mapnik/src/image_util.cpp

660 lines
24 KiB
C++

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2006 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
//$Id: image_util.cpp 36 2005-04-05 14:32:18Z pavlenko $
extern "C"
{
#include <png.h>
}
// mapnik
#include <mapnik/image_util.hpp>
#include <mapnik/png_io.hpp>
#include <mapnik/graphics.hpp>
#include <mapnik/memory.hpp>
#include <mapnik/image_view.hpp>
#include <mapnik/palette.hpp>
#include <mapnik/map.hpp>
// boost
#include <boost/lexical_cast.hpp>
// jpeg
#if defined(HAVE_JPEG)
#include <mapnik/jpeg_io.hpp>
#endif
#ifdef HAVE_CAIRO
#include <mapnik/cairo_renderer.hpp>
#endif
#include <boost/foreach.hpp>
#include <boost/tokenizer.hpp>
// stl
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
// agg
//#include "agg_conv_transform.h"
#include "agg_image_accessors.h"
#include "agg_pixfmt_rgba.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_renderer_scanline.h"
#include "agg_rendering_buffer.h"
#include "agg_scanline_u.h"
//#include "agg_scanline_p.h"
#include "agg_span_allocator.h"
#include "agg_span_image_filter_rgba.h"
#include "agg_span_interpolator_linear.h"
#include "agg_trans_affine.h"
#include "agg_image_filters.h"
namespace mapnik
{
template <typename T>
std::string save_to_string(T const& image,
std::string const& type,
rgba_palette& palette)
{
std::ostringstream ss(std::ios::out|std::ios::binary);
save_to_stream(image, ss, type, palette);
return ss.str();
}
template <typename T>
void save_to_file(T const& image,
std::string const& filename,
std::string const& type,
rgba_palette& palette)
{
std::ofstream file (filename.c_str(), std::ios::out| std::ios::trunc|std::ios::binary);
if (file)
{
save_to_stream(image, file, type, palette);
}
else throw ImageWriterException("Could not write file to " + filename );
}
template <typename T>
void save_to_stream(T const& image,
std::ostream & stream,
std::string const& type,
rgba_palette& palette)
{
if (stream)
{
//all this should go into image_writer factory
if (type == "png" || boost::algorithm::istarts_with(type, std::string("png")))
{
int colors = 256;
int compression = Z_DEFAULT_COMPRESSION;
int strategy = Z_DEFAULT_STRATEGY;
int trans_mode = -1;
double gamma = -1;
bool use_octree = true;
if (type == "png" || type == "png24" || type == "png32")
{
// Shortcut when the user didn't specify any flags after the colon.
// Paletted images specify "png8 or png256".
colors = -1;
}
if (type.length() > 6){
boost::char_separator<char> sep(":");
boost::tokenizer< boost::char_separator<char> > tokens(type, sep);
BOOST_FOREACH(std::string t, tokens)
{
if (t == "png" || t == "png24" || t == "png32")
{
colors = -1;
}
else if (t == "m=h")
{
use_octree = false;
}
else if (t == "m=o")
{
use_octree = true;
}
else if (boost::algorithm::istarts_with(t,std::string("c=")))
{
try
{
if (colors < 0)
throw ImageWriterException("invalid color parameter: unavailable for true color images");
colors = boost::lexical_cast<int>(t.substr(2));
if (colors < 0 || colors > 256)
throw ImageWriterException("invalid color parameter: " + t.substr(2) + " out of bounds");
}
catch(boost::bad_lexical_cast &)
{
throw ImageWriterException("invalid color parameter: " + t.substr(2));
}
}
else if (boost::algorithm::istarts_with(t, std::string("t=")))
{
try
{
if (colors < 0)
throw ImageWriterException("invalid trans_mode parameter: unavailable for true color images");
trans_mode = boost::lexical_cast<int>(t.substr(2));
if (trans_mode < 0 || trans_mode > 2)
throw ImageWriterException("invalid trans_mode parameter: " + t.substr(2) + " out of bounds");
}
catch(boost::bad_lexical_cast &)
{
throw ImageWriterException("invalid trans_mode parameter: " + t.substr(2));
}
}
else if (boost::algorithm::istarts_with(t, std::string("g=")))
{
try
{
if (colors < 0)
throw ImageWriterException("invalid gamma parameter: unavailable for true color images");
gamma = boost::lexical_cast<double>(t.substr(2));
if (gamma < 0)
throw ImageWriterException("invalid gamma parameter: " + t.substr(2) + " out of bounds");
}
catch(boost::bad_lexical_cast &)
{
throw ImageWriterException("invalid gamma parameter: " + t.substr(2));
}
}
else if (boost::algorithm::istarts_with(t,std::string("z=")))
{
try
{
compression = boost::lexical_cast<int>(t.substr(2));
/*
#define Z_NO_COMPRESSION 0
#define Z_BEST_SPEED 1
