mapnik/include/mapnik/tiff_io.hpp
2017-05-05 13:02:01 +02:00

536 lines
19 KiB
C++

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2017 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_TIFF_IO_HPP
#define MAPNIK_TIFF_IO_HPP
#include <mapnik/global.hpp>
#include <mapnik/image_util.hpp>
#include <mapnik/image_any.hpp>
#include <mapnik/util/variant.hpp>
#pragma GCC diagnostic push
#include <mapnik/warning_ignore.hpp>
extern "C"
{
#include <tiffio.h>
#define RealTIFFOpen TIFFClientOpen
#define RealTIFFClose TIFFClose
}
#pragma GCC diagnostic pop
//std
#include <memory>
#define TIFF_WRITE_SCANLINE 0
#define TIFF_WRITE_STRIPPED 1
#define TIFF_WRITE_TILED 2
namespace mapnik {
static inline tsize_t tiff_write_proc(thandle_t fd, tdata_t buf, tsize_t size)
{
std::ostream* out = reinterpret_cast<std::ostream*>(fd);
std::ios::pos_type pos = out->tellp();
std::streamsize request_size = size;
if (static_cast<tsize_t>(request_size) != size)
return static_cast<tsize_t>(-1);
out->write(reinterpret_cast<const char*>(buf), size);
if( static_cast<std::streamsize>(pos) == -1 )
{
return size;
}
else
{
return static_cast<tsize_t>(out->tellp()-pos);
}
}
static inline toff_t tiff_seek_proc(thandle_t fd, toff_t off, int whence)
{
std::ostream* out = reinterpret_cast<std::ostream*>(fd);
if( out->fail() )
return static_cast<toff_t>(-1);
if( static_cast<std::streamsize>(out->tellp()) == -1)
return static_cast< toff_t >( 0 );
switch(whence)
{
case SEEK_SET:
out->seekp(off, std::ios_base::beg);
break;
case SEEK_CUR:
out->seekp(off, std::ios_base::cur);
break;
case SEEK_END:
out->seekp(off, std::ios_base::end);
break;
}
// grow std::stringstream buffer (re: libtiff/tif_stream.cxx)
std::ios::pos_type pos = out->tellp();
// second check needed for clang (libcxx doesn't set failbit when seeking beyond the current buffer size
if( out->fail() || static_cast<std::streamoff>(off) != pos)
{
std::ios::iostate old_state;
std::ios::pos_type origin;
old_state = out->rdstate();
// reset the fail bit or else tellp() won't work below
out->clear(out->rdstate() & ~std::ios::failbit);
switch( whence )
{
case SEEK_SET:
default:
origin = 0L;
break;
case SEEK_CUR:
origin = out->tellp();
break;
case SEEK_END:
out->seekp(0, std::ios::end);
origin = out->tellp();
break;
}
// restore original stream state
out->clear(old_state);
// only do something if desired seek position is valid
if( (static_cast<uint64_t>(origin) + off) > 0L)
{
uint64_t num_fill;
// clear the fail bit
out->clear(out->rdstate() & ~std::ios::failbit);
// extend the stream to the expected size
out->seekp(0, std::ios::end);
num_fill = (static_cast<uint64_t>(origin)) + off - out->tellp();
for( uint64_t i = 0; i < num_fill; ++i)
out->put('\0');
// retry the seek
out->seekp(static_cast<std::ios::off_type>(static_cast<uint64_t>(origin) + off), std::ios::beg);
}
}
return static_cast<toff_t>(out->tellp());
}
static inline int tiff_close_proc(thandle_t fd)
{
std::ostream* out = (std::ostream*)fd;
out->flush();
return 0;
}
static inline toff_t tiff_size_proc(thandle_t fd)
{
std::ostream* out = reinterpret_cast<std::ostream*>(fd);
std::ios::pos_type pos = out->tellp();
out->seekp(0, std::ios::end);
std::ios::pos_type len = out->tellp();
out->seekp(pos);
return static_cast<toff_t>(len);
}
static inline tsize_t tiff_dummy_read_proc(thandle_t , tdata_t , tsize_t)
{
return 0;
}
static inline void tiff_dummy_unmap_proc(thandle_t , tdata_t , toff_t) {}
static inline int tiff_dummy_map_proc(thandle_t , tdata_t*, toff_t* )
{
return 0;
}
struct tiff_config
{
tiff_config()
: compression(COMPRESSION_ADOBE_DEFLATE),
zlevel(4),
tile_width(0),
tile_height(0),
rows_per_strip(0),
method(TIFF_WRITE_STRIPPED) {}
int compression;
int zlevel;
int tile_width; // Tile width of zero means tile the width of the image
int tile_height; // Tile height of zero means tile the height of the image
int rows_per_strip;
int method; // The method to use to write the TIFF.
