Auto-update: Mon Jul 1 20:48:53 PDT 2024
This commit is contained in:
parent
79d139312a
commit
acb5e0ccaa
16 changed files with 140 additions and 110 deletions
|
@ -1,58 +1 @@
|
|||
import requests
|
||||
import os
|
||||
import json
|
||||
|
||||
filename = 'location_log.json'
|
||||
server = '!{!{ ENTER A PUBLIC URL TO YOUR SIJAPI INSTANCE }!}!'
|
||||
api_key = '!{!{ ENTER YOUR GLOBAL_API_KEY HERE }!}!'
|
||||
|
||||
def upload_location_data(data):
|
||||
headers = {
|
||||
'Authorization': f'Bearer {api_key}',
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
|
||||
try:
|
||||
response = requests.post(f'{server}/locate', json=data, headers=headers)
|
||||
if response.status_code == 200:
|
||||
print('Location and weather updated successfully.')
|
||||
os.remove(filename)
|
||||
else:
|
||||
print(f'Failed to post data. Status code: {response.status_code}')
|
||||
print(response.text)
|
||||
except requests.RequestException as e:
|
||||
print(f'Error posting data: {e}')
|
||||
|
||||
if not os.path.exists(filename):
|
||||
print('No data to upload.')
|
||||
else:
|
||||
try:
|
||||
with open(filename, 'r') as f:
|
||||
data = json.load(f)
|
||||
# Ensure all datetime fields are correctly named and add default context if missing
|
||||
for location in data:
|
||||
if 'date' in location:
|
||||
location['datetime'] = location.pop('date')
|
||||
# Ensure context dictionary exists with all required keys
|
||||
if 'context' not in location:
|
||||
location['context'] = {
|
||||
'action': 'manual',
|
||||
'device_type': 'Pythonista',
|
||||
'device_model': None,
|
||||
'device_name': None,
|
||||
'device_os': None
|
||||
}
|
||||
else:
|
||||
context = location['context']
|
||||
context.setdefault('action', 'manual')
|
||||
context.setdefault('device_type', 'Pythonista')
|
||||
context.setdefault('device_model', None)
|
||||
context.setdefault('device_name', None)
|
||||
context.setdefault('device_os', None)
|
||||
upload_location_data(data)
|
||||
except FileNotFoundError:
|
||||
print(f'File {filename} not found.')
|
||||
except json.JSONDecodeError:
|
||||
print(f'Error decoding JSON from {filename}.')
|
||||
except Exception as e:
|
||||
print(f'Unexpected error: {e}')
|
||||
how
|
|
@ -1,3 +1,4 @@
|
|||
# __init__.py
|
||||
import os
|
||||
import json
|
||||
import yaml
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#!/Users/sij/miniforge3/envs/api/bin/python
|
||||
#__main__.py
|
||||
from fastapi import FastAPI, Request, HTTPException, Response
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# classes.py
|
||||
import asyncio
|
||||
import json
|
||||
import math
|
||||
|
|
58
sijapi/cli.py
Normal file
58
sijapi/cli.py
Normal file
|
@ -0,0 +1,58 @@
|
|||
# cli.py
|
||||
|
||||
import click
|
||||
import asyncio
|
||||
from datetime import datetime as dt_datetime, timedelta
|
||||
|
||||
# Import your async functions and dependencies
|
||||
from your_main_app import build_daily_note_range_endpoint, loc
|
||||
|
||||
def async_command(f):
|
||||
@click.command()
|
||||
@click.pass_context
|
||||
def wrapper(ctx, *args, **kwargs):
|
||||
async def run():
|
||||
return await f(*args, **kwargs)
|
||||
return asyncio.run(run())
|
||||
return wrapper
|
||||
|
||||
@click.group()
|
||||
def cli():
|
||||
"""CLI for your application."""