#define Z_BEST_COMPRESSION 9
#define Z_DEFAULT_COMPRESSION (-1)
*/
if (compression < Z_DEFAULT_COMPRESSION || compression > Z_BEST_COMPRESSION)
throw ImageWriterException("invalid compression parameter: " + t.substr(2) + " out of bounds (only -1 through 9 are valid)");
}
catch(boost::bad_lexical_cast &)
{
throw ImageWriterException("invalid compression parameter: " + t.substr(2));
}
}
else if (boost::algorithm::istarts_with(t,std::string("s=")))
{
try
{
std::string s = boost::lexical_cast<std::string>(t.substr(2));
if (s == "default") strategy = Z_DEFAULT_STRATEGY;
else if (s == "filtered") strategy = Z_FILTERED;
else if (s == "huff") strategy = Z_HUFFMAN_ONLY;
else if (s == "rle") strategy = Z_RLE;
else
throw ImageWriterException("invalid compression strategy parameter: " + s);
}
catch(boost::bad_lexical_cast &)
{
throw ImageWriterException("invalid compression strategy parameter: " + t.substr(2));
}
}
}
}
if (&palette != NULL && palette.valid())
save_as_png8_pal(stream, image, palette, compression, strategy);
else if (colors < 0)
save_as_png(stream, image, compression, strategy);
else if (use_octree)
save_as_png8_oct(stream, image, colors, compression, strategy);
else
save_as_png8_hex(stream, image, colors, compression, strategy, trans_mode, gamma);
}
#if defined(HAVE_JPEG)
else if (boost::algorithm::istarts_with(type,std::string("jpeg")))
{
int quality = 85;
try
{
if(type.substr(4).length() != 0)
{
quality = boost::lexical_cast<int>(type.substr(4));
if(quality<0 || quality>100)
throw ImageWriterException("invalid jpeg quality: " + type.substr(4) + " out of bounds");
}
save_as_jpeg(stream, quality, image);
}
catch(boost::bad_lexical_cast &)
{
throw ImageWriterException("invalid jpeg quality: " + type.substr(4) + " not a number");
}
}
#endif
else throw ImageWriterException("unknown file type: " + type);
}
else throw ImageWriterException("Could not write to empty stream" );
}
template <typename T>
void save_to_file(T const& image,std::string const& filename, rgba_palette& palette)
{
boost::optional<std::string> type = type_from_filename(filename);
if (type)
{
save_to_file<T>(image, filename, *type, palette);
}
}
#if defined(HAVE_CAIRO)
// TODO - move to separate cairo_io.hpp
void save_to_cairo_file(mapnik::Map const& map, std::string const& filename)
{
boost::optional<std::string> type = type_from_filename(filename);
if (type)
{
save_to_cairo_file(map,filename,*type);
}
}
void save_to_cairo_file(mapnik::Map const& map,
std::string const& filename,
std::string const& type)
{
std::ofstream file (filename.c_str(), std::ios::out|std::ios::trunc|std::ios::binary);
if (file)
{
Cairo::RefPtr<Cairo::Surface> surface;
unsigned width = map.width();
unsigned height = map.height();
if (type == "pdf")
surface = Cairo::PdfSurface::create(filename,width,height);
else if (type == "svg")
surface = Cairo::SvgSurface::create(filename,width,height);
else if (type == "ps")
surface = Cairo::PsSurface::create(filename,width,height);
else if (type == "ARGB32")
surface = Cairo::ImageSurface::create(Cairo::FORMAT_ARGB32,width,height);
else if (type == "RGB24")
surface = Cairo::ImageSurface::create(Cairo::FORMAT_RGB24,width,height);
else
throw ImageWriterException("unknown file type: " + type);
Cairo::RefPtr<Cairo::Context> context = Cairo::Context::create(surface);
// TODO - expose as user option
/*
if (type == "ARGB32" || type == "RGB24")
{
context->set_antialias(Cairo::ANTIALIAS_NONE);
}
*/
mapnik::cairo_renderer<Cairo::Context> ren(map, context);
ren.apply();
if (type == "ARGB32" || type == "RGB24")
{
surface->write_to_png(filename);
}
surface->finish();
}
}
#endif
template void save_to_file<image_data_32>(image_data_32 const&,
std::string const&,
std::string const&,
rgba_palette& palette);
template void save_to_file<image_data_32>(image_data_32 const&,
std::string const&,
rgba_palette& palette);
template std::string save_to_string<image_data_32>(image_data_32 const&,
std::string const&,
rgba_palette& palette);
template void save_to_file<image_view<image_data_32> > (image_view<image_data_32> const&,
std::string const&,
std::string const&,
rgba_palette& palette);
template void save_to_file<image_view<image_data_32> > (image_view<image_data_32> const&,
std::string const&,
rgba_palette& palette);
template std::string save_to_string<image_view<image_data_32> > (image_view<image_data_32> const&,
