MAPNIK_MEMORY_MAPPED_FILE)
template<>
struct tiff_io_traits<boost::interprocess::ibufferstream>
{
using input_stream_type = boost::interprocess::ibufferstream;
};
#endif
} // namespace detail
template<typename T>
class tiff_reader : public image_reader
{
using tiff_ptr = std::shared_ptr<TIFF>;
using source_type = T;
using input_stream = typename detail::tiff_io_traits<source_type>::input_stream_type;
#if defined(MAPNIK_MEMORY_MAPPED_FILE)
mapnik::mapped_region_ptr mapped_region_;
#endif
struct tiff_closer
{
void operator()(TIFF* tif)
{
if (tif != 0)
TIFFClose(tif);
}
};
private:
source_type source_;
input_stream stream_;
tiff_ptr tif_;
int read_method_;
int rows_per_strip_;
int tile_width_;
int tile_height_;
std::size_t width_;
std::size_t height_;
std::optional<box2d<double>> bbox_;
unsigned bps_;
unsigned sample_format_;
unsigned photometric_;
unsigned bands_;
unsigned planar_config_;
unsigned compression_;
bool has_alpha_;
bool is_tiled_;
public:
enum TiffType { generic = 1, stripped, tiled };
explicit tiff_reader(std::string const& filename);
tiff_reader(char const* data, std::size_t size);
virtual ~tiff_reader();
unsigned width() const final;
unsigned height() const final;
std::optional<box2d<double>> bounding_box() const final;
inline bool has_alpha() const final
{
return has_alpha_;
}
void read(unsigned x, unsigned y, image_rgba8& image) final;
image_any read(unsigned x, unsigned y, unsigned width, unsigned height) final;
// methods specific to tiff reader
unsigned bits_per_sample() const
{
return bps_;
}
unsigned sample_format() const
{
return sample_format_;
}
unsigned photometric() const
{
return photometric_;
}
bool is_tiled() const
{
return is_tiled_;
}
unsigned tile_width() const
{
return tile_width_;
}
unsigned tile_height() const
{
return tile_height_;
}
unsigned rows_per_strip() const
{
return rows_per_strip_;
}
unsigned planar_config() const
{
return planar_config_;
}
unsigned compression() const
{
return compression_;
}
private:
tiff_reader(const tiff_reader&);
tiff_reader& operator=(const tiff_reader&);
void init();
template<typename ImageData>
void read_generic(std::size_t x, std::size_t y, ImageData& image);
template<typename ImageData>
void read_stripped(std::size_t x, std::size_t y, ImageData& image);
template<typename ImageData>
void read_tiled(std::size_t x, std::size_t y, ImageData& image);
template<typename ImageData>
image_any read_any_gray(std::size_t x, std::size_t y, std::size_t width, std::size_t height);
TIFF* open(std::istream& input);
};
template<typename T>
tiff_reader<T>::tiff_reader(std::string const& filename)
:
#if defined(MAPNIK_MEMORY_MAPPED_FILE)
stream_()
,
#else
source_()
, stream_(&source_)
,
#endif
tif_(nullptr)
, read_method_(generic)
, rows_per_strip_(0)
, tile_width_(0)
, tile_height_(0)
, width_(0)
, height_(0)
, bps_(0)
, sample_format_(SAMPLEFORMAT_UINT)
, photometric_(0)
, bands_(1)
, planar_config_(PLANARCONFIG_CONTIG)
, compression_(COMPRESSION_NONE)
, has_alpha_(false)
, is_tiled_(false)
{
#if defined(MAPNIK_MEMORY_MAPPED_FILE)
const auto memory = mapnik::mapped_memory_cache::instance().find(filename, true);
if (memory.has_value())
{
mapped_region_ = *memory;
stream_.buffer(static_cast<char*>(mapped_region_->get_address()), mapped_region_->get_size());
}
else
{
