mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 09:25:06 +01:00
257 lines
8.9 KiB
Markdown
257 lines
8.9 KiB
Markdown
# Khoj 🦅
|
|
[![build](https://github.com/debanjum/khoj/actions/workflows/build.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/build.yml)
|
|
[![test](https://github.com/debanjum/khoj/actions/workflows/test.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/test.yml)
|
|
[![publish](https://github.com/debanjum/khoj/actions/workflows/publish.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/publish.yml)
|
|
|
|
*A natural language search engine for your personal notes, transactions and images*
|
|
|
|
## Table of Contents
|
|
|
|
- [Features](#Features)
|
|
- [Demo](#Demo)
|
|
- [Description](#Description)
|
|
- [Analysis](#Analysis)
|
|
- [Interfaces](#Interfaces)
|
|
- [Architecture](#Architecture)
|
|
- [Setup](#Setup)
|
|
- [Install](#1-Install)
|
|
- [Configure](#2-Configure)
|
|
- [Run](#3-Run)
|
|
- [Use](#Use)
|
|
- [Upgrade](#Upgrade)
|
|
- [Troubleshoot](#Troubleshoot)
|
|
- [Miscellaneous](#Miscellaneous)
|
|
- [Performance](#Performance)
|
|
- [Query Performance](#Query-performance)
|
|
- [Indexing Performance](#Indexing-performance)
|
|
- [Miscellaneous](#Miscellaneous-1)
|
|
- [Development](#Development)
|
|
- [Setup](#Setup)
|
|
- [Using Pip](#Using-Pip)
|
|
- [Using Docker](#Using-Docker)
|
|
- [Using Conda](#Test)
|
|
- [Test](#Test)
|
|
- [Credits](#Credits)
|
|
|
|
## Features
|
|
|
|
- **Natural**: Advanced natural language understanding using Transformer based ML Models
|
|
- **Local**: Your personal data stays local. All search, indexing is done on your machine[\*](https://github.com/debanjum/khoj#miscellaneous)
|
|
- **Incremental**: Incremental search for a fast, search-as-you-type experience
|
|
- **Pluggable**: Modular architecture makes it easy to plug in new data sources, frontends and ML models
|
|
- **Multiple Sources**: Search your Org-mode and Markdown notes, Beancount transactions and Photos
|
|
- **Multiple Interfaces**: Search using a [Web Browser](./src/interface/web/index.html), [Emacs](./src/interface/emacs/khoj.el) or the [API](http://localhost:8000/docs)
|
|
|
|
## Demo
|
|
|
|
https://user-images.githubusercontent.com/6413477/184735169-92c78bf1-d827-4663-9087-a1ea194b8f4b.mp4
|
|
|
|
### Description
|
|
|
|
- Install Khoj via pip
|
|
- Start Khoj app
|
|
- Add this readme and [khoj.el readme](https://github.com/debanjum/khoj/tree/master/src/interface/emacs) as org-mode for Khoj to index
|
|
- Search \"*Setup editor*\" on the Web and Emacs. Re-rank the results for better accuracy
|
|
- Top result is what we are looking for, the [section to Install Khoj.el on Emacs](https://github.com/debanjum/khoj/tree/master/src/interface/emacs#installation)
|
|
|
|
### Analysis
|
|
|
|
- The results do not have any words used in the query
|
|
- *Based on the top result it seems the re-ranking model understands that Emacs is an editor?*
|
|
- The results incrementally update as the query is entered
|
|
- The results are re-ranked, for better accuracy, once user hits enter
|
|
|
|
### Interfaces
|
|
|
|
![](https://github.com/debanjum/khoj/blob/master/docs/interfaces.png)
|
|
|
|
## Architecture
|
|
|
|
![](https://github.com/debanjum/khoj/blob/master/docs/khoj_architecture.png)
|
|
|
|
## Setup
|
|
### 1. Install
|
|
|
|
```shell
|
|
pip install khoj-assistant
|
|
```
|
|
|
|
### 2. Start App
|
|
|
|
```shell
|
|
khoj
|
|
```
|
|
|
|
### 3. Configure
|
|
|
|
1. Enable content types and point to files to search in the First Run Screen that pops up on app start
|
|
2. Click configure and wait. The app will load ML model, generates embeddings and expose the search API
|
|
|
|
## Use
|
|
|
|
- **Khoj via Web**
|
|
- Open <http://localhost:8000/> via desktop interface or directly
|
|
- **Khoj via Emacs**
|
|
- [Install](https://github.com/debanjum/khoj/tree/master/src/interface/emacs#installation) [khoj.el](./src/interface/emacs/khoj.el)
|
|
- Run `M-x khoj <user-query>`
|
|
- **Khoj via API**
|
|
- See the Khoj FastAPI [Swagger Docs](http://localhost:8000/docs), [ReDocs](http://localhost:8000/redocs)
|
|
|
|
## Upgrade
|
|
|
|
```shell
|
|
pip install --upgrade khoj-assistant
|
|
```
|
|
|
|
## Troubleshoot
|
|
|
|
- Symptom: Errors out complaining about Tensors mismatch, null etc
|
|
- Mitigation: Disable `image` search using the desktop GUI
|
|
- Symptom: Errors out with \"Killed\" in error message in Docker
|
|
- Fix: Increase RAM available to Docker Containers in Docker Settings
|
|
- Refer: [StackOverflow Solution](https://stackoverflow.com/a/50770267), [Configure Resources on Docker for Mac](https://docs.docker.com/desktop/mac/#resources)
|
|
|
|
## Miscellaneous
|
|
|
|
- The beta [chat](http://localhost:8000/beta/chat) and [search](http://localhost:8000/beta/search) API endpoints use [OpenAI API](https://openai.com/api/)
|
|
- It is disabled by default
|
|
- To use it add your `openai-api-key` via the app configure screen
|
|
- Warning: *If you use the above beta APIs, your query and top result(s) will be sent to OpenAI for processing*
|
|
|
|
## Performance
|
|
|
|
### Query performance
|
|
|
|
- Semantic search using the bi-encoder is fairly fast at \<50 ms
|
|
- Reranking using the cross-encoder is slower at \<2s on 15 results. Tweak `top_k` to tradeoff speed for accuracy of results
|
|
- Filters in query (e.g by file, word or date) usually add \<20ms to query latency
|
|
|
|
### Indexing performance
|
|
|
|
- Indexing is more strongly impacted by the size of the source data
|
|
- Indexing 100K+ line corpus of notes takes about 10 minutes
|
|
- Indexing 4000+ images takes about 15 minutes and more than 8Gb of RAM
|
|
- Note: *It should only take this long on the first run* as the index is incrementally updated
|
|
|
|
### Miscellaneous
|
|
|
|
- Testing done on a Mac M1 and a \>100K line corpus of notes
|
|
- Search, indexing on a GPU has not been tested yet
|
|
|
|
## Development
|
|
### Setup
|
|
#### Using Pip
|
|
##### 1. Install
|
|
|
|
```shell
|
|
git clone https://github.com/debanjum/khoj && cd khoj
|
|
python3 -m venv .venv && source .venv/bin/activate
|
|
pip install -e .
