Auto-update: Thu Jun 27 13:16:34 PDT 2024
This commit is contained in:
parent
b81c3c2948
commit
893b0da232
6 changed files with 140 additions and 43 deletions
sijapi
|
@ -12,7 +12,7 @@ from typing import List, Optional
|
||||||
import traceback
|
import traceback
|
||||||
import logging
|
import logging
|
||||||
from .logs import Logger
|
from .logs import Logger
|
||||||
from .classes import AutoResponder, IMAPConfig, SMTPConfig, EmailAccount, EmailContact, IncomingEmail, TimezoneTracker, Database
|
from .classes import AutoResponder, IMAPConfig, SMTPConfig, EmailAccount, EmailContact, IncomingEmail, TimezoneTracker, Database, PyGeolocator
|
||||||
|
|
||||||
# from sijapi.config.config import load_config
|
# from sijapi.config.config import load_config
|
||||||
# cfg = load_config()
|
# cfg = load_config()
|
||||||
|
@ -56,7 +56,6 @@ os.makedirs(REQUESTS_DIR, exist_ok=True)
|
||||||
REQUESTS_LOG_PATH = LOGS_DIR / "requests.log"
|
REQUESTS_LOG_PATH = LOGS_DIR / "requests.log"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### LOCATE AND WEATHER LOCALIZATIONS
|
### LOCATE AND WEATHER LOCALIZATIONS
|
||||||
USER_FULLNAME = os.getenv('USER_FULLNAME')
|
USER_FULLNAME = os.getenv('USER_FULLNAME')
|
||||||
USER_BIO = os.getenv('USER_BIO')
|
USER_BIO = os.getenv('USER_BIO')
|
||||||
|
@ -68,7 +67,8 @@ VISUALCROSSING_API_KEY = os.getenv("VISUALCROSSING_API_KEY")
|
||||||
GEONAMES_TXT = DATA_DIR / "geonames.txt"
|
GEONAMES_TXT = DATA_DIR / "geonames.txt"
|
||||||
LOCATIONS_CSV = DATA_DIR / "US.csv"
|
LOCATIONS_CSV = DATA_DIR / "US.csv"
|
||||||
TZ = tz.gettz(os.getenv("TZ", "America/Los_Angeles"))
|
TZ = tz.gettz(os.getenv("TZ", "America/Los_Angeles"))
|
||||||
DynamicTZ = TimezoneTracker(DB)
|
TZ_CACHE = DATA_DIR / "tzcache.json"
|
||||||
|
DynamicTZ = TimezoneTracker(TZ_CACHE)
|
||||||
|
|
||||||
### Obsidian & notes
|
### Obsidian & notes
|
||||||
ALLOWED_FILENAME_CHARS = r'[^\w \.-]'
|
ALLOWED_FILENAME_CHARS = r'[^\w \.-]'
|
||||||
|
@ -90,13 +90,14 @@ YEAR_FMT = os.getenv("YEAR_FMT")
|
||||||
MONTH_FMT = os.getenv("MONTH_FMT")
|
MONTH_FMT = os.getenv("MONTH_FMT")
|
||||||
DAY_FMT = os.getenv("DAY_FMT")
|
DAY_FMT = os.getenv("DAY_FMT")
|
||||||
DAY_SHORT_FMT = os.getenv("DAY_SHORT_FMT")
|
DAY_SHORT_FMT = os.getenv("DAY_SHORT_FMT")
|
||||||
|
GEOLOCATOR = PyGeolocator
|
||||||
|
|
||||||
### Large language model
|
### Large language model
|
||||||
LLM_URL = os.getenv("LLM_URL", "http://localhost:11434")
|
LLM_URL = os.getenv("LLM_URL", "http://localhost:11434")
|
||||||
LLM_SYS_MSG = os.getenv("SYSTEM_MSG", "You are a helpful AI assistant.")
|
LLM_SYS_MSG = os.getenv("SYSTEM_MSG", "You are a helpful AI assistant.")
|
||||||
SUMMARY_INSTRUCT = os.getenv('SUMMARY_INSTRUCT', "You are an AI assistant that provides accurate summaries of text -- nothing more and nothing less. You must not include ANY extraneous text other than the sumary. Do not include comments apart from the summary, do not preface the summary, and do not provide any form of postscript. Do not add paragraph breaks. Do not add any kind of formatting. Your response should begin with, consist of, and end with an accurate plaintext summary.")
