713 lines
22 KiB
C++
713 lines
22 KiB
C++
/*****************************************************************************
|
|
*
|
|
* This file is part of Mapnik (c++ mapping toolkit)
|
|
*
|
|
* Copyright (C) 2011 Artem Pavlenko
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#ifndef MAPNIK_PNG_IO_HPP
|
|
#define MAPNIK_PNG_IO_HPP
|
|
|
|
// mapnik
|
|
#include <mapnik/global.hpp>
|
|
#include <mapnik/palette.hpp>
|
|
#include <mapnik/octree.hpp>
|
|
#include <mapnik/hextree.hpp>
|
|
#include <mapnik/miniz_png.hpp>
|
|
#include <mapnik/image_data.hpp>
|
|
|
|
// zlib
|
|
#include <zlib.h>
|
|
|
|
// boost
|
|
#include <boost/scoped_array.hpp>
|
|
|
|
extern "C"
|
|
{
|
|
#include <png.h>
|
|
}
|
|
|
|
#define MAX_OCTREE_LEVELS 4
|
|
|
|
namespace mapnik {
|
|
|
|
template <typename T>
|
|
void write_data (png_structp png_ptr, png_bytep data, png_size_t length)
|
|
{
|
|
T * out = static_cast<T*>(png_get_io_ptr(png_ptr));
|
|
out->write(reinterpret_cast<char*>(data), length);
|
|
}
|
|
|
|
template <typename T>
|
|
void flush_data (png_structp png_ptr)
|
|
{
|
|
T * out = static_cast<T*>(png_get_io_ptr(png_ptr));
|
|
out->flush();
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
void save_as_png(T1 & file,
|
|
T2 const& image,
|
|
int compression = Z_DEFAULT_COMPRESSION,
|
|
int strategy = Z_DEFAULT_STRATEGY,
|
|
int trans_mode = -1,
|
|
bool use_miniz = false)
|
|
|
|
{
|
|
if (use_miniz)
|
|
{
|
|
MiniZ::PNGWriter writer(compression,strategy);
|
|
if (trans_mode == 0)
|
|
{
|
|
writer.writeIHDR(image.width(), image.height(), 24);
|
|
writer.writeIDATStripAlpha(image);
|
|
}
|
|
else
|
|
{
|
|
writer.writeIHDR(image.width(), image.height(), 32);
|
|
writer.writeIDAT(image);
|
|
}
|
|
writer.writeIEND();
|
|
writer.toStream(file);
|
|
return;
|
|
}
|
|
|
|
png_voidp error_ptr=0;
|
|
png_structp png_ptr=png_create_write_struct(PNG_LIBPNG_VER_STRING,
|
|
error_ptr,0, 0);
|
|
|
|
if (!png_ptr) return;
|
|
|
|
// switch on optimization only if supported
|
|
#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200) && defined(PNG_MMX_CODE_SUPPORTED)
|
|
png_uint_32 mask, flags;
|
|
flags = png_get_asm_flags(png_ptr);
|
|
mask = png_get_asm_flagmask(PNG_SELECT_READ | PNG_SELECT_WRITE);
|
|
png_set_asm_flags(png_ptr, flags | mask);
|
|
#endif
|
|
png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE, PNG_FILTER_NONE);
|
|
png_infop info_ptr = png_create_info_struct(png_ptr);
|
|
if (!info_ptr)
|
|
{
|
|
png_destroy_write_struct(&png_ptr,(png_infopp)0);
|
|
return;
|
|
}
|
|
jmp_buf* jmp_context = (jmp_buf*) png_get_error_ptr(png_ptr);
|
|
if (jmp_context)
|
|
{
|
|
png_destroy_write_struct(&png_ptr, &info_ptr);
|
|
return;
|
|
}
|
|
png_set_write_fn (png_ptr, &file, &write_data<T1>, &flush_data<T1>);
|
|
|
|
png_set_compression_level(png_ptr, compression);
|
|
png_set_compression_strategy(png_ptr, strategy);
|
|
png_set_compression_buffer_size(png_ptr, 32768);
|
|
|
|
png_set_IHDR(png_ptr, info_ptr,image.width(),image.height(),8,
|
|
(trans_mode == 0) ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA,PNG_INTERLACE_NONE,