|
|
```
|
|
|
|
##### 2. Configure
|
|
|
|
- Copy the `config/khoj_sample.yml` to `~/.khoj/khoj.yml`
|
|
- Set `input-files` or `input-filter` in each relevant `content-type` section of `~/.khoj/khoj.yml`
|
|
- Set `input-directories` field in `image` `content-type` section
|
|
- Delete `content-type` and `processor` sub-section(s) irrelevant for your use-case
|
|
|
|
##### 3. Run
|
|
|
|
```shell
|
|
khoj -vv
|
|
```
|
|
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
|
|
|
|
##### 4. Upgrade
|
|
|
|
```shell
|
|
# To Upgrade To Latest Stable Release
|
|
# Maps to the latest tagged version of khoj on master branch
|
|
pip install --upgrade khoj-assistant
|
|
|
|
# To Upgrade To Latest Pre-Release
|
|
# Maps to the latest commit on the master branch
|
|
pip install --upgrade --pre khoj-assistant
|
|
|
|
# To Upgrade To Specific Development Release.
|
|
# Useful to test, review a PR.
|
|
# Note: khoj-assistant is published to test PyPi on creating a PR
|
|
pip install -i https://test.pypi.org/simple/ khoj-assistant==0.1.5.dev57166025766
|
|
```
|
|
|
|
#### Using Docker
|
|
##### 1. Clone
|
|
|
|
```shell
|
|
git clone https://github.com/debanjum/khoj && cd khoj
|
|
```
|
|
|
|
##### 2. Configure
|
|
|
|
- **Required**: Update [docker-compose.yml](./docker-compose.yml) to mount your images, (org-mode or markdown) notes and beancount directories
|
|
- **Optional**: Edit application configuration in [khoj_docker.yml](./config/khoj_docker.yml)
|
|
|
|
##### 3. Run
|
|
|
|
```shell
|
|
docker-compose up -d
|
|
```
|
|
|
|
*Note: The first run will take time. Let it run, it\'s mostly not hung, just generating embeddings*
|
|
|
|
##### 4. Upgrade
|
|
|
|
```shell
|
|
docker-compose build --pull
|
|
```
|
|
|
|
#### Using Conda
|
|
##### 1. Install Dependencies
|
|
- [Install Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html) \[Required\]
|
|
- Install Exiftool \[Optional\]
|
|
``` shell
|
|
sudo apt -y install libimage-exiftool-perl
|
|
```
|
|
|
|
##### 2. Install Khoj
|
|
```shell
|
|
git clone https://github.com/debanjum/khoj && cd khoj
|
|
conda env create -f config/environment.yml
|
|
conda activate khoj
|
|
```
|
|
|
|
##### 3. Configure
|
|
- Copy the `config/khoj_sample.yml` to `~/.khoj/khoj.yml`
|
|
- Set `input-files` or `input-filter` in each relevant `content-type` section of `~/.khoj/khoj.yml`
|
|
- Set `input-directories` field in `image` `content-type` section
|
|
- Delete `content-type`, `processor` sub-sections irrelevant for your use-case
|
|
|
|
##### 4. Run
|
|
```shell
|
|
python3 -m src.main -vv
|
|
```
|
|
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
|
|
|
|
##### 5. Upgrade
|
|
```shell
|
|
cd khoj
|
|
git pull origin master
|
|
conda deactivate khoj
|
|
conda env update -f config/environment.yml
|
|
conda activate khoj
|
|
```
|
|
|
|
### Test
|
|
```shell
|
|
pytest
|
|
```
|
|
|
|
## Credits
|
|
|
|
- [Multi-QA MiniLM Model](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1), [All MiniLM Model](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) for Text Search. See [SBert Documentation](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)
|
|
- [OpenAI CLIP Model](https://github.com/openai/CLIP) for Image Search. See [SBert Documentation](https://www.sbert.net/examples/applications/image-search/README.html)
|
|
- Charles Cave for [OrgNode Parser](http://members.optusnet.com.au/~charles57/GTD/orgnode.html)
|
|
- [Org.js](https://mooz.github.io/org-js/) to render Org-mode results on the Web interface
|
|
- [Markdown-it](https://github.com/markdown-it/markdown-it) to render Markdown results on the Web interface
|
|
- Sven Marnach for [PyExifTool](https://github.com/smarnach/pyexiftool/blob/master/exiftool.py)
|