|
SUMMARY_INSTRUCT = os.getenv('SUMMARY_INSTRUCT', "You are an AI assistant that provides accurate summaries of text -- nothing more and nothing less. You must not include ANY extraneous text other than the sumary. Do not include comments apart from the summary, do not preface the summary, and do not provide any form of postscript. Do not add paragraph breaks. Do not add any kind of formatting. Your response should begin with, consist of, and end with an accurate plaintext summary.")
|
||||||
SUMMARY_INSTRUCT_TTS = os.getenv('SUMMARY_INSTRUCT_TTS', "You are an AI assistant that provides email summaries for Sanjay. Your response will undergo Text-To-Speech conversion and added to Sanjay's private podcast. Providing adequate context (Sanjay did not send this question to you, he will only hear your response) but aiming for conciseness and precision, and bearing in mind the Text-To-Speech conversion (avoiding acronyms and formalities), summarize the following email.")
|
SUMMARY_INSTRUCT_TTS = os.getenv('SUMMARY_INSTRUCT_TTS', "You are an AI assistant that provides email summaries for Sanjay. Your response will undergo Text-To-Speech conversion and added to Sanjay's private podcast. Providing adequate context (Sanjay did not send this question to you, he will only hear your response) but aiming for conciseness and precision, and bearing in mind the Text-To-Speech conversion (avoiding acronyms and formalities), summarize the following email.")
|
||||||
DEFAULT_LLM = os.getenv("DEFAULT_LLM", "dolphin-mistral")
|
DEFAULT_LLM = os.getenv("DEFAULT_LLM", "llama3")
|
||||||
DEFAULT_VISION = os.getenv("DEFAULT_VISION", "llava")
|
DEFAULT_VISION = os.getenv("DEFAULT_VISION", "llava")
|
||||||
DEFAULT_VOICE = os.getenv("DEFAULT_VOICE", "Luna")
|
DEFAULT_VOICE = os.getenv("DEFAULT_VOICE", "Luna")
|
||||||
DEFAULT_11L_VOICE = os.getenv("DEFAULT_11L_VOICE", "Victoria")
|
DEFAULT_11L_VOICE = os.getenv("DEFAULT_11L_VOICE", "Victoria")
|
||||||
|
|
|
@ -8,6 +8,11 @@ from pydantic import BaseModel, Field
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
import asyncpg
|
import asyncpg
|
||||||
import os
|
import os
|
||||||
|
from typing import Optional, Tuple, Union
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
import json
|
||||||
|
from timezonefinder import TimezoneFinder
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
@ -21,6 +26,38 @@ from typing import Optional
|
||||||
import asyncpg
|
import asyncpg
|
||||||
from contextlib import asynccontextmanager
|
from contextlib import asynccontextmanager
|
||||||
|
|
||||||
|
import reverse_geocoder as rg
|
||||||
|
from timezonefinder import TimezoneFinder
|
||||||
|
from srtm import get_data
|
||||||
|
|
||||||
|
class PyGeolocator:
|
||||||
|
def __init__(self):
|
||||||
|
self.tf = TimezoneFinder()
|
||||||
|
self.srtm_data = get_data()
|
||||||
|
|
||||||
|
def get_location(self, lat, lon):
|
||||||
|
result = rg.search((lat, lon))
|
||||||
|
return result[0]['name'], result[0]['admin1'], result[0]['cc']
|
||||||
|
|
||||||
|
def get_elevation(self, lat, lon):
|
||||||
|
return self.srtm_data.get_elevation(lat, lon)
|
||||||
|
|
||||||
|
def get_timezone(self, lat, lon):
|
||||||
|
return self.tf.timezone_at(lat=lat, lng=lon)
|
||||||
|
|
||||||
|
def lookup(self, lat, lon):
|
||||||
|
city, state, country = self.get_location(lat, lon)
|
||||||
|
elevation = self.get_elevation(lat, lon)
|
||||||
|
timezone = self.get_timezone(lat, lon)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"city": city,
|
||||||
|
"state": state,