|
|
PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
|
|
boost::scoped_array<png_byte*> row_pointers(new png_bytep[image.height()]);
|
|
for (unsigned int i = 0; i < image.height(); i++)
|
|
{
|
|
row_pointers[i] = (png_bytep)image.getRow(i);
|
|
}
|
|
png_set_rows(png_ptr, info_ptr, row_pointers.get());
|
|
png_write_png(png_ptr, info_ptr, (trans_mode == 0) ? PNG_TRANSFORM_STRIP_FILLER_AFTER : PNG_TRANSFORM_IDENTITY, NULL);
|
|
png_destroy_write_struct(&png_ptr, &info_ptr);
|
|
}
|
|
|
|
template <typename T>
|
|
void reduce_8(T const& in,
|
|
image_data_8 & out,
|
|
octree<rgb> trees[],
|
|
unsigned limits[],
|
|
unsigned levels,
|
|
std::vector<unsigned> & alpha)
|
|
{
|
|
unsigned width = in.width();
|
|
unsigned height = in.height();
|
|
|
|
std::vector<unsigned> alphaCount(alpha.size());
|
|
for(unsigned i=0; i<alpha.size(); i++)
|
|
{
|
|
alpha[i] = 0;
|
|
alphaCount[i] = 0;
|
|
}
|
|
for (unsigned y = 0; y < height; ++y)
|
|
{
|
|
mapnik::image_data_32::pixel_type const * row = in.getRow(y);
|
|
mapnik::image_data_8::pixel_type * row_out = out.getRow(y);
|
|
for (unsigned x = 0; x < width; ++x)
|
|
{
|
|
unsigned val = row[x];
|
|
mapnik::rgb c(U2RED(val), U2GREEN(val), U2BLUE(val));
|
|
byte index = 0;
|
|
int idx = -1;
|
|
for(int j=levels-1; j>0; j--)
|
|
{
|
|
if (U2ALPHA(val)>=limits[j] && trees[j].colors()>0)
|
|
{
|
|
index = idx = trees[j].quantize(c);
|
|
break;
|
|
}
|
|
}
|
|
if (idx>=0 && idx<(int)alpha.size())
|
|
{
|
|
alpha[idx]+=U2ALPHA(val);
|
|
alphaCount[idx]++;
|
|
}
|
|
row_out[x] = index;
|
|
}
|
|
}
|
|
for(unsigned i=0; i<alpha.size(); i++)
|
|
{
|
|
if (alphaCount[i]!=0)
|
|
{
|
|
alpha[i] /= alphaCount[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void reduce_4(T const& in,
|
|
image_data_8 & out,
|
|
octree<rgb> trees[],
|
|
unsigned limits[],
|
|
unsigned levels,
|
|
std::vector<unsigned> & alpha)
|
|
{
|
|
unsigned width = in.width();
|
|
unsigned height = in.height();
|
|
|
|
std::vector<unsigned> alphaCount(alpha.size());
|
|
for(unsigned i=0; i<alpha.size(); i++)
|
|
{
|
|
alpha[i] = 0;
|
|
alphaCount[i] = 0;
|
|
}
|
|
for (unsigned y = 0; y < height; ++y)
|
|
{
|
|
mapnik::image_data_32::pixel_type const * row = in.getRow(y);
|
|
mapnik::image_data_8::pixel_type * row_out = out.getRow(y);
|
|
for (unsigned x = 0; x < width; ++x)
|
|
{
|
|
unsigned val = row[x];
|
|
mapnik::rgb c(U2RED(val), U2GREEN(val), U2BLUE(val));
|
|
byte index = 0;
|
|
int idx=-1;
|
|
for(int j=levels-1; j>0; j--)
|
|
{
|
|
if (U2ALPHA(val)>=limits[j] && trees[j].colors()>0)
|
|
{
|
|
index = idx = trees[j].quantize(c);
|
|
break;
|
|
}
|
|
}
|
|
if (idx>=0 && idx<(int)alpha.size())
|
|
{
|
|
alpha[idx]+=U2ALPHA(val);
|
|
alphaCount[idx]++;
|
|
}
|
|
if (x%2 == 0)
|
|
{
|
|
index = index<<4;
|
|
}
|
|
row_out[x>>1] |= index;
|
|
}
|
|
}
|
|
for(unsigned i=0; i<alpha.size(); i++)
|
|
{
|
|
if (alphaCount[i]!=0)
|
|
{
|
|
alpha[i] /= alphaCount[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// 1-bit but only one color.