throw image_reader_exception("could not create file mapping for " + filename);
}
#else
source_.open(filename, std::ios_base::in | std::ios_base::binary);
#endif
if (!stream_)
throw image_reader_exception("TIFF reader: cannot open file " + filename);
init();
}
template<typename T>
tiff_reader<T>::tiff_reader(char const* data, std::size_t size)
: source_(data, size)
, stream_(&source_)
, tif_(nullptr)
, read_method_(generic)
, rows_per_strip_(0)
, tile_width_(0)
, tile_height_(0)
, width_(0)
, height_(0)
, bps_(0)
, sample_format_(SAMPLEFORMAT_UINT)
, photometric_(0)
, bands_(1)
, planar_config_(PLANARCONFIG_CONTIG)
, compression_(COMPRESSION_NONE)
, has_alpha_(false)
, is_tiled_(false)
{
if (!stream_)
throw image_reader_exception("TIFF reader: cannot open image stream ");
init();
}
template<typename T>
void tiff_reader<T>::init()
{
// avoid calling TIFFs global structures
TIFFSetWarningHandler(0);
TIFFSetErrorHandler(0);
TIFF* tif = open(stream_);
if (!tif)
throw image_reader_exception("Can't open tiff file");
TIFFGetField(tif, TIFFTAG_BITSPERSAMPLE, &bps_);
TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &sample_format_);
TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric_);
TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &bands_);
MAPNIK_LOG_DEBUG(tiff_reader) << "bits per sample: " << bps_;
MAPNIK_LOG_DEBUG(tiff_reader) << "sample format: " << sample_format_;
MAPNIK_LOG_DEBUG(tiff_reader) << "photometric: " << photometric_;
MAPNIK_LOG_DEBUG(tiff_reader) << "bands: " << bands_;
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &width_);
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &height_);
TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &planar_config_);
TIFFGetField(tif, TIFFTAG_COMPRESSION, &compression_);
std::uint16_t orientation;
if (TIFFGetField(tif, TIFFTAG_ORIENTATION, &orientation) == 0)
{
orientation = 1;
}
MAPNIK_LOG_DEBUG(tiff_reader) << "orientation: " << orientation;
MAPNIK_LOG_DEBUG(tiff_reader) << "planar-config: " << planar_config_;
is_tiled_ = TIFFIsTiled(tif);
if (is_tiled_)
{
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tile_width_);
TIFFGetField(tif, TIFFTAG_TILELENGTH, &tile_height_);
MAPNIK_LOG_DEBUG(tiff_reader) << "tiff is tiled";
read_method_ = tiled;
}
else if (TIFFGetField(tif, TIFFTAG_ROWSPERSTRIP, &rows_per_strip_) != 0)
{
MAPNIK_LOG_DEBUG(tiff_reader) << "tiff is stripped";
read_method_ = stripped;
}
// TIFFTAG_EXTRASAMPLES
std::uint16_t extrasamples = 0;
std::uint16_t* sampleinfo = nullptr;
if (TIFFGetField(tif, TIFFTAG_EXTRASAMPLES, &extrasamples, &sampleinfo))
{
has_alpha_ = true;
if (extrasamples > 0 && sampleinfo[0] == EXTRASAMPLE_UNSPECIFIED)
{
throw image_reader_exception("Unspecified provided for extra samples to tiff reader.");
}
}
// Try extracting bounding box from geoTIFF tags
{
std::uint16_t count = 0;
double* pixelscale;
double* tilepoint;
if (TIFFGetField(tif, 33550, &count, &pixelscale) == 1 && count == 3 &&
TIFFGetField(tif, 33922, &count, &tilepoint) == 1 && count == 6)
{
MAPNIK_LOG_DEBUG(tiff_reader)
<< "PixelScale:" << pixelscale[0] << "," << pixelscale[1] << "," << pixelscale[2];
MAPNIK_LOG_DEBUG(tiff_reader) << "TilePoint:" << tilepoint[0] << "," << tilepoint[1] << "," << tilepoint[2];
MAPNIK_LOG_DEBUG(tiff_reader) << " " << tilepoint[3] << "," << tilepoint[4] << "," << tilepoint[5];