|
||||
pass
|
||||
|
||||
@cli.command()
|
||||
@click.argument('dt_start')
|
||||
@click.argument('dt_end')
|
||||
@async_command
|
||||
async def bulk_note_range(dt_start: str, dt_end: str):
|
||||
"""
|
||||
Build daily notes for a date range.
|
||||
|
||||
DT_START and DT_END should be in YYYY-MM-DD format.
|
||||
"""
|
||||
try:
|
||||
start_date = dt_datetime.strptime(dt_start, "%Y-%m-%d")
|
||||
end_date = dt_datetime.strptime(dt_end, "%Y-%m-%d")
|
||||
except ValueError:
|
||||
click.echo("Error: Dates must be in YYYY-MM-DD format.")
|
||||
return
|
||||
|
||||
if start_date > end_date:
|
||||
click.echo("Error: Start date must be before or equal to end date.")
|
||||
return
|
||||
|
||||
results = []
|
||||
current_date = start_date
|
||||
while current_date <= end_date:
|
||||
formatted_date = await loc.dt(current_date)
|
||||
result = await build_daily_note(formatted_date)
|
||||
results.append(result)
|
||||
current_date += timedelta(days=1)
|
||||
|
||||
click.echo("Generated notes for the following dates:")
|
||||
for url in results:
|
||||
click.echo(url)
|
||||
|
||||
if __name__ == '__main__':
|
||||
cli()
|
|
@ -1,22 +1,34 @@
|
|||
from aura_sr import AuraSR
|
||||
from PIL import Image
|
||||
import torch
|
||||
import os
|
||||
|
||||
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR")
|
||||
# Set environment variables for MPS
|
||||
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
|
||||
|
||||
# Initialize device as CPU for default
|
||||
device = torch.device('cpu')
|
||||
|
||||
# Check if MPS is available
|
||||
if torch.backends.mps.is_available():
|
||||
if not torch.backends.mps.is_built():
|
||||
print("MPS not available because the current PyTorch install was not built with MPS enabled.")
|
||||
else:
|
||||
device = torch.device('mps:0')
|
||||
|
||||
# Overwrite the default CUDA device with MPS
|
||||
torch.cuda.default_stream = device
|
||||
|
||||
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR").to(device)
|
||||
|
||||
def load_image_from_path(file_path):
|
||||
# Open image file
|
||||
return Image.open(file_path)
|
||||
|
||||
def upscale_and_save(original_path):
|
||||
# load the image from the path
|
||||
original_image = load_image_from_path(original_path)
|
||||
|
||||
# upscale the image using the pretrained model
|
||||
upscaled_image = aura_sr.upscale_4x(original_image)
|
||||
|
||||
# save the upscaled image back to the original path
|
||||
# Overwrite the original image
|
||||
upscaled_image.save(original_path)
|
||||
|
||||
# Now to use the function, provide the image path
|
||||
# Insert your image path
|
||||
upscale_and_save("/Users/sij/workshop/sijapi/sijapi/testbed/API__00482_ 2.png")
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# logs.py
|
||||
import os
|
||||
import sys
|
||||
from loguru import logger
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
'''
|
||||
Uses whisper_cpp to create an OpenAI-compatible Whisper web service.