|
|
template <typename T>
|
|
void reduce_1(T const&,
|
|
image_data_8 & out,
|
|
octree<rgb> /*trees*/[],
|
|
unsigned /*limits*/[],
|
|
std::vector<unsigned> & /*alpha*/)
|
|
{
|
|
out.set(0); // only one color!!!
|
|
}
|
|
|
|
template <typename T>
|
|
void save_as_png(T & file, std::vector<mapnik::rgb> const& palette,
|
|
mapnik::image_data_8 const& image,
|
|
unsigned width,
|
|
unsigned height,
|
|
unsigned color_depth,
|
|
int compression,
|
|
int strategy,
|
|
std::vector<unsigned> const&alpha,
|
|
bool use_miniz)
|
|
{
|
|
if (use_miniz)
|
|
{
|
|
MiniZ::PNGWriter writer(compression,strategy);
|
|
// image.width()/height() does not reflect the actual image dimensions; it
|
|
// refers to the quantized scanlines.
|
|
writer.writeIHDR(width, height, color_depth);
|
|
writer.writePLTE(palette);
|
|
writer.writetRNS(alpha);
|
|
writer.writeIDAT(image);
|
|
writer.writeIEND();
|
|
writer.toStream(file);
|
|
return;
|
|
}
|
|
|
|
png_voidp error_ptr=0;
|
|
png_structp png_ptr=png_create_write_struct(PNG_LIBPNG_VER_STRING,
|
|
error_ptr,0, 0);
|
|
|
|
if (!png_ptr)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// switch on optimization only if supported
|
|
#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200) && defined(PNG_MMX_CODE_SUPPORTED)
|
|
png_uint_32 mask, flags;
|
|
flags = png_get_asm_flags(png_ptr);
|
|
mask = png_get_asm_flagmask(PNG_SELECT_READ | PNG_SELECT_WRITE);
|
|
png_set_asm_flags(png_ptr, flags | mask);
|
|
#endif
|
|
png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE, PNG_FILTER_NONE);
|
|
png_infop info_ptr = png_create_info_struct(png_ptr);
|
|
if (!info_ptr)
|
|
{
|
|
png_destroy_write_struct(&png_ptr,(png_infopp)0);
|
|
return;
|
|
}
|
|
jmp_buf* jmp_context = (jmp_buf*) png_get_error_ptr(png_ptr);
|
|
if (jmp_context)
|
|
{
|
|
png_destroy_write_struct(&png_ptr, &info_ptr);
|
|
return;
|
|
}
|
|
png_set_write_fn (png_ptr, &file, &write_data<T>, &flush_data<T>);
|
|
|
|
png_set_compression_level(png_ptr, compression);
|
|
png_set_compression_strategy(png_ptr, strategy);
|
|
png_set_compression_buffer_size(png_ptr, 32768);
|
|
|
|
png_set_IHDR(png_ptr, info_ptr,width,height,color_depth,
|
|
PNG_COLOR_TYPE_PALETTE,PNG_INTERLACE_NONE,
|
|
PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
|
|
|
|
png_color* pal = const_cast<png_color*>(reinterpret_cast<const png_color*>(&palette[0]));
|
|
png_set_PLTE(png_ptr, info_ptr, pal, palette.size());
|
|
|
|
// make transparent lowest indexes, so tRNS is small
|
|
if (alpha.size()>0)
|
|
{
|
|
std::vector<png_byte> trans(alpha.size());
|
|
unsigned alphaSize=0;//truncate to nonopaque values
|
|
for(unsigned i=0; i < alpha.size(); i++)
|
|
{
|
|
trans[i]=alpha[i];
|
|
if (alpha[i]<255)
|
|
{
|
|
alphaSize = i+1;