// assuming upper-left
double lox = tilepoint[3];
double loy = tilepoint[4];
double hix = lox + pixelscale[0] * width_;
double hiy = loy - pixelscale[1] * height_;
bbox_ = box2d<double>{lox, loy, hix, hiy};
MAPNIK_LOG_DEBUG(tiff_reader) << "Bounding Box:" << *bbox_;
}
}
if (!is_tiled_ && compression_ == COMPRESSION_NONE && planar_config_ == PLANARCONFIG_CONTIG)
{
if (height_ > 128 * 1024 * 1024)
{
const std::size_t line_size = (bands_ * width_ * bps_ + 7) / 8;
std::size_t default_strip_height = 8192 / line_size;
if (default_strip_height == 0)
default_strip_height = 1;
const std::size_t num_strips = height_ / default_strip_height;
if (num_strips > 128 * 1024 * 1024)
{
throw image_reader_exception("Can't allocate tiff");
}
}
}
}
template<typename T>
tiff_reader<T>::~tiff_reader()
{}
template<typename T>
unsigned tiff_reader<T>::width() const
{
return width_;
}
template<typename T>
unsigned tiff_reader<T>::height() const
{
return height_;
}
template<typename T>
std::optional<box2d<double>> tiff_reader<T>::bounding_box() const
{
return bbox_;
}
template<typename T>
void tiff_reader<T>::read(unsigned x, unsigned y, image_rgba8& image)
{
if (read_method_ == stripped)
{
read_stripped(static_cast<std::size_t>(x), static_cast<std::size_t>(y), image);
}
else if (read_method_ == tiled)
{
read_tiled(static_cast<std::size_t>(x), static_cast<std::size_t>(y), image);
}
else
{
read_generic(static_cast<std::size_t>(x), static_cast<std::size_t>(y), image);
}
}
template<typename T>
template<typename ImageData>
image_any tiff_reader<T>::read_any_gray(std::size_t x0, std::size_t y0, std::size_t width, std::size_t height)
{
using image_type = ImageData;
using pixel_type = typename image_type::pixel_type;
if (read_method_ == tiled)
{
image_type data(width, height);
read_tiled<image_type>(x0, y0, data);
return image_any(std::move(data));
}
else if (read_method_ == stripped)
{
image_type data(width, height);
read_stripped<image_type>(x0, y0, data);
return image_any(std::move(data));
}
else
{
TIFF* tif = open(stream_);
if (tif)
{
image_type data(width, height);
const std::size_t block_size = rows_per_strip_ > 0 ? rows_per_strip_ : tile_height_;
const std::size_t start_y = y0 - y0 % block_size;
const std::size_t end_y = std::min(y0 + height, height_);
const std::size_t start_x = x0;
const std::size_t end_x = std::min(x0 + width, width_);
constexpr std::size_t element_size = sizeof(pixel_type);
MAPNIK_LOG_DEBUG(tiff_reader) << "SCANLINE SIZE=" << TIFFScanlineSize(tif);
const std::size_t size_to_allocate = (TIFFScanlineSize(tif) + element_size - 1) / element_size;
std::unique_ptr<pixel_type[]> const scanline(new pixel_type[size_to_allocate]);
if (planar_config_ == PLANARCONFIG_CONTIG)
{
for (std::size_t y = start_y; y < end_y; ++y)
{
// we have to read all scanlines sequentially from start_y
// to be able to use scanline interface with compressed blocks.
if (-1 != TIFFReadScanline(tif, scanline.get(), y) && (y >= y0))
{
pixel_type* row = data.get_row(y - y0);
if (bands_ == 1)
{
std::transform(scanline.get() + start_x,
scanline.get() + end_x,
row,
[](pixel_type const& p) { return p; });
}
else if (size_to_allocate == bands_ * width_)
{
// bands_ > 1 => packed bands in grayscale image e.g an extra alpha channel.