|
||||
'''
|
||||
# routers/asr.py
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
|
|
|
@ -66,7 +66,7 @@ IG_VISION_LLM = os.getenv("IG_VISION_LLM")
|
|||
IG_PROMPT_LLM = os.getenv("IG_PROMPT_LLM")
|
||||
IG_IMG_GEN = os.getenv("IG_IMG_GEN", "ComfyUI")
|
||||
IG_OUTPUT_PLATFORMS = os.getenv("IG_OUTPUT_PLATFORMS", "ig,ghost,obsidian").split(',')
|
||||
SD_WORKFLOWS_DIR = os.path.join(COMFYUI_DIR, 'workflows')
|
||||
IMG_WORKFLOWS_DIR = os.path.join(COMFYUI_DIR, 'workflows')
|
||||
COMFYUI_OUTPUT_DIR = COMFYUI_DIR / 'output'
|
||||
IG_PROFILES_DIR = os.path.join(BASE_DIR, 'profiles')
|
||||
IG_PROFILE_DIR = os.path.join(IG_PROFILES_DIR, PROFILE)
|
||||
|
@ -793,7 +793,7 @@ def load_json(json_payload, workflow):
|
|||
if json_payload:
|
||||
return json.loads(json_payload)
|
||||
elif workflow:
|
||||
workflow_path = os.path.join(SD_WORKFLOWS_DIR, f"{workflow}.json" if not workflow.endswith('.json') else workflow)
|
||||
workflow_path = os.path.join(IMG_WORKFLOWS_DIR, f"{workflow}.json" if not workflow.endswith('.json') else workflow)
|
||||
with open(workflow_path, 'r') as file:
|
||||
return json.load(file)
|
||||
else:
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
Image generation module using StableDiffusion and similar models by way of ComfyUI.
|
||||
DEPENDS ON:
|
||||
LLM module
|
||||
COMFYUI_URL, COMFYUI_DIR, COMFYUI_OUTPUT_DIR, TS_SUBNET, TS_ADDRESS, DATA_DIR, SD_CONFIG_DIR, SD_IMAGE_DIR, SD_WORKFLOWS_DIR, LOCAL_HOSTS, API.URL, PHOTOPRISM_USER*, PHOTOPRISM_URL*, PHOTOPRISM_PASS*
|
||||
COMFYUI_URL, COMFYUI_DIR, COMFYUI_OUTPUT_DIR, TS_SUBNET, TS_ADDRESS, DATA_DIR, IMG_CONFIG_DIR, IMG_DIR, IMG_WORKFLOWS_DIR, LOCAL_HOSTS, API.URL, PHOTOPRISM_USER*, PHOTOPRISM_URL*, PHOTOPRISM_PASS*
|
||||
*unimplemented.
|
||||
'''
|
||||
|
||||
|
@ -30,7 +30,7 @@ import shutil
|
|||
# from photoprism.Photo import Photo
|
||||
# from webdav3.client import Client
|
||||
from sijapi.routers.llm import query_ollama
|
||||
from sijapi import API, L, COMFYUI_URL, COMFYUI_OUTPUT_DIR, SD_CONFIG_PATH, SD_IMAGE_DIR, SD_WORKFLOWS_DIR
|
||||
from sijapi import API, L, COMFYUI_URL, COMFYUI_OUTPUT_DIR, IMG_CONFIG_PATH, IMG_DIR, IMG_WORKFLOWS_DIR
|
||||
|
||||
img = APIRouter()
|
||||
|
||||
|
@ -86,7 +86,7 @@ async def workflow(prompt: str, scene: str = None, size: str = None, earlyout: s
|
|||
width, height = map(int, size.split('x'))
|
||||
L.DEBUG(f"Parsed width: {width}; parsed height: {height}")
|
||||
|
||||
workflow_path = Path(SD_WORKFLOWS_DIR) / scene_workflow['workflow']
|
||||
workflow_path = Path(IMG_WORKFLOWS_DIR) / scene_workflow['workflow']
|
||||
workflow_data = json.loads(workflow_path.read_text())
|
||||
|
||||
post = {
|
||||
|
@ -104,7 +104,7 @@ async def workflow(prompt: str, scene: str = None, size: str = None, earlyout: s
|
|||
print(f"Prompt ID: {prompt_id}")
|
||||
|
||||
max_size = max(width, height) if downscale_to_fit else None
|
||||
