mapnik/include/mapnik/quad_tree.hpp
2016-03-31 12:40:34 +02:00

357 lines
9.8 KiB
C++

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2015 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_QUAD_TREE_HPP
#define MAPNIK_QUAD_TREE_HPP
// mapnik
#include <mapnik/box2d.hpp>
#include <mapnik/util/noncopyable.hpp>
#include <mapnik/make_unique.hpp>
// stl
#include <algorithm>
#include <vector>
#include <type_traits>
#include <cstring>
namespace mapnik
{
template <typename T0, typename T1 = box2d<double>>
class quad_tree : util::noncopyable
{
using value_type = T0;
using bbox_type = T1;
struct node
{
using cont_type = std::vector<T0>;
using iterator = typename cont_type::iterator;
using const_iterator = typename cont_type::const_iterator;
bbox_type extent_;
cont_type cont_;
node * children_[4];
explicit node(bbox_type const& ext)
: extent_(ext)
{
std::fill(children_, children_ + 4, nullptr);
}
bbox_type const& extent() const
{
return extent_;
}
iterator begin()
{
return cont_.begin();
}
const_iterator begin() const
{
return cont_.begin();
}
iterator end()
{
return cont_.end();
}
const_iterator end() const
{
return cont_.end();
}
int num_subnodes() const
{
int count = 0;
for (int i = 0; i < 4; ++i)
{
if (children_[i]) ++count;
}
return count;
}
~node () {}
};
using nodes_type = std::vector<std::unique_ptr<node> >;
using cont_type = typename node::cont_type;
using node_data_iterator = typename cont_type::iterator;
public:
using iterator = typename nodes_type::iterator;
using const_iterator = typename nodes_type::const_iterator;
using result_type = typename std::vector<std::reference_wrapper<value_type> >;
using query_iterator = typename result_type::iterator;
explicit quad_tree(bbox_type const& ext,
unsigned int max_depth = 8,
double ratio = 0.55)
: max_depth_(max_depth),
ratio_(ratio),
query_result_(),
nodes_()
{
nodes_.push_back(std::make_unique<node>(ext));
root_ = nodes_[0].get();
}
void insert(value_type data, bbox_type const& box)
{
unsigned int depth = 0;
do_insert_data(data, box, root_, depth);
}
query_iterator query_in_box(bbox_type const& box)
{
query_result_.clear();
query_node(box, query_result_, root_);
return query_result_.begin();
}
query_iterator query_end()
{
return query_result_.end();
}
const_iterator begin() const
{
return nodes_.begin();
}
const_iterator end() const
{
return nodes_.end();
}
void clear ()
{
bbox_type ext = root_->extent_;
nodes_.clear();
nodes_.push_back(std::make_unique<node>(ext));
root_ = nodes_[0].get();
}
bbox_type const& extent() const
{
return root_->extent_;
}
int count() const
{
return count_nodes(root_);
}
int count_items() const
{
int count = 0;
count_items(root_, count);
return count;
}
void trim()
{
trim_tree(root_);
}
template <typename OutputStream>
void write(OutputStream & out)
{
static_assert(std::is_standard_layout<value_type>::value,
"Values stored in quad-tree must be standard layout types to allow serialisation");
char header[16];
std::memset(header,0,16);
std::strcpy(header,"mapnik-index");
out.write(header,16);
write_node(out,root_);
}
private:
void query_node(bbox_type const& box, result_type & result, node * node_) const
{
if (node_)
{
bbox_type const& node_extent = node_->extent();
if (box.intersects(node_extent))
{
for (auto & n : *node_)
{
result.push_back(std::ref(n));
}