|
||||||
|
"country": country,
|
||||||
|
"elevation": elevation,
|
||||||
|
"timezone": timezone
|
||||||
|
}
|
||||||
|
|
||||||
class Database(BaseModel):
|
class Database(BaseModel):
|
||||||
host: str = Field(..., description="Database host")
|
host: str = Field(..., description="Database host")
|
||||||
port: int = Field(5432, description="Database port")
|
port: int = Field(5432, description="Database port")
|
||||||
|
@ -108,7 +145,6 @@ class IncomingEmail(BaseModel):
|
||||||
attachments: List[dict] = []
|
attachments: List[dict] = []
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Location(BaseModel):
|
class Location(BaseModel):
|
||||||
latitude: float
|
latitude: float
|
||||||
longitude: float
|
longitude: float
|
||||||
|
@ -141,24 +177,18 @@ class Location(BaseModel):
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class TimezoneTracker:
|
class TimezoneTracker:
|
||||||
def __init__(self, db_config: Database, cache_file: str = 'timezone_cache.json'):
|
def __init__(self, cache_file: Union[str, Path] = 'timezone_cache.json'):
|
||||||
self.db_config = db_config
|
self.cache_file = Path(cache_file)
|
||||||
self.cache_file = cache_file
|
|
||||||
self.last_timezone: str = "America/Los_Angeles"
|
self.last_timezone: str = "America/Los_Angeles"
|
||||||
self.last_update: Optional[datetime] = None
|
self.last_update: Optional[datetime] = None
|
||||||
self.last_location: Optional[Tuple[float, float]] = None
|
self.last_location: Optional[Tuple[float, float]] = None
|
||||||
|
self.tf = TimezoneFinder()
|
||||||
|
|
||||||
async def find(self, lat: float, lon: float) -> str:
|
def find(self, lat: float, lon: float) -> str:
|
||||||
query = """
|
timezone = self.tf.timezone_at(lat=lat, lng=lon)
|
||||||
SELECT tzid
|
return timezone if timezone else 'Unknown'
|
||||||
FROM timezones
|
|
||||||
WHERE ST_Contains(geom, ST_SetSRID(ST_MakePoint($1, $2), 4326))
|
|
||||||
LIMIT 1;
|
|
||||||
"""
|
|
||||||
async with await self.db_config.get_connection() as conn:
|
|
||||||
result = await conn.fetchrow(query, lon, lat)
|
|
||||||
return result['tzid'] if result else 'Unknown'
|
|
||||||
|
|
||||||
async def refresh(self, location: Union[Location, Tuple[float, float]], force: bool = False) -> str:
|
async def refresh(self, location: Union[Location, Tuple[float, float]], force: bool = False) -> str:
|
||||||
if isinstance(location, Location):
|
if isinstance(location, Location):
|
||||||
|
@ -167,22 +197,15 @@ class TimezoneTracker:
|
||||||
lat, lon = location
|
lat, lon = location
|
||||||
|
|
||||||
current_time = datetime.now()
|
current_time = datetime.now()
|
||||||
|
|
||||||
if (force or
|
if (force or
|
||||||
not self.last_update or
|
not self.last_update or
|
||||||
current_time - self.last_update > timedelta(hours=1) or
|
current_time - self.last_update > timedelta(hours=1) or
|
||||||
self.last_location != (lat, lon)):
|
self.last_location != (lat, lon)):
|
||||||
|
new_timezone = self.find(lat, lon)
|
||||||
new_timezone = await self.find(lat, lon)
|
|
||||||
|
|
||||||
self.last_timezone = new_timezone
|
self.last_timezone = new_timezone
|
||||||
self.last_update = current_time
|
self.last_update = current_time
|
||||||
self.last_location = (lat, lon)
|
self.last_location = (lat, lon)
|
||||||
|
|
||||||
await self.save_to_cache()
|
await self.save_to_cache()
|
||||||
|
|
||||||
return new_timezone
|
|
||||||
|
|
||||||
return self.last_timezone
|
return self.last_timezone
|
||||||
|
|
||||||
async def save_to_cache(self):
|
async def save_to_cache(self):