destination_path = Path(destination_path).with_suffix(".jpg") if destination_path else SD_IMAGE_DIR / f"{prompt_id}.jpg"
|
||||
destination_path = Path(destination_path).with_suffix(".jpg") if destination_path else IMG_DIR / f"{prompt_id}.jpg"
|
||||
|
||||
if earlyout:
|
||||
asyncio.create_task(generate_and_save_image(prompt_id, saved_file_key, max_size, destination_path))
|
||||
|
@ -132,7 +132,7 @@ async def generate_and_save_image(prompt_id, saved_file_key, max_size, destinati
|
|||
|
||||
|
||||
def get_web_path(file_path: Path) -> str:
|
||||
uri = file_path.relative_to(SD_IMAGE_DIR)
|
||||
uri = file_path.relative_to(IMG_DIR)
|
||||
web_path = f"{API.URL}/img/{uri}"
|
||||
return web_path
|
||||
|
||||
|
@ -174,8 +174,8 @@ async def get_image(status_data, key):
|
|||
|
||||
|
||||
async def save_as_jpg(image_data, prompt_id, max_size = None, quality = 100, destination_path: Path = None):
|
||||
destination_path_png = (SD_IMAGE_DIR / prompt_id).with_suffix(".png")
|
||||
destination_path_jpg = destination_path.with_suffix(".jpg") if destination_path else (SD_IMAGE_DIR / prompt_id).with_suffix(".jpg")
|
||||
destination_path_png = (IMG_DIR / prompt_id).with_suffix(".png")
|
||||
destination_path_jpg = destination_path.with_suffix(".jpg") if destination_path else (IMG_DIR / prompt_id).with_suffix(".jpg")
|
||||
|
||||
try:
|
||||
destination_path_png.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
@ -224,16 +224,16 @@ def set_presets(workflow_data, preset_values):
|
|||
|
||||
|
||||
def get_return_path(destination_path):
|
||||
sd_dir = Path(SD_IMAGE_DIR)
|
||||
sd_dir = Path(IMG_DIR)
|
||||
if destination_path.parent.samefile(sd_dir):
|
||||
return destination_path.name
|
||||
else:
|
||||
return str(destination_path)
|
||||
|
||||
def get_scene(scene):
|
||||
with open(SD_CONFIG_PATH, 'r') as SD_CONFIG_file:
|
||||
SD_CONFIG = yaml.safe_load(SD_CONFIG_file)
|
||||
for scene_data in SD_CONFIG['scenes']:
|
||||
with open(IMG_CONFIG_PATH, 'r') as IMG_CONFIG_file:
|
||||
IMG_CONFIG = yaml.safe_load(IMG_CONFIG_file)
|
||||
for scene_data in IMG_CONFIG['scenes']:
|
||||
if scene_data['scene'] == scene:
|
||||
L.DEBUG(f"Found scene for \"{scene}\".")
|
||||
return scene_data
|
||||
|
@ -246,9 +246,9 @@ def get_matching_scene(prompt):
|
|||
prompt_lower = prompt.lower()
|
||||
max_count = 0
|
||||
scene_data = None
|
||||
with open(SD_CONFIG_PATH, 'r') as SD_CONFIG_file:
|
||||
SD_CONFIG = yaml.safe_load(SD_CONFIG_file)
|
||||
for sc in SD_CONFIG['scenes']:
|
||||
with open(IMG_CONFIG_PATH, 'r') as IMG_CONFIG_file:
|
||||
IMG_CONFIG = yaml.safe_load(IMG_CONFIG_file)
|
||||
for sc in IMG_CONFIG['scenes']:
|
||||
count = sum(1 for trigger in sc['triggers'] if trigger in prompt_lower)
|
||||
if count > max_count:
|
||||
max_count = count
|
||||
|
@ -259,7 +259,7 @@ def get_matching_scene(prompt):
|
|||
return scene_data
|
||||
else:
|
||||
L.DEBUG(f"No matching scenes found, falling back to default scene.")
