mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-03-28 16:44:43 +00:00
279 lines
11 KiB
JavaScript
279 lines
11 KiB
JavaScript
|
const { PineconeClient } = require("@pinecone-database/pinecone");
|
||
|
const { PineconeStore } = require("langchain/vectorstores/pinecone");
|
||
|
const { OpenAI } = require("langchain/llms/openai");
|
||
|
const { ChatOpenAI } = require('langchain/chat_models/openai');
|
||
|
const { VectorDBQAChain, LLMChain, RetrievalQAChain, ConversationalRetrievalQAChain } = require("langchain/chains");
|
||
|
const { OpenAIEmbeddings } = require("langchain/embeddings/openai");
|
||
|
const { VectorStoreRetrieverMemory, BufferMemory } = require("langchain/memory");
|
||
|
const { PromptTemplate } = require("langchain/prompts");
|
||
|
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
||
|
const { storeVectorResult, cachedVectorInformation } = require('../files');
|
||
|
const { Configuration, OpenAIApi } = require('openai')
|
||
|
const { v4: uuidv4 } = require('uuid');
|
||
|
|
||
|
const toChunks = (arr, size) => {
|
||
|
return Array.from({ length: Math.ceil(arr.length / size) }, (_v, i) =>
|
||
|
arr.slice(i * size, i * size + size)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
function curateSources(sources = []) {
|
||
|
const knownDocs = [];
|
||
|
const documents = []
|
||
|
for (const source of sources) {
|
||
|
const { metadata = {} } = source
|
||
|
if (Object.keys(metadata).length > 0 && !knownDocs.includes(metadata.title)) {
|
||
|
documents.push({ ...metadata })
|
||
|
knownDocs.push(metadata.title)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return documents;
|
||
|
}
|
||
|
|
||
|
const Pinecone = {
|
||
|
connect: async function () {
|
||
|
const client = new PineconeClient();
|
||
|
await client.init({
|
||
|
apiKey: process.env.PINECONE_API_KEY,
|
||
|
environment: process.env.PINECONE_ENVIRONMENT,
|
||
|
});
|
||
|
const pineconeIndex = client.Index(process.env.PINECONE_INDEX);
|
||
|
const { status } = await client.describeIndex({ indexName: process.env.PINECONE_INDEX });
|
||
|
|
||
|
if (!status.ready) throw new Error("Pinecode::Index not ready.")
|
||
|
return { client, pineconeIndex, indexName: process.env.PINECONE_INDEX };
|
||
|
},
|
||
|
embedder: function () {
|
||
|
return new OpenAIEmbeddings({ openAIApiKey: process.env.OPEN_AI_KEY });
|
||
|
},
|
||
|
openai: function () {
|
||
|
const config = new Configuration({ apiKey: process.env.OPEN_AI_KEY })
|
||
|
const openai = new OpenAIApi(config);
|
||
|
return openai
|
||
|
},
|
||
|
embedChunk: async function (openai, textChunk) {
|
||
|
const { data: { data } } = await openai.createEmbedding({
|
||
|
model: 'text-embedding-ada-002',
|
||
|
input: textChunk
|
||
|
})
|
||
|
return data.length > 0 && data[0].hasOwnProperty('embedding') ? data[0].embedding : null
|
||
|
},
|
||
|
llm: function () {
|
||
|
const model = process.env.OPEN_MODEL_PREF || 'gpt-3.5-turbo'
|
||
|
return new OpenAI({ openAIApiKey: process.env.OPEN_AI_KEY, temperature: 0.7, modelName: model });
|
||
|
},
|
||
|
chatLLM: function () {
|
||
|
const model = process.env.OPEN_MODEL_PREF || 'gpt-3.5-turbo'
|
||
|
return new ChatOpenAI({ openAIApiKey: process.env.OPEN_AI_KEY, temperature: 0.7, modelName: model });
|
||
|
},
|
||
|
totalIndicies: async function () {
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
const { namespaces } = await pineconeIndex.describeIndexStats1();
|
||
|
return Object.values(namespaces).reduce((a, b) => a + (b?.vectorCount || 0), 0)
|
||
|
},
|
||
|
namespace: async function (index, namespace = null) {
|
||
|
if (!namespace) throw new Error("No namespace value provided.");
|