// Just pick first one for now.
pixel_type* buf = scanline.get() + start_x * bands_;
std::size_t x_index = 0;
for (std::size_t j = 0; j < end_x * bands_; ++j)
{
if (x_index >= width)
break;
if (j % bands_ == 0)
{
row[x_index++] = buf[j];
}
}
}
}
}
}
else if (planar_config_ == PLANARCONFIG_SEPARATE)
{
for (std::size_t s = 0; s < bands_; ++s)
{
for (std::size_t y = start_y; y < end_y; ++y)
{
if (-1 != TIFFReadScanline(tif, scanline.get(), y) && (y >= y0))
{
pixel_type* row = data.get_row(y - y0);
std::transform(scanline.get() + start_x,
scanline.get() + end_x,
row,
[](pixel_type const& p) { return p; });
}
}
}
}
return image_any(std::move(data));
}
}
return image_any();
}
template<typename T>
image_any tiff_reader<T>::read(unsigned x, unsigned y, unsigned width, unsigned height)
{
if (width > 10000 || height > 10000)
{
throw image_reader_exception("Can't allocate tiff > 10000x10000");
}
const std::size_t x0 = static_cast<std::size_t>(x);
const std::size_t y0 = static_cast<std::size_t>(y);
switch (photometric_)
{
case PHOTOMETRIC_MINISBLACK:
case PHOTOMETRIC_MINISWHITE: {
switch (bps_)
{
case 8: {
switch (sample_format_)
{
case SAMPLEFORMAT_UINT: {
return read_any_gray<image_gray8>(x0, y0, width, height);
}
case SAMPLEFORMAT_INT: {
return read_any_gray<image_gray8s>(x0, y0, width, height);
}
default: {
throw image_reader_exception(
"tiff_reader: This sample format is not supported for this bits per sample");
}
}
}
case 16: {
switch (sample_format_)
{
case SAMPLEFORMAT_UINT: {
return read_any_gray<image_gray16>(x0, y0, width, height);
}
case SAMPLEFORMAT_INT: {
return read_any_gray<image_gray16s>(x0, y0, width, height);
}
default: {
throw image_reader_exception(
"tiff_reader: This sample format is not supported for this bits per sample");
}
}
}
case 32: {
switch (sample_format_)
{
case SAMPLEFORMAT_UINT: {
return read_any_gray<image_gray32>(x0, y0, width, height);
}
case SAMPLEFORMAT_INT: {
return read_any_gray<image_gray32s>(x0, y0, width, height);
}
case SAMPLEFORMAT_IEEEFP: {
return read_any_gray<image_gray32f>(x0, y0, width, height);
}
default: {
throw image_reader_exception(
"tiff_reader: This sample format is not supported for this bits per sample");
}
}
}
case 64: {
switch (sample_format_)
{
case SAMPLEFORMAT_UINT: {
return read_any_gray<image_gray64>(x0, y0, width, height);
}
case SAMPLEFORMAT_INT: {
return read_any_gray<image_gray64s>(x0, y0, width, height);
}
case SAMPLEFORMAT_IEEEFP: {
return read_any_gray<image_gray64f>(x0, y0, width, height);
}
default: {
throw image_reader_exception(
"tiff_reader: This sample format is not supported for this bits per sample");
}
}
}
}
}
default: {
// PHOTOMETRIC_PALETTE = 3;
// PHOTOMETRIC_MASK = 4;
// PHOTOMETRIC_SEPARATED = 5;
// PHOTOMETRIC_YCBCR = 6;
// PHOTOMETRIC_CIELAB = 8;
// PHOTOMETRIC_ICCLAB = 9;
// PHOTOMETRIC_ITULAB = 10;
// PHOTOMETRIC_LOGL = 32844;
// PHOTOMETRIC_LOGLUV = 32845;
image_rgba8 data(width, height, true, true);
read(x0, y0, data);
return image_any(std::move(data));
}
}
return image_any();
}