|
||||
return SD_CONFIG['scenes'][0]
|
||||
return IMG_CONFIG['scenes'][0]
|
||||
|
||||
|
||||
|
||||
|
@ -400,7 +400,7 @@ async def get_generation_options():
|
|||
|
||||
|
||||
async def load_workflow(workflow_path: str, workflow:str):
|
||||
workflow_path = workflow_path if workflow_path else os.path.join(SD_WORKFLOWS_DIR, f"{workflow}.json" if not workflow.endswith('.json') else workflow)
|
||||
workflow_path = workflow_path if workflow_path else os.path.join(IMG_WORKFLOWS_DIR, f"{workflow}.json" if not workflow.endswith('.json') else workflow)
|
||||
with open(workflow_path, 'r') as file:
|
||||
return json.load(file)
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
'''
|
||||
Interfaces with Ollama and creates an OpenAI-compatible relay API.
|
||||
'''
|
||||
# routers/llm.py
|
||||
from fastapi import APIRouter, HTTPException, Request, Response, BackgroundTasks, File, Form, UploadFile
|
||||
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse
|
||||
from datetime import datetime as dt_datetime
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# routers/news.py
|
||||
import os
|
||||
import uuid
|
||||
import asyncio
|
||||
|
@ -90,7 +91,7 @@ async def download_and_save_article(article, site_name, earliest_date, bg_tasks:
|
|||
try:
|
||||
banner_url = article.top_image
|
||||
if banner_url:
|
||||
banner_image = download_file(banner_url, Path(OBSIDIAN_VAULT_DIR / OBSIDIAN_RESOURCES_DIR))
|
||||
banner_image = download_file(banner_url, Path(OBSIDIAN_VAULT_DIR / OBSIDIAN_RESOURCES_DIR / f"{dt_datetime.now().strftime('%Y%m%d%H%M%S')}.jpg"))
|
||||
if banner_image:
|
||||
banner_markdown = f"![[{OBSIDIAN_RESOURCES_DIR}/{banner_image}]]"
|
||||
except Exception as e:
|
||||
|
@ -120,7 +121,7 @@ tags:
|
|||
bg_tasks=bg_tasks,
|
||||
text=tts_text,
|
||||
voice=voice,
|
||||
model="eleven_turbo_v2",
|
||||
model="xtts2",
|
||||
podcast=True,
|
||||
title=audio_filename,
|
||||
output_dir=Path(OBSIDIAN_VAULT_DIR) / OBSIDIAN_RESOURCES_DIR
|
||||
|
@ -176,7 +177,7 @@ async def process_news_site(site, bg_tasks: BackgroundTasks):
|
|||
earliest_date,
|
||||
bg_tasks,
|
||||
tts_mode=site.tts if hasattr(site, 'tts') else "off",
|
||||
voice=site.tts if hasattr(site, 'tts') else DEFAULT_11L_VOICE
|
||||
voice=site.voice if hasattr(site, 'voice') else DEFAULT_11L_VOICE
|
||||
))
|
||||
tasks.append(task)
|
||||
|
||||
|
@ -237,12 +238,11 @@ async def archive_post(
|
|||
async def clip_get(
|
||||
bg_tasks: BackgroundTasks,
|
||||
url: str,
|
||||
title: Optional[str] = Query(None),
|
||||
encoding: str = Query('utf-8'),
|
||||
tts: str = Query('summary'),
|
||||
voice: str = Query(DEFAULT_VOICE)
|
||||
):
|
||||
markdown_filename = await process_article(bg_tasks, url, title, encoding, tts=tts, voice=voice)
|
||||
parsed_content = await parse_article(url)
|
||||
markdown_filename = await process_article(bg_tasks, parsed_content, tts, voice)
|
||||
return {"message": "Clip saved successfully", "markdown_filename": markdown_filename}
|
||||
|
||||
@news.post("/note/add")
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
'''
|
||||
Manages an Obsidian vault, in particular daily notes, using information and functionality drawn from the other routers, primarily calendar, email, ig, llm, rag, img, serve, time, tts, and weather.