|
||||||
|
@ -191,12 +214,12 @@ class TimezoneTracker:
|
||||||
'last_update': self.last_update.isoformat() if self.last_update else None,
|
'last_update': self.last_update.isoformat() if self.last_update else None,
|
||||||
'last_location': self.last_location
|
'last_location': self.last_location
|
||||||
}
|
}
|
||||||
with open(self.cache_file, 'w') as f:
|
with self.cache_file.open('w') as f:
|
||||||
json.dump(cache_data, f)
|
json.dump(cache_data, f)
|
||||||
|
|
||||||
async def load_from_cache(self):
|
async def load_from_cache(self):
|
||||||
try:
|
try:
|
||||||
with open(self.cache_file, 'r') as f:
|
with self.cache_file.open('r') as f:
|
||||||
cache_data = json.load(f)
|
cache_data = json.load(f)
|
||||||
self.last_timezone = cache_data.get('last_timezone')
|
self.last_timezone = cache_data.get('last_timezone')
|
||||||
self.last_update = datetime.fromisoformat(cache_data['last_update']) if cache_data.get('last_update') else None
|
self.last_update = datetime.fromisoformat(cache_data['last_update']) if cache_data.get('last_update') else None
|
||||||
|
@ -208,7 +231,7 @@ class TimezoneTracker:
|
||||||
async def get_current(self, location: Union[Location, Tuple[float, float]]) -> str:
|
async def get_current(self, location: Union[Location, Tuple[float, float]]) -> str:
|
||||||
await self.load_from_cache()
|
await self.load_from_cache()
|
||||||
return await self.refresh(location)
|
return await self.refresh(location)
|
||||||
|
|
||||||
async def get_last(self) -> Optional[str]:
|
async def get_last(self) -> Optional[str]:
|
||||||
await self.load_from_cache()
|
await self.load_from_cache()
|
||||||
return self.last_timezone
|
return self.last_timezone
|
||||||
|
|
51
sijapi/data/osm.sh
Executable file
51
sijapi/data/osm.sh
Executable file
|
@ -0,0 +1,51 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
set -e # Exit immediately if a command exits with a non-zero status.
|
||||||
|
|
||||||
|
# Set variables
|
||||||
|
DB_NAME="sij"
|
||||||
|
DB_USER="sij"
|
||||||
|
OSM_FILE="north-america-latest.osm.pbf"
|
||||||
|
FLAT_NODES="/Users/sij/workshop/sijapi/sijapi/data/db/flat-nodes.bin"
|
||||||
|
|
||||||
|
# Ensure the directory for flat-nodes exists
|
||||||
|
mkdir -p "$(dirname "$FLAT_NODES")"
|
||||||
|
|
||||||
|
# Determine total system memory in MB
|
||||||
|
TOTAL_MEM=$(sysctl hw.memsize | awk '{print $2 / 1024 / 1024}')
|
||||||
|
|
||||||
|
# Calculate cache size (50% of total memory, max 32GB)
|
||||||
|
CACHE_SIZE=$(echo "scale=0; $TOTAL_MEM * 0.5 / 1" | bc)
|
||||||
|
CACHE_SIZE=$(( CACHE_SIZE > 32768 ? 32768 : CACHE_SIZE ))
|
||||||
|
|
||||||
|
# Calculate number of processes (number of CPU cores minus 1, min 1)
|
||||||
|
NUM_PROCESSES=$(sysctl -n hw.ncpu)
|
||||||
|
NUM_PROCESSES=$(( NUM_PROCESSES > 1 ? NUM_PROCESSES - 1 : 1 ))
|
||||||
|
|
||||||
|
echo "Starting OSM data import..."
|
||||||
|
|
||||||
|
# Run osm2pgsql
|
||||||
|
osm2pgsql -d $DB_NAME \
|
||||||
|
--create \
|
||||||
|
--slim \
|
||||||
|
-G \
|
||||||
|
--hstore \
|
||||||
|
--tag-transform-script /opt/homebrew/Cellar/osm2pgsql/1.11.0_1/share/osm2pgsql/openstreetmap-carto.lua \
|
||||||
|
-C $CACHE_SIZE \
|
||||||
|
--number-processes $NUM_PROCESSES \
|
||||||
|
-S /opt/homebrew/Cellar/osm2pgsql/1.11.0_1/share/osm2pgsql/default.style \
|
||||||
|
--prefix osm \
|
||||||
|
-H localhost \
|
||||||
|
-P 5432 \
|
||||||
|
-U $DB_USER \
|
||||||
|
--flat-nodes $FLAT_NODES \
|
||||||
|
$OSM_FILE
|
||||||
|
|
||||||
|
echo "OSM data import completed. Creating indexes..."