namespace detail {
struct rgb8
{
std::uint8_t r;
std::uint8_t g;
std::uint8_t b;
};
struct rgb8_to_rgba8
{
std::uint32_t operator()(rgb8 const& in) const { return ((255 << 24) | (in.r) | (in.g << 8) | (in.b << 16)); }
};
template<typename T>
struct tiff_reader_traits
{
using image_type = T;
using pixel_type = typename image_type::pixel_type;
constexpr static bool reverse = false;
static bool read_tile(TIFF* tif,
std::size_t x,
std::size_t y,
pixel_type* buf,
std::size_t tile_width,
std::size_t tile_height)
{
const std::uint32_t tile_size = TIFFTileSize(tif);
return (TIFFReadEncodedTile(tif, TIFFComputeTile(tif, x, y, 0, 0), buf, tile_size) != -1);
}
static bool
read_strip(TIFF* tif, std::size_t y, std::size_t rows_per_strip, std::size_t strip_width, pixel_type* buf)
{
return (TIFFReadEncodedStrip(tif, y / rows_per_strip, buf, -1) != -1);
}
};
// default specialization that expands into RGBA
template<>
struct tiff_reader_traits<image_rgba8>
{
using image_type = image_rgba8;
using pixel_type = std::uint32_t;
constexpr static bool reverse = true;
static bool read_tile(TIFF* tif,
std::size_t x0,
std::size_t y0,
pixel_type* buf,
std::size_t tile_width,
std::size_t tile_height)
{
return (TIFFReadRGBATile(tif, x0, y0, buf) != 0);
}
static bool
read_strip(TIFF* tif, std::size_t y, std::size_t rows_per_strip, std::size_t strip_width, pixel_type* buf)
{
return (TIFFReadRGBAStrip(tif, y, buf) != 0);
}
};
} // namespace detail
template<typename T>
template<typename ImageData>
void tiff_reader<T>::read_generic(std::size_t, std::size_t, ImageData&)
{
throw image_reader_exception("tiff_reader: TODO - tiff is not stripped or tiled");
}
template<typename T>
template<typename ImageData>
void tiff_reader<T>::read_tiled(std::size_t x0, std::size_t y0, ImageData& image)
{
using pixel_type = typename detail::tiff_reader_traits<ImageData>::pixel_type;
TIFF* tif = open(stream_);
if (tif)
{
const std::uint32_t tile_size = TIFFTileSize(tif);
std::unique_ptr<pixel_type[]> tile(new pixel_type[tile_size]);
const std::size_t width = image.width();
const std::size_t height = image.height();
const std::size_t start_y = (y0 / tile_height_) * tile_height_;
const std::size_t end_y = std::min(((y0 + height) / tile_height_ + 1) * tile_height_, height_);
const std::size_t start_x = (x0 / tile_width_) * tile_width_;
const std::size_t end_x = std::min(((x0 + width) / tile_width_ + 1) * tile_width_, width_);
const bool pick_first_band =
(bands_ > 1) && (tile_size / (tile_width_ * tile_height_ * sizeof(pixel_type)) == bands_);
for (std::size_t y = start_y; y < end_y; y += tile_height_)
{
const std::size_t ty0 = std::max(y0, y) - y;
const std::size_t ty1 = std::min(height + y0, y + tile_height_) - y;
for (std::size_t x = start_x; x < end_x; x += tile_width_)
{
if (!detail::tiff_reader_traits<ImageData>::read_tile(tif, x, y, tile.get(), tile_width_, tile_height_))
{
MAPNIK_LOG_DEBUG(tiff_reader)
<< "read_tile(...) failed at " << x << "/" << y << " for " << width_ << "/" << height_ << "\n";
break;
}
if (pick_first_band)