||
|
const { namespaces } = await index.describeIndexStats1();
|
||
|
return namespaces.hasOwnProperty(namespace) ? namespaces[namespace] : null
|
||
|
},
|
||
|
hasNamespace: async function (namespace = null) {
|
||
|
if (!namespace) return false;
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
return await this.namespaceExists(pineconeIndex, namespace)
|
||
|
},
|
||
|
namespaceExists: async function (index, namespace = null) {
|
||
|
if (!namespace) throw new Error("No namespace value provided.");
|
||
|
const { namespaces } = await index.describeIndexStats1();
|
||
|
return namespaces.hasOwnProperty(namespace)
|
||
|
},
|
||
|
deleteVectorsInNamespace: async function (index, namespace = null) {
|
||
|
await index.delete1({ namespace, deleteAll: true })
|
||
|
return true
|
||
|
},
|
||
|
addDocumentToNamespace: async function (namespace, documentData = {}, fullFilePath = null) {
|
||
|
const { DocumentVectors } = require("../../models/vectors");
|
||
|
try {
|
||
|
const { pageContent, docId, ...metadata } = documentData
|
||
|
if (!pageContent || pageContent.length == 0) return false;
|
||
|
|
||
|
console.log("Adding new vectorized document into namespace", namespace);
|
||
|
const cacheResult = await cachedVectorInformation(fullFilePath)
|
||
|
if (cacheResult.exists) {
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
const { chunks } = cacheResult
|
||
|
const documentVectors = []
|
||
|
|
||
|
for (const chunk of chunks) {
|
||
|
// Before sending to Pinecone and saving the records to our db
|
||
|
// we need to assign the id of each chunk that is stored in the cached file.
|
||
|
const newChunks = chunk.map((chunk) => {
|
||
|
const id = uuidv4()
|
||
|
documentVectors.push({ docId, vectorId: id });
|
||
|
return { ...chunk, id }
|
||
|
})
|
||
|
|
||
|
// Push chunks with new ids to pinecone.
|
||
|
await pineconeIndex.upsert({
|
||
|
upsertRequest: {
|
||
|
vectors: [...newChunks],
|
||
|
namespace,
|
||
|
}
|
||
|
})
|
||
|
}
|
||
|
|
||
|
await DocumentVectors.bulkInsert(documentVectors)
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// If we are here then we are going to embed and store a novel document.
|
||
|
// We have to do this manually as opposed to using LangChains `PineconeStore.fromDocuments`
|
||
|
// because we then cannot atomically control our namespace to granularly find/remove documents
|
||
|
// from vectordb.
|
||
|
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L167
|
||
|
const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 1000, chunkOverlap: 20 });
|
||
|
const textChunks = await textSplitter.splitText(pageContent)
|
||
|
|
||
|
console.log('Chunks created from document:', textChunks.length)
|
||
|
const documentVectors = []
|
||
|
const vectors = []
|
||
|
const openai = this.openai()
|
||
|
for (const textChunk of textChunks) {
|
||
|
const vectorValues = await this.embedChunk(openai, textChunk);
|
||
|
|
||
|
if (!!vectorValues) {
|
||
|
const vectorRecord = {
|
||
|
id: uuidv4(),
|
||
|
values: vectorValues,
|
||
|
// [DO NOT REMOVE]
|
||
|
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
||
|
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
|
||
|
metadata: { ...metadata, text: textChunk },
|
||
|
}
|
||
|
vectors.push(vectorRecord);
|
||
|
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
||
|
} else {
|
||
|
console.error('Could not use OpenAI to embed document chunk! This document will not be recorded.')
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (vectors.length > 0) {
|
||
|
const chunks = []
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
console.log('Inserting vectorized chunks into Pinecone.')