|
|
}
|
|
}
|
|
if (alphaSize>0)
|
|
{
|
|
png_set_tRNS(png_ptr, info_ptr, (png_bytep)&trans[0], alphaSize, 0);
|
|
}
|
|
}
|
|
|
|
png_write_info(png_ptr, info_ptr);
|
|
for (unsigned i=0;i<height;i++)
|
|
{
|
|
png_write_row(png_ptr,(png_bytep)image.getRow(i));
|
|
}
|
|
|
|
png_write_end(png_ptr, info_ptr);
|
|
png_destroy_write_struct(&png_ptr, &info_ptr);
|
|
}
|
|
|
|
template <typename T1,typename T2>
|
|
void save_as_png8_oct(T1 & file,
|
|
T2 const& image,
|
|
const unsigned max_colors = 256,
|
|
int compression = Z_DEFAULT_COMPRESSION,
|
|
int strategy = Z_DEFAULT_STRATEGY,
|
|
int trans_mode = -1,
|
|
bool use_miniz = false)
|
|
{
|
|
// number of alpha ranges in png8 format; 2 results in smallest image with binary transparency
|
|
// 3 is minimum for semitransparency, 4 is recommended, anything else is worse
|
|
const unsigned TRANSPARENCY_LEVELS = (trans_mode==2||trans_mode<0)?MAX_OCTREE_LEVELS:2;
|
|
unsigned width = image.width();
|
|
unsigned height = image.height();
|
|
unsigned alphaHist[256];//transparency histogram
|
|
unsigned semiCount = 0;//sum of semitransparent pixels
|
|
unsigned meanAlpha = 0;
|
|
|
|
if (trans_mode == 0)
|
|
{
|
|
meanAlpha = 255;
|
|
}
|
|
else
|
|
{
|
|
for(int i=0; i<256; i++)
|
|
{
|
|
alphaHist[i] = 0;
|
|
}
|
|
for (unsigned y = 0; y < height; ++y)
|
|
{
|
|
for (unsigned x = 0; x < width; ++x)
|
|
{
|
|
unsigned val = U2ALPHA((unsigned)image.getRow(y)[x]);
|
|
alphaHist[val]++;
|
|
meanAlpha += val;
|
|
if (val>0 && val<255)
|
|
{
|
|
semiCount++;
|
|
}
|
|
}
|
|
}
|
|
meanAlpha /= width*height;
|
|
}
|
|
|
|
// transparency ranges division points
|
|
unsigned limits[MAX_OCTREE_LEVELS+1];
|
|
limits[0] = 0;
|
|
limits[1] = (trans_mode!=0 && alphaHist[0]>0)?1:0;
|
|
limits[TRANSPARENCY_LEVELS] = 256;
|
|
for(unsigned j=2; j<TRANSPARENCY_LEVELS; j++)
|
|
{
|
|
limits[j] = limits[1];
|
|
}
|
|
if (trans_mode != 0)
|
|
{
|
|
unsigned alphaHistSum = 0;
|
|
for(unsigned i=1; i<256; i++)
|
|
{
|
|
alphaHistSum += alphaHist[i];
|
|
for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
|
|
{
|
|
if (alphaHistSum<semiCount*(j)/4)
|
|
{
|
|
limits[j] = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// avoid too wide full transparent range
|
|
if (limits[1]>256/(TRANSPARENCY_LEVELS-1))
|
|
{
|
|
limits[1]=256/(TRANSPARENCY_LEVELS-1);
|
|
}
|
|
// avoid too wide full opaque range
|
|
if (limits[TRANSPARENCY_LEVELS-1]<212)
|
|
{
|
|
limits[TRANSPARENCY_LEVELS-1]=212;
|
|
}
|
|
if (TRANSPARENCY_LEVELS==2)
|
|
{
|
|
limits[1]=127;
|
|
}
|
|
// estimated number of colors from palette assigned to chosen ranges
|
|
unsigned cols[MAX_OCTREE_LEVELS];
|
|
// count colors
|
|
if (trans_mode == 0)
|
|
{
|
|
for (unsigned j=0; j<TRANSPARENCY_LEVELS; j++)
|
|
{
|