};
struct tag_setter
{
tag_setter(TIFF * output, tiff_config const& config)
: output_(output),
config_(config) {}
template <typename T>
void operator() (T const&) const
{
// Assume this would be null type
throw image_writer_exception("Could not write TIFF - unknown image type provided");
}
inline void operator() (image_rgba8 const& data) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 4);
if (data.get_premultiplied())
{
uint16 extras[] = { EXTRASAMPLE_ASSOCALPHA };
TIFFSetField(output_, TIFFTAG_EXTRASAMPLES, 1, extras);
}
else
{
uint16 extras[] = { EXTRASAMPLE_UNASSALPHA };
TIFFSetField(output_, TIFFTAG_EXTRASAMPLES, 1, extras);
}
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray64 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 64);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray64s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 64);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray64f const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 64);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_FLOATINGPOINT);
}
}
inline void operator() (image_gray32 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray32s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray32f const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_FLOATINGPOINT);
}
}
inline void operator() (image_gray16 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 16);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray16s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 16);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray8 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray8s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_null const&) const
{
// Assume this would be null type
throw image_writer_exception("Could not write TIFF - Null image provided");
}
private:
TIFF * output_;
tiff_config const& config_;
};
inline void set_tiff_config(TIFF* output, tiff_config const& config)
{
// Set some constant tiff information that doesn't vary based on type of data
// or image size
TIFFSetField(output, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
// Set the compression for the TIFF
TIFFSetField(output, TIFFTAG_COMPRESSION, config.compression);
if (COMPRESSION_ADOBE_DEFLATE == config.compression
|| COMPRESSION_DEFLATE == config.compression
|| COMPRESSION_LZW == config.compression)
{
// Set the zip level for the compression
// http://en.wikipedia.org/wiki/DEFLATE#Encoder.2Fcompressor
// Changes the time spent trying to compress
TIFFSetField(output, TIFFTAG_ZIPQUALITY, config.zlevel);
}
}
template <typename T1, typename T2>
void save_as_tiff(T1 & file, T2 const& image, tiff_config const& config)
{
using pixel_type = typename T2::pixel_type;
const int width = image.width();
const int height = image.height();
TIFF* output = RealTIFFOpen("mapnik_tiff_stream",
"wm",
(thandle_t)&file,
tiff_dummy_read_proc,
tiff_write_proc,
tiff_seek_proc,
tiff_close_proc,
tiff_size_proc,
tiff_dummy_map_proc,
tiff_dummy_unmap_proc);
if (! output)
{
throw image_writer_exception("Could not write TIFF");
}
TIFFSetField(output, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(output, TIFFTAG_IMAGELENGTH, height);
TIFFSetField(output, TIFFTAG_IMAGEDEPTH, 1);
set_tiff_config(output, config);
// Set tags that vary based on the type of data being provided.
tag_setter set(output, config);
set(image);
// Use specific types of writing methods.
