khoj/Readme.md
Debanjum Singh Solanky bf1ae038cb Get XMP metadata from image using Pillow. Remove ExifTool dependency
- Pillow already supports reading XMP metadata from Images
- Removes need to maintain my fork of unmaintained PyExiftool
  - This also removes dependency on system Exiftool package for
    XMP metadata extraction
- Add test to verify XMP metadata extracted from test images
- Remove references to Exiftool from Documentation
2022-09-16 00:48:45 +03:00

252 lines
8.7 KiB
Markdown

# Khoj 🦅
[![build](https://github.com/debanjum/khoj/actions/workflows/build.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/build.yml)
[![test](https://github.com/debanjum/khoj/actions/workflows/test.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/test.yml)
[![publish](https://github.com/debanjum/khoj/actions/workflows/publish.yml/badge.svg)](https://github.com/debanjum/khoj/actions/workflows/publish.yml)
*A natural language search engine for your personal notes, transactions and images*
## Table of Contents
- [Features](#Features)
- [Demo](#Demo)
- [Description](#Description)
- [Analysis](#Analysis)
- [Interfaces](#Interfaces)
- [Architecture](#Architecture)
- [Setup](#Setup)
- [Install](#1-Install)
- [Configure](#2-Configure)
- [Run](#3-Run)
- [Use](#Use)
- [Upgrade](#Upgrade)
- [Troubleshoot](#Troubleshoot)
- [Miscellaneous](#Miscellaneous)
- [Performance](#Performance)
- [Query Performance](#Query-performance)
- [Indexing Performance](#Indexing-performance)
- [Miscellaneous](#Miscellaneous-1)
- [Development](#Development)
- [Setup](#Setup)
- [Using Pip](#Using-Pip)
- [Using Docker](#Using-Docker)
- [Using Conda](#Test)
- [Test](#Test)
- [Credits](#Credits)
## Features
- **Natural**: Advanced natural language understanding using Transformer based ML Models
- **Local**: Your personal data stays local. All search, indexing is done on your machine[\*](https://github.com/debanjum/khoj#miscellaneous)
- **Incremental**: Incremental search for a fast, search-as-you-type experience
- **Pluggable**: Modular architecture makes it easy to plug in new data sources, frontends and ML models
- **Multiple Sources**: Search your Org-mode and Markdown notes, Beancount transactions and Photos
- **Multiple Interfaces**: Search using a [Web Browser](./src/interface/web/index.html), [Emacs](./src/interface/emacs/khoj.el) or the [API](http://localhost:8000/docs)
## Demo
https://user-images.githubusercontent.com/6413477/184735169-92c78bf1-d827-4663-9087-a1ea194b8f4b.mp4
### Description
- Install Khoj via pip
- Start Khoj app
- Add this readme and [khoj.el readme](https://github.com/debanjum/khoj/tree/master/src/interface/emacs) as org-mode for Khoj to index
- Search \"*Setup editor*\" on the Web and Emacs. Re-rank the results for better accuracy
- Top result is what we are looking for, the [section to Install Khoj.el on Emacs](https://github.com/debanjum/khoj/tree/master/src/interface/emacs#installation)
### Analysis
- The results do not have any words used in the query
- *Based on the top result it seems the re-ranking model understands that Emacs is an editor?*
- The results incrementally update as the query is entered
- The results are re-ranked, for better accuracy, once user hits enter
### Interfaces
![](https://github.com/debanjum/khoj/blob/master/docs/interfaces.png)
## Architecture
![](https://github.com/debanjum/khoj/blob/master/docs/khoj_architecture.png)
## Setup
### 1. Install
```shell
pip install khoj-assistant
```
### 2. Start App
```shell
khoj
```
### 3. Configure
1. Enable content types and point to files to search in the First Run Screen that pops up on app start
2. Click configure and wait. The app will load ML model, generates embeddings and expose the search API
## Use
- **Khoj via Web**
- Open <http://localhost:8000/> via desktop interface or directly
- **Khoj via Emacs**
- [Install](https://github.com/debanjum/khoj/tree/master/src/interface/emacs#installation) [khoj.el](./src/interface/emacs/khoj.el)
- Run `M-x khoj <user-query>`
- **Khoj via API**
- See the Khoj FastAPI [Swagger Docs](http://localhost:8000/docs), [ReDocs](http://localhost:8000/redocs)
## Upgrade
```shell
pip install --upgrade khoj-assistant
```
## Troubleshoot
- Symptom: Errors out complaining about Tensors mismatch, null etc
- Mitigation: Disable `image` search using the desktop GUI
- Symptom: Errors out with \"Killed\" in error message in Docker
- Fix: Increase RAM available to Docker Containers in Docker Settings