|
cols[j] = 0;
|
|
}
|
|
cols[TRANSPARENCY_LEVELS-1] = width * height;
|
|
}
|
|
else
|
|
{
|
|
for (unsigned j=0; j<TRANSPARENCY_LEVELS; j++)
|
|
{
|
|
cols[j] = 0;
|
|
for (unsigned i=limits[j]; i<limits[j+1]; i++)
|
|
{
|
|
cols[j] += alphaHist[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned divCoef = width*height-cols[0];
|
|
if (divCoef==0)
|
|
{
|
|
divCoef = 1;
|
|
}
|
|
cols[0] = cols[0]>0?1:0; // fully transparent color (one or not at all)
|
|
|
|
if (max_colors>=64)
|
|
{
|
|
// give chance less populated but not empty cols to have at least few colors(12)
|
|
unsigned minCols = (12+1)*divCoef/(max_colors-cols[0]);
|
|
for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
|
|
{
|
|
if (cols[j]>12 && cols[j]<minCols)
|
|
{
|
|
divCoef += minCols-cols[j];
|
|
cols[j] = minCols;
|
|
}
|
|
}
|
|
}
|
|
unsigned usedColors = cols[0];
|
|
for(unsigned j=1; j<TRANSPARENCY_LEVELS-1; j++)
|
|
{
|
|
cols[j] = cols[j]*(max_colors-cols[0])/divCoef;
|
|
usedColors += cols[j];
|
|
}
|
|
// use rest for most opaque group of pixels
|
|
cols[TRANSPARENCY_LEVELS-1] = max_colors-usedColors;
|
|
|
|
//no transparency
|
|
if (trans_mode == 0)
|
|
{
|
|
limits[1] = 0;
|
|
cols[0] = 0;
|
|
cols[1] = max_colors;
|
|
}
|
|
|
|
// octree table for separate alpha range with 1-based index (0 is fully transparent: no color)
|
|
octree<rgb> trees[MAX_OCTREE_LEVELS];
|
|
for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
|
|
{
|
|
trees[j].setMaxColors(cols[j]);
|
|
}
|
|
for (unsigned y = 0; y < height; ++y)
|
|
{
|
|
typename T2::pixel_type const * row = image.getRow(y);
|
|
for (unsigned x = 0; x < width; ++x)
|
|
{
|
|
unsigned val = row[x];
|
|
// insert to proper tree based on alpha range
|
|
for(unsigned j=TRANSPARENCY_LEVELS-1; j>0; j--)
|
|
{
|
|
if (cols[j]>0 && U2ALPHA(val)>=limits[j])
|
|
{
|
|
trees[j].insert(mapnik::rgb(U2RED(val), U2GREEN(val), U2BLUE(val)));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
unsigned leftovers = 0;
|
|
std::vector<rgb> palette;
|
|
palette.reserve(max_colors);
|
|
if (cols[0])
|
|
{
|
|
palette.push_back(rgb(0,0,0));
|
|
}
|
|
|
|
for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
|
|
{
|
|
if (cols[j]>0)
|
|
{
|
|
if (leftovers>0)
|
|
{
|
|
cols[j] += leftovers;
|
|
trees[j].setMaxColors(cols[j]);
|
|
leftovers = 0;
|
|
}
|
|
std::vector<rgb> pal;
|
|
trees[j].setOffset(palette.size());
|
|
trees[j].create_palette(pal);
|
|
assert(pal.size() <= max_colors);
|
|
leftovers = cols[j]-pal.size();
|
|
cols[j] = pal.size();
|
|
for(unsigned i=0; i<pal.size(); i++)
|
|
{
|
|
palette.push_back(pal[i]);
|
|
}
|
|
assert(palette.size() <= 256);
|
|
}
|
|
}
|
|
|
|
//transparency values per palette index
|
|
std::vector<unsigned> alphaTable;
|
|