if (TIFF_WRITE_SCANLINE == config.method)
{
// Process Scanline
TIFFSetField(output, TIFFTAG_ROWSPERSTRIP, 1);
int next_scanline = 0;
std::unique_ptr<pixel_type[]> row (new pixel_type[width]);
while (next_scanline < height)
{
std::copy(image.get_row(next_scanline), image.get_row(next_scanline) + width, row.get());
TIFFWriteScanline(output, row.get(), next_scanline, 0);
++next_scanline;
}
}
else if (TIFF_WRITE_STRIPPED == config.method)
{
std::size_t rows_per_strip = config.rows_per_strip;
if (0 == rows_per_strip)
{
rows_per_strip = height;
}
TIFFSetField(output, TIFFTAG_ROWSPERSTRIP, rows_per_strip);
std::size_t strip_size = width * rows_per_strip;
std::unique_ptr<pixel_type[]> strip_buffer(new pixel_type[strip_size]);
for (int y=0; y < height; y+=rows_per_strip)
{
int ty1 = std::min(height, static_cast<int>(y + rows_per_strip)) - y;
int row = y;
for (int ty = 0; ty < ty1; ++ty, ++row)
{
std::copy(image.get_row(row), image.get_row(row) + width, strip_buffer.get() + ty * width);
}
if (TIFFWriteEncodedStrip(output, TIFFComputeStrip(output, y, 0), strip_buffer.get(), strip_size * sizeof(pixel_type)) == -1)
{
throw image_writer_exception("Could not write TIFF - TIFF Tile Write failed");
}
}
}
else if (TIFF_WRITE_TILED == config.method)
{
int tile_width = config.tile_width;
int tile_height = config.tile_height;
if (0 == tile_height)
{
tile_height = height;
if (height % 16 > 0)
{
tile_height = height + 16 - (height % 16);
}
}
if (0 == tile_width)
{
tile_width = width;
if (width % 16 > 0)
{
tile_width = width + 16 - (width % 16);
}
}
TIFFSetField(output, TIFFTAG_TILEWIDTH, tile_width);
TIFFSetField(output, TIFFTAG_TILELENGTH, tile_height);
TIFFSetField(output, TIFFTAG_TILEDEPTH, 1);
std::size_t tile_size = tile_width * tile_height;
std::unique_ptr<pixel_type[]> image_out (new pixel_type[tile_size]);
int end_y = (height / tile_height + 1) * tile_height;
int end_x = (width / tile_width + 1) * tile_width;
end_y = std::min(end_y, height);
end_x = std::min(end_x, width);
for (int y = 0; y < end_y; y += tile_height)
{
int ty1 = std::min(height, y + tile_height) - y;
for (int x = 0; x < end_x; x += tile_width)
{
// Prefill the entire array with zeros.
std::fill(image_out.get(), image_out.get() + tile_size, 0);
int tx1 = std::min(width, x + tile_width);
int row = y;
for (int ty = 0; ty < ty1; ++ty, ++row)
{
std::copy(image.get_row(row, x), image.get_row(row, tx1), image_out.get() + ty * tile_width);
}
if (TIFFWriteEncodedTile(output, TIFFComputeTile(output, x, y, 0, 0), image_out.get(), tile_size * sizeof(pixel_type)) == -1)
{
throw image_writer_exception("Could not write TIFF - TIFF Tile Write failed");
}
}
}
}
// TODO - handle palette images
// std::vector<mapnik::rgb> const& palette
// unsigned short r[256], g[256], b[256];
// for (int i = 0; i < (1 << 24); ++i)
// {
// r[i] = (unsigned short)palette[i * 3 + 0] << 8;
// g[i] = (unsigned short)palette[i * 3 + 1] << 8;
// b[i] = (unsigned short)palette[i * 3 + 2] << 8;
// }
// TIFFSetField(output, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_PALETTE);
// TIFFSetField(output, TIFFTAG_COLORMAP, r, g, b);
RealTIFFClose(output);
}
}
#endif // MAPNIK_TIFF_IO_HPP