|
||||
'''
|
||||
# routers/note.py
|
||||
from fastapi import APIRouter, BackgroundTasks, File, UploadFile, Form, HTTPException, Response, Query, Path as FastAPIPath
|
||||
from fastapi.responses import JSONResponse, PlainTextResponse
|
||||
import os, re
|
||||
|
|
|
@ -30,7 +30,7 @@ from selenium.webdriver.support import expected_conditions as EC
|
|||
from sijapi import (
|
||||
L, LOGS_DIR, TS_ID, CASETABLE_PATH, COURTLISTENER_DOCKETS_URL, COURTLISTENER_API_KEY,
|
||||
COURTLISTENER_BASE_URL, COURTLISTENER_DOCKETS_DIR, COURTLISTENER_SEARCH_DIR, ALERTS_DIR,
|
||||
MAC_UN, MAC_PW, MAC_ID, TS_TAILNET, DATA_DIR, SD_IMAGE_DIR, PUBLIC_KEY, OBSIDIAN_VAULT_DIR
|
||||
MAC_UN, MAC_PW, MAC_ID, TS_TAILNET, DATA_DIR, IMG_DIR, PUBLIC_KEY, OBSIDIAN_VAULT_DIR
|
||||
)
|
||||
from sijapi.utilities import bool_convert, sanitize_filename, assemble_journal_path
|
||||
from sijapi.routers import loc, note
|
||||
|
@ -44,7 +44,7 @@ async def get_pgp():
|
|||
|
||||
@serve.get("/img/{image_name}")
|
||||
def serve_image(image_name: str):
|
||||
image_path = os.path.join(SD_IMAGE_DIR, image_name)
|
||||
image_path = os.path.join(IMG_DIR, image_name)
|
||||
if os.path.exists(image_path):
|
||||
return FileResponse(image_path)
|
||||
else:
|
||||
|
|
|
@ -14,7 +14,7 @@ from typing import Optional, Union, List
|
|||
from pydub import AudioSegment
|
||||
from TTS.api import TTS
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
from datetime import datetime as dt_datetime
|
||||
from time import time
|
||||
import torch
|
||||
import traceback
|
||||
|
@ -66,21 +66,26 @@ async def list_11l_voices():
|
|||
|
||||
|
||||
|
||||
|
||||
def select_voice(voice_name: str) -> str:
|
||||
async def select_voice(voice_name: str) -> str:
|
||||
try:
|
||||
voice_file = VOICE_DIR / f"{voice_name}.wav"
|
||||
L.DEBUG(f"select_voice received query to use voice: {voice_name}. Looking for {voice_file} inside {VOICE_DIR}.")
|
||||
# Case Insensitive comparison
|
||||
voice_name_lower = voice_name.lower()
|
||||
L.DEBUG(f"Looking for {voice_name_lower}")
|
||||
for item in VOICE_DIR.iterdir():
|
||||
L.DEBUG(f"Checking {item.name.lower()}")
|
||||
if item.name.lower() == f"{voice_name_lower}.wav":
|
||||
L.DEBUG(f"select_voice received query to use voice: {voice_name}. Found {item} inside {VOICE_DIR}.")
|
||||
return str(item)
|
||||
|
||||
L.ERR(f"Voice file not found")
|
||||
raise HTTPException(status_code=404, detail="Voice file not found")
|
||||
|
||||
if voice_file.is_file():
|
||||
return str(voice_file)
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail="Voice file not found")
|
||||
except Exception as e:
|
||||
L.ERR(f"Voice file not found: {str(e)}")
|
||||
return None
|
||||
|
||||
|
||||
|
||||
@tts.post("/tts")
|
||||
@tts.post("/tts/speak")
|
||||
@tts.post("/v1/audio/speech")
|
||||
|
@ -132,13 +137,14 @@ async def generate_speech(
|
|||
|
||||
try:
|
||||
model = model if model else await get_model(voice, voice_file)
|
||||
|
||||
title = title if title else "TTS audio"
|
||||
output_path = output_dir / f"{dt_datetime.now().strftime('%Y%m%d%H%M%S')} {title}.wav"
|
||||
if model == "eleven_turbo_v2":
|
||||
L.INFO("Using ElevenLabs.")