{
std::uint32_t size = tile_width_ * tile_height_ * sizeof(pixel_type);
for (std::uint32_t n = 0; n < size; ++n)
{
tile[n] = tile[n * bands_];
}
}
const std::size_t tx0 = std::max(x0, x);
const std::size_t tx1 = std::min(width + x0, x + tile_width_);
std::size_t row_index = y + ty0 - y0;
if (detail::tiff_reader_traits<ImageData>::reverse)
{
for (std::size_t ty = ty0; ty < ty1; ++ty, ++row_index)
{
// This is in reverse because the TIFFReadRGBATile reads are inverted
image.set_row(row_index,
tx0 - x0,
tx1 - x0,
&tile[(tile_height_ - ty - 1) * tile_width_ + tx0 - x]);
}
}
else
{
for (std::size_t ty = ty0; ty < ty1; ++ty, ++row_index)
{
image.set_row(row_index, tx0 - x0, tx1 - x0, &tile[ty * tile_width_ + tx0 - x]);
}
}
}
}
}
}
template<typename T>
template<typename ImageData>
void tiff_reader<T>::read_stripped(std::size_t x0, std::size_t y0, ImageData& image)
{
using pixel_type = typename detail::tiff_reader_traits<ImageData>::pixel_type;
TIFF* tif = open(stream_);
if (tif)
{
const std::uint32_t strip_size = TIFFStripSize(tif);
std::unique_ptr<pixel_type[]> strip(new pixel_type[strip_size]);
const std::size_t width = image.width();
const std::size_t height = image.height();
const std::size_t start_y = (y0 / rows_per_strip_) * rows_per_strip_;
const std::size_t end_y = std::min(y0 + height, height_);
const std::size_t tx0{x0};
const std::size_t tx1{std::min(width + x0, width_)};
std::size_t row = 0;
const bool pick_first_band = (bands_ > 1) && (strip_size / (width_ * rows_per_strip_ * sizeof(pixel_type)) == bands_);
for (std::size_t y = start_y; y < end_y; y += rows_per_strip_)
{
const std::size_t ty0 = std::max(y0, y) - y;
const std::size_t ty1 = std::min(end_y, y + rows_per_strip_) - y;
if (!detail::tiff_reader_traits<ImageData>::read_strip(tif, y, rows_per_strip_, width_, strip.get()))
{
MAPNIK_LOG_DEBUG(tiff_reader)
<< "TIFFRead(Encoded|RGBA)Strip failed at " << y << " for " << width_ << "/" << height_ << "\n";
break;
}
if (pick_first_band)
{
std::uint32_t size = width_ * rows_per_strip_ * sizeof(pixel_type);
for (std::uint32_t n = 0; n < size; ++n)
{
strip[n] = strip[bands_ * n];
}
}
if (detail::tiff_reader_traits<ImageData>::reverse)
{
std::size_t num_rows = std::min(height_ - y, static_cast<std::size_t>(rows_per_strip_));
for (std::size_t ty = ty0; ty < ty1; ++ty)
{
// This is in reverse because the TIFFReadRGBAStrip reads are inverted
image.set_row(row++, tx0 - x0, tx1 - x0, &strip[(num_rows - ty - 1) * width_ + tx0]);
}
}
else
{
for (std::size_t ty = ty0; ty < ty1; ++ty)
{
image.set_row(row++, tx0 - x0, tx1 - x0, &strip[ty * width_ + tx0]);
}
}
}
}
}
template<typename T>
TIFF* tiff_reader<T>::open(std::istream& input)
{
if (!tif_)
{
tif_ = tiff_ptr(TIFFClientOpen("tiff_input_stream",
"rcm",
reinterpret_cast<thandle_t>(&input),
detail::tiff_read_proc,
detail::tiff_write_proc,
detail::tiff_seek_proc,
detail::tiff_close_proc,
detail::tiff_size_proc,
detail::tiff_map_proc,
detail::tiff_unmap_proc),
tiff_closer());
}
return tif_.get();
}
} // namespace mapnik