for (int k = 0; k < 4; ++k)
{
query_node(box,result,node_->children_[k]);
}
}
}
}
void do_insert_data(value_type data, bbox_type const& box, node * n, unsigned int& depth)
{
if (++depth >= max_depth_)
{
n->cont_.push_back(data);
}
else
{
bbox_type const& node_extent = n->extent();
bbox_type ext[4];
split_box(node_extent,ext);
for (int i = 0; i < 4; ++i)
{
if (ext[i].contains(box))
{
if (!n->children_[i])
{
nodes_.push_back(std::make_unique<node>(ext[i]));
n->children_[i]=nodes_.back().get();
}
do_insert_data(data,box,n->children_[i],depth);
return;
}
}
n->cont_.push_back(data);
}
}
void split_box(bbox_type const& node_extent,bbox_type * ext)
{
typename bbox_type::value_type width = node_extent.width();
typename bbox_type::value_type height = node_extent.height();
typename bbox_type::value_type lox = node_extent.minx();
typename bbox_type::value_type loy = node_extent.miny();
typename bbox_type::value_type hix = node_extent.maxx();
typename bbox_type::value_type hiy = node_extent.maxy();
ext[0] = bbox_type(lox, loy, lox + width * ratio_, loy + height * ratio_);
ext[1] = bbox_type(hix - width * ratio_, loy, hix, loy + height * ratio_);
ext[2] = bbox_type(lox, hiy - height * ratio_, lox + width * ratio_, hiy);
ext[3] = bbox_type(hix - width * ratio_, hiy - height * ratio_, hix, hiy);
}
void trim_tree(node *& n)
{
if (n)
{
for (int i = 0; i < 4; ++i)
{
trim_tree(n->children_[i]);
}
if (n->num_subnodes() == 1 && n->cont_.size() == 0)
{
for (int i = 0; i < 4; ++i)
{
if (n->children_[i])
{
n = n->children_[i];
break;
}
}
}
}
}
int count_nodes(node const* n) const
{
if (!n) return 0;
else
{
int count = 1;
for (int i = 0; i < 4; ++i)
{
count += count_nodes(n->children_[i]);
}
return count;
}
}
void count_items(node const* n,int& count) const
{
if (n)
{
count += n->cont_.size();
for (int i = 0; i < 4; ++i)
{
count_items(n->children_[i],count);
}
}
}
int subnode_offset(node const* n) const
{
int offset = 0;
for (int i = 0; i < 4; i++)
{
if (n->children_[i])
{
offset +=sizeof(bbox_type) + (n->children_[i]->cont_.size() * sizeof(value_type)) + 3 * sizeof(int);
offset +=subnode_offset(n->children_[i]);
}
}
return offset;
}
template <typename OutputStream>
void write_node(OutputStream & out, node const* n) const
{
if (n)
{
int offset = subnode_offset(n);
int shape_count = n->cont_.size();
int recsize = sizeof(bbox_type) + 3 * sizeof(int) + shape_count * sizeof(value_type);
std::unique_ptr<char[]> node_record(new char[recsize]);
std::memset(node_record.get(), 0, recsize);
std::memcpy(node_record.get(), &offset, 4);
std::memcpy(node_record.get() + 4, &n->extent_, sizeof(bbox_type));
std::memcpy(node_record.get() + 4 + sizeof(bbox_type), &shape_count, 4);
for (int i=0; i < shape_count; ++i)
{
memcpy(node_record.get() + 8 + sizeof(bbox_type) + i * sizeof(value_type), &(n->cont_[i]), sizeof(value_type));
}
int num_subnodes=0;
for (int i = 0; i < 4; ++i)
{
if (n->children_[i])
{
++num_subnodes;
}
}
std::memcpy(node_record.get() + 8 + sizeof(bbox_type) + shape_count * sizeof(value_type), &num_subnodes, 4);
out.write(node_record.get(),recsize);
for (int i = 0; i < 4; ++i)
{
write_node(out, n->children_[i]);
}
}
}
const unsigned int max_depth_;
const double ratio_;
result_type query_result_;
nodes_type nodes_;
node * root_;
};
}
#endif // MAPNIK_QUAD_TREE_HPP