khoj/src/main.py

136 lines
4.3 KiB
Python
Raw Normal View History

# Standard Packages
import sys
import argparse
import pathlib
from typing import Optional
# External Packages
import uvicorn
import yaml
from fastapi import FastAPI
# Internal Packages
from search_type import asymmetric
from processor.org_mode.org_to_jsonl import org_to_jsonl
from utils.helpers import is_none_or_empty, get_absolute_path, get_from_dict, merge_dicts
app = FastAPI()
@app.get('/search')
def search(q: str, n: Optional[int] = 5, t: Optional[str] = None):
if q is None or q == '':
print(f'No query param (q) passed in API call to initiate search')
return {}
user_query = q
results_count = n
if (t == 'notes' or t == None) and notes_search_enabled:
# query notes
hits = asymmetric.query_notes(
user_query,
corpus_embeddings,
entries,
bi_encoder,
cross_encoder,
top_k)
# collate and return results
return asymmetric.collate_results(hits, entries, results_count)
else:
return {}
@app.get('/regenerate')
def regenerate(t: Optional[str] = None):
if (t == 'notes' or t == None) and notes_search_enabled:
# Extract Entries, Generate Embeddings
global corpus_embeddings
global entries
entries, corpus_embeddings, _, _, _ = asymmetric.setup(
org_config['input-files'],
org_config['input-filter'],
pathlib.Path(org_config['compressed-jsonl']),
pathlib.Path(org_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
return {'status': 'ok', 'message': 'regeneration completed'}
def cli(args=None):
if is_none_or_empty(args):
args = sys.argv[1:]
# Setup Argument Parser for the Commandline Interface
parser = argparse.ArgumentParser(description="Expose API for Semantic Search")
parser.add_argument('--org-files', '-i', nargs='*', help="List of org-mode files to process")
parser.add_argument('--org-filter', type=str, default=None, help="Regex filter for org-mode files to process")
parser.add_argument('--config-file', '-c', type=pathlib.Path, help="YAML file with user configuration")
parser.add_argument('--regenerate', action='store_true', default=False, help="Regenerate model embeddings from source files. Default: false")
parser.add_argument('--verbose', '-v', action='count', default=0, help="Show verbose conversion logs. Default: 0")
args = parser.parse_args(args)
if not (args.config_file or args.org_files):
print(f"Require at least 1 of --org-file, --org-filter or --config-file flags to be passed from commandline")
exit(1)
# Config Priority: Cmd Args > Config File > Default Config
args.config = default_config
if args.config_file and args.config_file.exists():
with open(get_absolute_path(args.config_file), 'r', encoding='utf-8') as config_file:
config_from_file = yaml.safe_load(config_file)
args.config = merge_dicts(priority_dict=config_from_file, default_dict=args.config)
if args.org_files:
args.config['content-type']['org']['input-files'] = args.org_files
if args.org_filter:
args.config['content-type']['org']['input-filter'] = args.org_filter
return args
default_config = {
'content-type':
{
'org':
{
'compressed-jsonl': '.notes.jsonl.gz',
'embeddings-file': '.note_embeddings.pt'
}
},
'search-type':
{
'asymmetric':
{
'encoder': "sentence-transformers/msmarco-MiniLM-L-6-v3",
'cross-encoder': "cross-encoder/ms-marco-MiniLM-L-6-v2"
}
}
}
if __name__ == '__main__':
args = cli()
org_config = get_from_dict(args.config, 'content-type', 'org')
notes_search_enabled = False
if 'input-files' in org_config or 'input-filter' in org_config:
notes_search_enabled = True
entries, corpus_embeddings, bi_encoder, cross_encoder, top_k = asymmetric.setup(
org_config['input-files'],
org_config['input-filter'],
pathlib.Path(org_config['compressed-jsonl']),
pathlib.Path(org_config['embeddings-file']),
args.regenerate,
args.verbose)
# Start Application Server
uvicorn.run(app)