//alphaTable.resize(palette.size());//allow semitransparency also in almost opaque range
|
|
if (trans_mode != 0)
|
|
{
|
|
alphaTable.resize(palette.size() - cols[TRANSPARENCY_LEVELS-1]);
|
|
}
|
|
|
|
if (palette.size() > 16 )
|
|
{
|
|
// >16 && <=256 colors -> write 8-bit color depth
|
|
image_data_8 reduced_image(width,height);
|
|
reduce_8(image, reduced_image, trees, limits, TRANSPARENCY_LEVELS, alphaTable);
|
|
save_as_png(file,palette,reduced_image,width,height,8,compression,strategy,alphaTable,use_miniz);
|
|
}
|
|
else if (palette.size() == 1)
|
|
{
|
|
// 1 color image -> write 1-bit color depth PNG
|
|
unsigned image_width = ((width + 15) >> 3) & ~1U; // 1-bit image, round up to 16-bit boundary
|
|
unsigned image_height = height;
|
|
image_data_8 reduced_image(image_width,image_height);
|
|
reduce_1(image,reduced_image,trees, limits, alphaTable);
|
|
if (meanAlpha<255 && cols[0]==0)
|
|
{
|
|
alphaTable.resize(1);
|
|
alphaTable[0] = meanAlpha;
|
|
}
|
|
save_as_png(file,palette,reduced_image,width,height,1,compression,strategy,alphaTable,use_miniz);
|
|
}
|
|
else
|
|
{
|
|
// <=16 colors -> write 4-bit color depth PNG
|
|
unsigned image_width = ((width + 7) >> 1) & ~3U; // 4-bit image, round up to 32-bit boundary
|
|
unsigned image_height = height;
|
|
image_data_8 reduced_image(image_width,image_height);
|
|
reduce_4(image, reduced_image, trees, limits, TRANSPARENCY_LEVELS, alphaTable);
|
|
save_as_png(file,palette,reduced_image,width,height,4,compression,strategy,alphaTable,use_miniz);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T1, typename T2, typename T3>
|
|
void save_as_png8(T1 & file,
|
|
T2 const& image,
|
|
T3 const & tree,
|
|
std::vector<mapnik::rgb> const& palette,
|
|
std::vector<unsigned> const& alphaTable,
|
|
int compression = Z_DEFAULT_COMPRESSION,
|
|
int strategy = Z_DEFAULT_STRATEGY,
|
|
bool use_miniz = false)
|
|
{
|
|
unsigned width = image.width();
|
|
unsigned height = image.height();
|
|
|
|
if (palette.size() > 16 )
|
|
{
|
|
// >16 && <=256 colors -> write 8-bit color depth
|
|
image_data_8 reduced_image(width, height);
|
|
for (unsigned y = 0; y < height; ++y)
|
|
{
|
|
mapnik::image_data_32::pixel_type const * row = image.getRow(y);
|
|
mapnik::image_data_8::pixel_type * row_out = reduced_image.getRow(y);
|
|
for (unsigned x = 0; x < width; ++x)
|
|
{
|
|
row_out[x] = tree.quantize(row[x]);
|
|
}
|
|
}
|
|
save_as_png(file, palette, reduced_image, width, height, 8, compression, strategy, alphaTable, use_miniz);
|
|
}
|
|
else if (palette.size() == 1)
|
|
{
|
|
// 1 color image -> write 1-bit color depth PNG
|
|
unsigned image_width = ((width + 15) >> 3) & ~1U; // 1-bit image, round up to 16-bit boundary
|
|
unsigned image_height = height;
|
|