|
||
|
for (const chunk of toChunks(vectors, 100)) {
|
||
|
chunks.push(chunk)
|
||
|
await pineconeIndex.upsert({
|
||
|
upsertRequest: {
|
||
|
vectors: [...chunk],
|
||
|
namespace,
|
||
|
}
|
||
|
})
|
||
|
}
|
||
|
await storeVectorResult(chunks, fullFilePath)
|
||
|
}
|
||
|
|
||
|
await DocumentVectors.bulkInsert(documentVectors)
|
||
|
return true;
|
||
|
} catch (e) {
|
||
|
console.error('addDocumentToNamespace', e.message)
|
||
|
return false;
|
||
|
}
|
||
|
},
|
||
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
||
|
const { DocumentVectors } = require("../../models/vectors");
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
if (!await this.namespaceExists(pineconeIndex, namespace)) return;
|
||
|
|
||
|
const knownDocuments = await DocumentVectors.where(`docId = '${docId}'`)
|
||
|
if (knownDocuments.length === 0) return;
|
||
|
|
||
|
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
||
|
await pineconeIndex.delete1({
|
||
|
ids: vectorIds,
|
||
|
namespace,
|
||
|
})
|
||
|
|
||
|
const indexes = knownDocuments.map((doc) => doc.id);
|
||
|
await DocumentVectors.deleteIds(indexes)
|
||
|
return true;
|
||
|
},
|
||
|
'namespace-stats': async function (reqBody = {}) {
|
||
|
const { namespace = null } = reqBody
|
||
|
if (!namespace) throw new Error("namespace required");
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
if (!await this.namespaceExists(pineconeIndex, namespace)) throw new Error('Namespace by that name does not exist.');
|
||
|
const stats = await this.namespace(pineconeIndex, namespace)
|
||
|
return stats ? stats : { message: 'No stats were able to be fetched from DB' }
|
||
|
},
|
||
|
'delete-namespace': async function (reqBody = {}) {
|
||
|
const { namespace = null } = reqBody
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
if (!await this.namespaceExists(pineconeIndex, namespace)) throw new Error('Namespace by that name does not exist.');
|
||
|
|
||
|
const details = await this.namespace(pineconeIndex, namespace);
|
||
|
await this.deleteVectorsInNamespace(pineconeIndex, namespace);
|
||
|
return { message: `Namespace ${namespace} was deleted along with ${details.vectorCount} vectors.` }
|
||
|
},
|
||
|
query: async function (reqBody = {}) {
|
||
|
const { namespace = null, input } = reqBody;
|
||
|
if (!namespace || !input) throw new Error("Invalid request body");
|
||
|
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
if (!await this.namespaceExists(pineconeIndex, namespace)) {
|
||
|
return {
|
||
|
response: null, sources: [], message: 'Invalid query - no documents found for workspace!'
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const vectorStore = await PineconeStore.fromExistingIndex(
|
||
|
this.embedder(),
|
||
|
{ pineconeIndex, namespace }
|
||
|
);
|
||
|
|
||
|
const model = this.llm();
|
||
|
const chain = VectorDBQAChain.fromLLM(model, vectorStore, {
|
||
|
k: 5,
|
||
|
returnSourceDocuments: true,
|
||
|
});
|
||
|
const response = await chain.call({ query: input });
|
||
|
return { response: response.text, sources: curateSources(response.sourceDocuments), message: false }
|
||
|
},
|
||
|
// This implementation of chat also expands the memory of the chat itself
|
||
|
// and adds more tokens to the PineconeDB instance namespace
|
||
|
chat: async function (reqBody = {}) {
|
||
|
const { namespace = null, input } = reqBody;
|
||
|
if (!namespace || !input) throw new Error("Invalid request body");
|
||
|
|
||
|
const { pineconeIndex } = await this.connect();
|
||
|
if (!await this.namespaceExists(pineconeIndex, namespace)) throw new Error("Invalid namespace - has it been collected and seeded yet?");
|
||
|
|
||
|
const vectorStore = await PineconeStore.fromExistingIndex(
|
||
|
this.embedder(),
|
||
|
{ pineconeIndex, namespace }
|
||
|
);
|
||
|
|
||
|
const memory = new VectorStoreRetrieverMemory({
|
||
|
vectorStoreRetriever: vectorStore.asRetriever(1),
|
||
|
memoryKey: "history",
|
||
|
});
|
||
|
|
||
|
const model = this.llm();
|
||
|
const prompt =
|
||
|
PromptTemplate.fromTemplate(`The following is a friendly conversation between a human and an AI. The AI is very casual and talkative and responds with a friendly tone. If the AI does not know the answer to a question, it truthfully says it does not know.
|
||
|
Relevant pieces of previous conversation:
|
||
|
{history}
|
||
|
|
||
|
Current conversation:
|
||
|
Human: {input}
|
||
|
AI:`);
|
||
|
|
||
|
const chain = new LLMChain({ llm: model, prompt, memory });
|
||
|
const response = await chain.call({ input });
|
||
|
return { response: response.text, sources: [], message: false }
|
||
|
},
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
Pinecone
|
||
|
}
|