|
||||||
|
|
||||||
|
# Create indexes (adjust table names if necessary)
|
||||||
|
psql -d $DB_NAME -U $DB_USER -c "CREATE INDEX IF NOT EXISTS idx_osm_point_way ON osm_point USING GIST (way);"
|
||||||
|
psql -d $DB_NAME -U $DB_USER -c "CREATE INDEX IF NOT EXISTS idx_osm_line_way ON osm_line USING GIST (way);"
|
||||||
|
psql -d $DB_NAME -U $DB_USER -c "CREATE INDEX IF NOT EXISTS idx_osm_polygon_way ON osm_polygon USING GIST (way);"
|
||||||
|
|
||||||
|
echo "Import completed and indexes created."
|
|
@ -204,7 +204,7 @@ tags:
|
||||||
with open(md_path, 'w', encoding='utf-8') as md_file:
|
with open(md_path, 'w', encoding='utf-8') as md_file:
|
||||||
md_file.write(markdown_content)
|
md_file.write(markdown_content)
|
||||||
|
|
||||||
L.INFO(f"Saved markdown to {md_path}")
|
L.DEBUG(f"Saved markdown to {md_path}")
|
||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
@ -221,7 +221,12 @@ async def autorespond(this_email: IncomingEmail, account: EmailAccount):
|
||||||
auto_response_subject = f"Auto-Response Re: {this_email.subject}"
|
auto_response_subject = f"Auto-Response Re: {this_email.subject}"
|
||||||
auto_response_body = await generate_auto_response_body(this_email, profile, account)
|
auto_response_body = await generate_auto_response_body(this_email, profile, account)
|
||||||
L.DEBUG(f"Auto-response: {auto_response_body}")
|
L.DEBUG(f"Auto-response: {auto_response_body}")
|
||||||
await send_auto_response(this_email.sender, auto_response_subject, auto_response_body, profile, account)
|
success = await send_auto_response(this_email.sender, auto_response_subject, auto_response_body, profile, account)
|
||||||
|
if success == True:
|
||||||
|
return True
|
||||||
|
|
||||||
|
L.WARN(f"We were not able to successfully auto-respond to {this_email.subject}")
|
||||||
|
return False
|
||||||
|
|
||||||
async def send_auto_response(to_email, subject, body, profile, account):
|
async def send_auto_response(to_email, subject, body, profile, account):
|
||||||
try:
|
try:
|
||||||
|
@ -264,13 +269,16 @@ async def save_processed_uid(filename: Path, account_name: str, uid: str):
|
||||||
f.write(f"{account_name}:{uid}\n")
|
f.write(f"{account_name}:{uid}\n")
|
||||||
|
|
||||||
async def process_account_summarization(account: EmailAccount):
|
async def process_account_summarization(account: EmailAccount):
|
||||||
summarized_log = EMAIL_LOGS / "summarized.txt"
|
summarized_log = EMAIL_LOGS / account.name / "summarized.txt"
|
||||||
|
os.makedirs(summarized_log.parent, exist_ok = True)
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
processed_uids = await load_processed_uids(summarized_log)
|
processed_uids = await load_processed_uids(summarized_log)
|
||||||
|
L.DEBUG(f"{len(processed_uids)} emails marked as already summarized are being ignored.")
|
||||||
with get_imap_connection(account) as inbox:
|
with get_imap_connection(account) as inbox:
|
||||||
unread_messages = inbox.messages(unread=True)
|
unread_messages = inbox.messages(unread=True)
|
||||||
|
L.DEBUG(f"There are {len(unread_messages)} unread messages.")
|
||||||
for uid, message in unread_messages:
|
for uid, message in unread_messages:
|
||||||
uid_str = uid.decode() if isinstance(uid, bytes) else str(uid)
|
uid_str = uid.decode() if isinstance(uid, bytes) else str(uid)
|
||||||
if uid_str not in processed_uids:
|
if uid_str not in processed_uids:
|
||||||
|
@ -282,27 +290,35 @@ async def process_account_summarization(account: EmailAccount):
|
||||||
recipients=recipients,
|
recipients=recipients,
|
||||||
subject=message.subject,
|
subject=message.subject,
|
||||||
body=clean_email_content(message.body['html'][0]) if message.body['html'] else clean_email_content(message.body['plain'][0]) or "",
|
body=clean_email_content(message.body['html'][0]) if message.body['html'] else clean_email_content(message.body['plain'][0]) or "",
|
||||||
attachments=message.attachments
|
attachments=message.attachments
|
||||||
)
|
)
|
||||||
if account.summarize:
|
if account.summarize:
|
||||||
save_success = await save_email(this_email, account)
|
save_success = await save_email(this_email, account)
|
||||||
if save_success:
|
if save_success:
|
||||||
await save_processed_uid(summarized_log, account.name, uid_str)
|
await save_processed_uid(summarized_log, account.name, uid_str)
|
||||||
L.INFO(f"Summarized email: {uid_str}")
|
L.INFO(f"Summarized email: {uid_str}")
|
||||||
|
else:
|
||||||
|
L.WARN(f"Failed to summarize {this_email.subject}")
|
||||||
|
else:
|
||||||
|
L.INFO(f"account.summarize shows as false.")