image_data_8 reduced_image(image_width, image_height);
|
|
reduced_image.set(0);
|
|
save_as_png(file, palette, reduced_image, width, height, 1, compression, strategy, alphaTable, use_miniz);
|
|
}
|
|
else
|
|
{
|
|
// <=16 colors -> write 4-bit color depth PNG
|
|
unsigned image_width = ((width + 7) >> 1) & ~3U; // 4-bit image, round up to 32-bit boundary
|
|
unsigned image_height = height;
|
|
image_data_8 reduced_image(image_width, image_height);
|
|
for (unsigned y = 0; y < height; ++y)
|
|
{
|
|
mapnik::image_data_32::pixel_type const * row = image.getRow(y);
|
|
mapnik::image_data_8::pixel_type * row_out = reduced_image.getRow(y);
|
|
byte index = 0;
|
|
for (unsigned x = 0; x < width; ++x)
|
|
{
|
|
|
|
index = tree.quantize(row[x]);
|
|
if (x%2 == 0)
|
|
{
|
|
index = index<<4;
|
|
}
|
|
row_out[x>>1] |= index;
|
|
}
|
|
}
|
|
save_as_png(file, palette, reduced_image, width, height, 4, compression, strategy, alphaTable, use_miniz);
|
|
}
|
|
}
|
|
|
|
template <typename T1,typename T2>
|
|
void save_as_png8_hex(T1 & file,
|
|
T2 const& image,
|
|
int colors = 256,
|
|
int compression = Z_DEFAULT_COMPRESSION,
|
|
int strategy = Z_DEFAULT_STRATEGY,
|
|
int trans_mode = -1,
|
|
double gamma = 2.0,
|
|
bool use_miniz = false)
|
|
{
|
|
unsigned width = image.width();
|
|
unsigned height = image.height();
|
|
|
|
// structure for color quantization
|
|
hextree<mapnik::rgba> tree(colors);
|
|
if (trans_mode >= 0)
|
|
{
|
|
tree.setTransMode(trans_mode);
|
|
}
|
|
if (gamma > 0)
|
|
{
|
|
tree.setGamma(gamma);
|
|
}
|
|
|
|
for (unsigned y = 0; y < height; ++y)
|
|
{
|
|
typename T2::pixel_type const * row = image.getRow(y);
|
|
for (unsigned x = 0; x < width; ++x)
|
|
{
|
|
unsigned val = row[x];
|
|
tree.insert(mapnik::rgba(U2RED(val), U2GREEN(val), U2BLUE(val), U2ALPHA(val)));
|
|
}
|
|
}
|
|
|
|
//transparency values per palette index
|
|
std::vector<mapnik::rgba> pal;
|
|
tree.create_palette(pal);
|
|
assert(int(pal.size()) <= colors);
|
|
std::vector<mapnik::rgb> palette;
|
|
std::vector<unsigned> alphaTable;
|
|
for(unsigned i=0; i<pal.size(); i++)
|
|
{
|
|
palette.push_back(rgb(pal[i].r, pal[i].g, pal[i].b));
|
|
alphaTable.push_back(pal[i].a);
|
|
}
|
|
|
|
save_as_png8<T1, T2, hextree<mapnik::rgba> >(file, image, tree, palette, alphaTable, compression, strategy, use_miniz);
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
void save_as_png8_pal(T1 & file,
|
|
T2 const& image,
|
|
rgba_palette const& pal,
|
|
int compression = Z_DEFAULT_COMPRESSION,
|
|
int strategy = Z_DEFAULT_STRATEGY,
|
|
bool use_miniz = false)
|
|
{
|
|
save_as_png8<T1, T2, rgba_palette>(file, image, pal, pal.palette(), pal.alphaTable(), compression, strategy, use_miniz);
|
|
}
|
|
|
|
}
|
|
|
|
#endif // MAPNIK_PNG_IO_HPP
|