std::string const&,
rgba_palette& palette);
// Image scaling functions
scaling_method_e get_scaling_method_by_name (std::string name)
{
// TODO - make into proper ENUMS
if (name == "fast" || name == "near")
return SCALING_NEAR;
else if (name == "bilinear")
return SCALING_BILINEAR;
else if (name == "cubic" || name == "bicubic")
return SCALING_BICUBIC;
else if (name == "spline16")
return SCALING_SPLINE16;
else if (name == "spline36")
return SCALING_SPLINE36;
else if (name == "hanning")
return SCALING_HANNING;
else if (name == "hamming")
return SCALING_HAMMING;
else if (name == "hermite")
return SCALING_HERMITE;
else if (name == "kaiser")
return SCALING_KAISER;
else if (name == "quadric")
return SCALING_QUADRIC;
else if (name == "catrom")
return SCALING_CATROM;
else if (name == "gaussian")
return SCALING_GAUSSIAN;
else if (name == "bessel")
return SCALING_BESSEL;
else if (name == "mitchell")
return SCALING_MITCHELL;
else if (name == "sinc")
return SCALING_SINC;
else if (name == "lanczos")
return SCALING_LANCZOS;
else if (name == "blackman")
return SCALING_BLACKMAN;
else
return SCALING_NEAR;
}
// this has been replaced by agg impl - see https://trac.mapnik.org/ticket/656
template <typename Image>
void scale_image_bilinear_old (Image& target,const Image& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned out=0;
unsigned t = 0;
for(int i=0; i<4; i++){
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
// channel up
out |= r << t;
t += 8;
a >>= 8;
b >>= 8;
c >>= 8;
d >>= 8;
}
target(x,y)=out;
}
}
}
template <typename Image>
void scale_image_bilinear8 (Image& target,const Image& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
target(x,y)=(0xff<<24) | (r<<16) | (r<<8) | r;
}
}
}
template <typename Image>
void scale_image_agg (Image& target,const Image& source, scaling_method_e scaling_method, double scale_factor, double x_off_f, double y_off_f, double filter_radius, double ratio)
{
typedef agg::pixfmt_rgba32_plain pixfmt;
typedef agg::renderer_base<pixfmt> renderer_base;
// define some stuff we'll use soon
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
agg::span_allocator<agg::rgba8> sa;
agg::image_filter_lut filter;
// initialize source AGG buffer
agg::rendering_buffer rbuf_src((unsigned char*)source.getBytes(), source.width(), source.height(), source.width() * 4);
pixfmt pixf_src(rbuf_src);
typedef agg::image_accessor_clone<pixfmt> img_src_type;
img_src_type img_src(pixf_src);
// initialise destination AGG buffer (with transparency)
agg::rendering_buffer rbuf_dst((unsigned char*)target.getBytes(), target.width(), target.height(), target.width() * 4);
pixfmt pixf_dst(rbuf_dst);
renderer_base rb_dst(pixf_dst);
rb_dst.clear(agg::rgba(0, 0, 0, 0));
// create a scaling matrix
agg::trans_affine img_mtx;
img_mtx /= agg::trans_affine_scaling(scale_factor * ratio, scale_factor * ratio);
// create a linear interpolator for our scaling matrix
typedef agg::span_interpolator_linear<> interpolator_type;
interpolator_type interpolator(img_mtx);
// draw an anticlockwise polygon to render our image into
double scaled_width = source.width() * scale_factor;
double scaled_height = source.height() * scale_factor;
ras.reset();
ras.move_to_d(x_off_f, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f + scaled_height);
ras.line_to_d(x_off_f, y_off_f + scaled_height);
switch(scaling_method)
{
case SCALING_NEAR:
{
typedef agg::span_image_filter_rgba_nn<img_src_type, interpolator_type> span_gen_type;
span_gen_type sg(img_src, interpolator);
agg::render_scanlines_aa(ras, sl, rb_dst, sa, sg);
return;
}
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_radius), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_radius), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_radius), true); break;
}
typedef agg::span_image_resample_rgba_affine<img_src_type> span_gen_type;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(ras, sl, rb_dst, sa, sg);
}
template void scale_image_agg<image_data_32> (image_data_32& target,const image_data_32& source, scaling_method_e scaling_method, double scale_factor, double x_off_f, double y_off_f, double filter_radius, double ratio);
template void scale_image_bilinear_old<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
template void scale_image_bilinear8<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
}