khoj/README.md
2021-08-15 22:52:37 -07:00

60 lines
1.7 KiB
Markdown

Semantic Search
===
> Provide natural language search on user personal content like notes, images using ML models
All data is processed locally. User can interface with semantic-search app via [Emacs](https://github.com/debanjum/emacs-semantic-search), API or Commandline
Dependencies
----
- Python3
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links)
Install
---
```sh
git clone https://github.com/debanjum/semantic-search && cd semantic-search
conda env create -f environment.yml
conda activate semantic-search
```
Setup
---
Generate compressed JSONL from specified org-mode files
```sh
python3 processor/org-mode/org-to-jsonl.py \
--org-files "Schedule.org" "Incoming.org" \
--org-directory "~/Notes" \
--jsonl-file ".data/notes.jsonl" \
--compress \
--verbose
```
Run
---
Load ML model, generate embeddings and expose API interface to run user queries on above org-mode files
```sh
python3 main.py -j .data/notes.jsonl.gz -e .data/notes_embeddings.pt
```
Use
---
- *Calls Semantic Search via Emacs*
- `M-x semantic-search "<users-query"`
- `C-c C-s`
- *Call Semantic Search via API*
- `GET` [http://localhost:8000/search?q="What is the meaning of life"](http://localhost:8000/search?q=%22what%20is%20the%20meaning%20of%20life%22)
- *Call Semantic Search via Python Script Directly*
```sh
python3 search_types/asymmetric.py \
-j .data/notes.jsonl.gz \
-e .data/notes_embeddings.pt \
-n 5 \
--verbose \
--interactive
```
Acknowledgments
--
- Charles Cave for [OrgNode Parser](http://members.optusnet.com.au/~charles57/GTD/orgnode.html)