|
||||||
|
else:
|
||||||
|
L.DEBUG(f"Skipping {uid_str} because it was already processed.")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
L.ERR(f"An error occurred during summarization for account {account.name}: {e}")
|
L.ERR(f"An error occurred during summarization for account {account.name}: {e}")
|
||||||
|
|
||||||
await asyncio.sleep(account.refresh)
|
await asyncio.sleep(account.refresh)
|
||||||
|
|
||||||
async def process_account_autoresponding(account: EmailAccount):
|
async def process_account_autoresponding(account: EmailAccount):
|
||||||
autoresponded_log = EMAIL_LOGS / "autoresponded.txt"
|
autoresponded_log = EMAIL_LOGS / account.name / "autoresponded.txt"
|
||||||
|
os.makedirs(autoresponded_log.parent, exist_ok = True)
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
processed_uids = await load_processed_uids(autoresponded_log)
|
processed_uids = await load_processed_uids(autoresponded_log)
|
||||||
L.DEBUG(f"{len(processed_uids)} already processed emails are being ignored.")
|
L.DEBUG(f"{len(processed_uids)} emails marked as already responded to are being ignored.")
|
||||||
with get_imap_connection(account) as inbox:
|
with get_imap_connection(account) as inbox:
|
||||||
unread_messages = inbox.messages(unread=True)
|
unread_messages = inbox.messages(unread=True)
|
||||||
|
L.DEBUG(f"There are {len(unread_messages)} unread messages.")
|
||||||
for uid, message in unread_messages:
|
for uid, message in unread_messages:
|
||||||
uid_str = uid.decode() if isinstance(uid, bytes) else str(uid)
|
uid_str = uid.decode() if isinstance(uid, bytes) else str(uid)
|
||||||
if uid_str not in processed_uids:
|
if uid_str not in processed_uids:
|
||||||
|
@ -320,7 +336,10 @@ async def process_account_autoresponding(account: EmailAccount):
|
||||||
respond_success = await autorespond(this_email, account)
|
respond_success = await autorespond(this_email, account)
|
||||||
if respond_success:
|
if respond_success:
|
||||||
await save_processed_uid(autoresponded_log, account.name, uid_str)
|
await save_processed_uid(autoresponded_log, account.name, uid_str)
|
||||||
L.WARN(f"Auto-responded to email: {uid_str}")
|
L.WARN(f"Auto-responded to email: {this_email.subject}")
|
||||||
|
else:
|
||||||
|
L.WARN(f"Failed auto-response to {this_email.subject}")
|
||||||
|
L.DEBUG(f"Skipping {uid_str} because it was already processed.")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
L.ERR(f"An error occurred during auto-responding for account {account.name}: {e}")
|
L.ERR(f"An error occurred during auto-responding for account {account.name}: {e}")
|
||||||
|
|
||||||
|
|
|
@ -211,7 +211,7 @@ async def process_for_daily_note(file: Optional[UploadFile] = File(None), text:
|
||||||
|
|
||||||
|
|
||||||
text_entry = text if text else ""
|
text_entry = text if text else ""
|
||||||
L.INFO(f"transcription: {transcription}\nfile_entry: {file_entry}\ntext_entry: {text_entry}")
|
L.DEBUG(f"transcription: {transcription}\nfile_entry: {file_entry}\ntext_entry: {text_entry}")
|
||||||
return await add_to_daily_note(transcription, file_entry, text_entry, now)
|
return await add_to_daily_note(transcription, file_entry, text_entry, now)
|
||||||
|
|
||||||
|
|
||||||
|
@ -520,19 +520,22 @@ async def process_archive(
|
||||||
markdown_content = f"---\n"
|
markdown_content = f"---\n"
|
||||||
markdown_content += f"title: {readable_title}\n"
|
markdown_content += f"title: {readable_title}\n"
|
||||||
markdown_content += f"added: {timestamp}\n"
|
markdown_content += f"added: {timestamp}\n"
|
||||||
|