|
||||
audio_file_path = await elevenlabs_tts(model, text, voice, title, output_dir)
|
||||
else: # if model == "xtts":
|
||||
L.INFO("Using XTTS2")
|
||||
audio_file_path = await local_tts(text, speed, voice, voice_file, podcast, bg_tasks, title, output_dir)
|
||||
audio_file_path = await local_tts(text, speed, voice, voice_file, podcast, bg_tasks, title, output_path)
|
||||
#else:
|
||||
# raise HTTPException(status_code=400, detail="Invalid model specified")
|
||||
|
||||
|
@ -158,7 +164,7 @@ async def generate_speech(
|
|||
|
||||
|
||||
async def get_model(voice: str = None, voice_file: UploadFile = None):
|
||||
if voice_file or (voice and select_voice(voice)):
|
||||
if voice_file or (voice and await select_voice(voice)):
|
||||
return "xtts"
|
||||
|
||||
elif voice and await determine_voice_id(voice):
|
||||
|
@ -220,7 +226,7 @@ async def elevenlabs_tts(model: str, input_text: str, voice: str, title: str = N
|
|||
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client: # 5 minutes timeout
|
||||
response = await client.post(url, json=payload, headers=headers)
|
||||
output_dir = output_dir if output_dir else TTS_OUTPUT_DIR
|
||||
title = title if title else datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
title = title if title else dt_datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
filename = f"{sanitize_filename(title)}.mp3"
|
||||
file_path = Path(output_dir) / filename
|
||||
if response.status_code == 200:
|
||||
|
@ -245,7 +251,9 @@ async def get_text_content(text: Optional[str], file: Optional[UploadFile]) -> s
|
|||
|
||||
async def get_voice_file_path(voice: str = None, voice_file: UploadFile = None) -> str:
|
||||
if voice:
|
||||
return select_voice(voice)
|
||||
L.DEBUG(f"Looking for voice: {voice}")
|
||||
selected_voice = await select_voice(voice)
|
||||
return selected_voice
|
||||
elif voice_file and isinstance(voice_file, UploadFile):
|
||||
VOICE_DIR.mkdir(exist_ok=True)
|
||||
|
||||
|
@ -272,8 +280,9 @@ async def get_voice_file_path(voice: str = None, voice_file: UploadFile = None)
|
|||
return str(new_file)
|
||||
|
||||
else:
|
||||
L.DEBUG(f"{datetime.now().strftime('%Y%m%d%H%M%S')}: No voice specified or file provided, using default voice: {DEFAULT_VOICE}")
|
||||
return select_voice(DEFAULT_VOICE)
|
||||
L.DEBUG(f"{dt_datetime.now().strftime('%Y%m%d%H%M%S')}: No voice specified or file provided, using default voice: {DEFAULT_VOICE}")
|
||||
selected_voice = await select_voice(DEFAULT_VOICE)
|
||||
return selected_voice
|
||||
|
||||
|
||||
|
||||
|
@ -290,7 +299,7 @@ async def local_tts(
|
|||
if output_path:
|
||||
file_path = Path(output_path)
|
||||
else:
|
||||
datetime_str = datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
datetime_str = dt_datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
title = sanitize_filename(title) if title else "Audio"
|
||||
filename = f"{datetime_str}_{title}.wav"
|
||||
file_path = TTS_OUTPUT_DIR / filename
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# utilities.py
|
||||
import re
|
||||
import os
|
||||
from fastapi import Form
|
||||
|
|
Loading…
Reference in a new issue