- Refer: [StackOverflow Solution](https://stackoverflow.com/a/50770267), [Configure Resources on Docker for Mac](https://docs.docker.com/desktop/mac/#resources)
## Miscellaneous
- The beta [chat](http://localhost:8000/beta/chat) and [search](http://localhost:8000/beta/search) API endpoints use [OpenAI API](https://openai.com/api/)
- It is disabled by default
- To use it add your `openai-api-key` via the app configure screen
- Warning: *If you use the above beta APIs, your query and top result(s) will be sent to OpenAI for processing*
## Performance
### Query performance
- Semantic search using the bi-encoder is fairly fast at \<50 ms
- Reranking using the cross-encoder is slower at \<2s on 15 results. Tweak `top_k` to tradeoff speed for accuracy of results
- Filters in query (e.g by file, word or date) usually add \<20ms to query latency
### Indexing performance
- Indexing is more strongly impacted by the size of the source data
- Indexing 100K+ line corpus of notes takes about 10 minutes
- Indexing 4000+ images takes about 15 minutes and more than 8Gb of RAM
- Note: *It should only take this long on the first run* as the index is incrementally updated
### Miscellaneous
- Testing done on a Mac M1 and a \>100K line corpus of notes
- Search, indexing on a GPU has not been tested yet
## Development
### Setup
#### Using Pip
##### 1. Install
```shell
git clone https://github.com/debanjum/khoj && cd khoj
python3 -m venv .venv && source .venv/bin/activate
pip install -e .
```
##### 2. Configure
- Copy the `config/khoj_sample.yml` to `~/.khoj/khoj.yml`
- Set `input-files` or `input-filter` in each relevant `content-type` section of `~/.khoj/khoj.yml`
- Set `input-directories` field in `image` `content-type` section
- Delete `content-type` and `processor` sub-section(s) irrelevant for your use-case
##### 3. Run
```shell
khoj -vv
```
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
##### 4. Upgrade
```shell
# To Upgrade To Latest Stable Release
# Maps to the latest tagged version of khoj on master branch
pip install --upgrade khoj-assistant
# To Upgrade To Latest Pre-Release
# Maps to the latest commit on the master branch
pip install --upgrade --pre khoj-assistant
# To Upgrade To Specific Development Release.
# Useful to test, review a PR.
# Note: khoj-assistant is published to test PyPi on creating a PR
pip install -i https://test.pypi.org/simple/ khoj-assistant==0.1.5.dev57166025766
```
#### Using Docker
##### 1. Clone
```shell
git clone https://github.com/debanjum/khoj && cd khoj
```
##### 2. Configure
- **Required**: Update [docker-compose.yml](./docker-compose.yml) to mount your images, (org-mode or markdown) notes and beancount directories
- **Optional**: Edit application configuration in [khoj_docker.yml](./config/khoj_docker.yml)
##### 3. Run
```shell
docker-compose up -d
```
*Note: The first run will take time. Let it run, it\'s mostly not hung, just generating embeddings*
##### 4. Upgrade
```shell
docker-compose build --pull
```
#### Using Conda
##### 1. Install Dependencies
- [Install Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html)
##### 2. Install Khoj
```shell
git clone https://github.com/debanjum/khoj && cd khoj
conda env create -f config/environment.yml
conda activate khoj
```
##### 3. Configure
- Copy the `config/khoj_sample.yml` to `~/.khoj/khoj.yml`
- Set `input-files` or `input-filter` in each relevant `content-type` section of `~/.khoj/khoj.yml`
- Set `input-directories` field in `image` `content-type` section
- Delete `content-type`, `processor` sub-sections irrelevant for your use-case
##### 4. Run
```shell
python3 -m src.main -vv
```
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
##### 5. Upgrade
```shell
cd khoj
git pull origin master
conda deactivate khoj
conda env update -f config/environment.yml
conda activate khoj
```
### Test
```shell
pytest
```
## Credits
- [Multi-QA MiniLM Model](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1), [All MiniLM Model](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) for Text Search. See [SBert Documentation](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)
- [OpenAI CLIP Model](https://github.com/openai/CLIP) for Image Search. See [SBert Documentation](https://www.sbert.net/examples/applications/image-search/README.html)
- Charles Cave for [OrgNode Parser](http://members.optusnet.com.au/~charles57/GTD/orgnode.html)
- [Org.js](https://mooz.github.io/org-js/) to render Org-mode results on the Web interface
- [Markdown-it](https://github.com/markdown-it/markdown-it) to render Markdown results on the Web interface