* Add support for using OAuth2.0 in the Notion integration
* Add notion to the admin page
* Remove unnecessary content_index and image search/setup references
* Trigger background job to start indexing Notion after user configures it
* Add a log line when a new Notion integration is setup
* Fix references to the configure_content methods
`re.MULTILINE' should be passed to the `flags' argument, not the
`max_splits' argument of the `re.split' func
This was messing up the indexing by only allowing a maximum of
re.MULTILINE splits. Fixing this improves the search quality to
previous state
More content indexed per entry would result in an overall scores
lowering effect. Increase default search distance threshold to counter that
- Details
- Fix expected results post indexing updates
- Fix search with max distance post indexing updates
- Minor
- Remove openai chat actor test for after: operator as it's not expected anymore
- Major
- Do not split org file, entry if it fits within the max token limits
- Recurse down org file entries, one heading level at a time until
reach leaf node or the current parent tree fits context window
- Update `process_single_org_file' func logic to do this recursion
- Convert extracted org nodes with children into entries
- Previously org node to entry code just had to handle leaf entries
- Now it recieve list of org node trees
- Only add ancestor path to root org-node of each tree
- Indent each entry trees headings by +1 level from base level (=2)
- Minor
- Stop timing org-node parsing vs org-node to entry conversion
Just time the wrapping function for org-mode entry extraction
This standardizes what is being timed across at md, org etc.
- Move try/catch to `extract_org_nodes' from `parse_single_org_file'
func to standardize this also across md, org
These changes improve context available to the search model.
Specifically this should improve entry context from short knowledge trees,
that is knowledge bases with sparse, short heading/entry trees
Previously we'd always split markdown files by headings, even if a
parent entry was small enough to fit entirely within the max token
limits of the search model. This used to reduce the context available
to the search model to select appropriate entries for a query,
especially from short entry trees
Revert back to using regex to parse through markdown file instead of
using MarkdownHeaderTextSplitter. It was easier to implement the
logical split using regexes rather than bend MarkdowHeaderTextSplitter
to implement it.
- DFS traverse the markdown knowledge tree, prefix ancestry to each entry
These changes improve entry context available to the search model
Specifically this should improve entry context from short knowledge trees,
that is knowledge bases with small files
Previously we split all markdown files by their headings,
even if the file was small enough to fit entirely within the max token
limits of the search model. This used to reduce the context available
to select the appropriate entries for a given query for the search model,
especially from short knowledge trees
- Previous simplistic chunking strategy of splitting text by space
didn't capture notes with newlines, no spaces. For e.g in #620
- New strategy will try chunk the text at more natural points like
paragraph, sentence, word first. If none of those work it'll split
at character to fit within max token limit
- Drop long words while preserving original delimiters
Resolves#620
This was earlier used when the index was plaintext jsonl file. Now
that documents are indexed in a DB this func is not required.
Simplify org,md,pdf,plaintext to entries tests by removing the entry
to jsonl conversion step
- Convert extract_org_entries function to actually extract org entries
Previously it was extracting intermediary org-node objects instead
Now it extracts the org-node objects from files and converts them
into entries
- Create separate, new function to extract_org_nodes from files
- Similarly create wrapper funcs for md, pdf, plaintext to entries
- Update org, md, pdf, plaintext to entries tests to use the new
simplified wrapper function to extract org entries
- Move green server connected dot to the bottom. Show status when
disconnected from server
- Move "New conversation" button to right of the "Conversation" title
- Center alignment of the new conversation and connection status buttons
- Overview
- Extract more structured date variants (e.g with dot(.) & slash(/) separators, 2-digit year)
- Extract some natural, partial dates as well from entries
- Capability
Add ability to extract the following additional date forms:
- Natural Dates: 21st April 2000, February 29 2024
- Partial Natural Dates: March 24, Mar 2024
- Structured Dates: 20/12/24, 20.12.2024, 2024/12/20
Note: Previously only YYYY-MM-DD ISO-8601 structured date form was extracted for date filters
- Performance
Using regexes is MUCH faster than using the `dateparser' python library
It's a little crude but gives acceptable performance for large datasets
## Benefits
- Support all GGUF format chat models
- Support more GPUs like AMD, Nvidia, Mac, Vulcan (previously just Vulcan, Mac)
- Support more capabilities like larger context window, schema enforcement, speculative decoding etc.
## Changes
### Major
- Use llama.cpp for offline chat models
- Support larger context window
- Automatically apply appropriate chat template. So offline chat models not using llama2 format are now supported
- Use better default offline chat model, NousResearch/Hermes-2-Pro-Mistral-7B
- Enable extract queries actor to improve notes search with offline chat
- Update documentation to use llama.cpp for offline chat in Khoj
### Minor
- Migrate to use NouseResearch's Hermes-2-Pro 7B as default offline chat model in khoj.yml
- Rename GPT4AllChatProcessor to OfflineChatProcessor Config, Model
- Only add location to image prompt generator when location known
- Much faster than using dateparser
- It took 2x-4x for improved regex to extracts 1-15% more dates
- Whereas It took 33x to 100x for dateparser to extract 65% - 400% more dates
- Improve date extractor tests to test deduping dates, natural,
structured date extraction from content
- Extract some natural, partial dates and more structured dates
Using regex is much faster than using dateparser. It's a little
crude but should pay off in performance.
Supports dates of form:
- (Day-of-Month) Month|AbbreviatedMonth Year|2DigitYear
- Month|AbbreviatedMonth (Day-of-Month) Year|2DigitYear