markdown_content += f"url: {url}"
|
||||||
|
markdown_content += f"date: {datetime.now().strftime('%Y-%m-%d')}"
|
||||||
markdown_content += f"---\n\n"
|
markdown_content += f"---\n\n"
|
||||||
markdown_content += f"# {readable_title}\n\n"
|
markdown_content += f"# {readable_title}\n\n"
|
||||||
|
markdown_content += f"Clipped from [{url}]({url}) on {timestamp}"
|
||||||
markdown_content += content
|
markdown_content += content
|
||||||
|
|
||||||
try:
|
try:
|
||||||
markdown_path.parent.mkdir(parents=True, exist_ok=True)
|
markdown_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
with open(markdown_path, 'w', encoding=encoding) as md_file:
|
with open(markdown_path, 'w', encoding=encoding) as md_file:
|
||||||
md_file.write(markdown_content)
|
md_file.write(markdown_content)
|
||||||
L.INFO(f"Successfully saved to {markdown_path}")
|
L.DEBUG(f"Successfully saved to {markdown_path}")
|
||||||
return markdown_path
|
return markdown_path
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
L.ERR(f"Failed to write markdown file: {str(e)}")
|
L.WARN(f"Failed to write markdown file: {str(e)}")
|
||||||
raise HTTPException(status_code=500, detail=f"Failed to write markdown file: {str(e)}")
|
return None
|
||||||
|
|
||||||
def download_file(url, folder):
|
def download_file(url, folder):
|
||||||
os.makedirs(folder, exist_ok=True)
|
os.makedirs(folder, exist_ok=True)
|
||||||
|
@ -800,7 +803,7 @@ async def update_dn_weather(date_time: datetime):
|
||||||
city = city if city else loc.city
|
city = city if city else loc.city
|
||||||
city = city if city else loc.house_number + ' ' + loc.road
|
city = city if city else loc.house_number + ' ' + loc.road
|
||||||
|
|
||||||
L.INFO(f"City geocoded: {city}")
|
L.DEBUG(f"City geocoded: {city}")
|
||||||
|
|
||||||
# Assemble journal path
|
# Assemble journal path
|
||||||
absolute_path, relative_path = assemble_journal_path(date_time, filename="Weather", extension=".md", no_timestamp = True)
|
absolute_path, relative_path = assemble_journal_path(date_time, filename="Weather", extension=".md", no_timestamp = True)
|
||||||
|
|
|
@ -295,7 +295,7 @@ async def extract_text_from_pdf(file_path: str) -> str:
|
||||||
L.ERR(f"Error extracting text with pdfminer.six: {e}")
|
L.ERR(f"Error extracting text with pdfminer.six: {e}")
|
||||||
|
|
||||||
# If both methods fail or are deemed insufficient, use OCR as the last resort
|
# If both methods fail or are deemed insufficient, use OCR as the last resort
|
||||||
L.INFO("Falling back to OCR for text extraction...")
|
L.DEBUG("Falling back to OCR for text extraction...")
|
||||||
return await ocr_pdf(file_path)
|
return await ocr_pdf(file_path)
|
||||||
|
|
||||||
async def is_valid_pdf(file_path: str) -> bool:
|
async def is_valid_pdf(file_path: str) -> bool:
|
||||||
|
@ -331,7 +331,7 @@ async def extract_text_from_pdf(file_path: str) -> str:
|
||||||
L.ERR(f"Error extracting text with pdfminer.six: {str(e)}")
|
L.ERR(f"Error extracting text with pdfminer.six: {str(e)}")
|
||||||
|
|
||||||
# Fall back to OCR
|
# Fall back to OCR
|
||||||
L.INFO("Falling back to OCR for text extraction...")
|
L.DEBUG("Falling back to OCR for text extraction...")
|
||||||
try:
|
try:
|
||||||
images = convert_from_path(file_path)
|
images = convert_from_path(file_path)
|
||||||
ocr_texts = await asyncio.gather(*(asyncio.to_thread(pytesseract.image_to_string, img) for img in images))
|
ocr_texts = await asyncio.gather(*(asyncio.to_thread(pytesseract.image_to_string, img) for img in images))
|
||||||
|
|
Loading…
Add table
Reference in a new issue