khoj/tests/data/notes/main_readme.org
Debanjum Singh Solanky 79c2224eaa Improve test data organization and update correspoding conftests
- Put test data for each content type into separate directories
- Makes config.yml for docker and local host consistent
  - Prepending tests to /data in sample_config.yml makes application
    run on local host using test data
  - Allows mounting separate volume for each content type in docker-compose
- Ignore gitignore to only add tests content, not generated models or embeddings
2022-01-29 02:03:17 -05:00

47 lines
2.2 KiB
Org Mode

* Semantic Search
/Allow natural language search on user content like notes, images using transformer based models/
All data is processed locally. User can interface with semantic-search app via [[./interface/emacs/semantic-search.el][Emacs]], API or Commandline
** Dependencies
- Python3
- [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]]
** Install
#+begin_src shell
git clone https://github.com/debanjum/semantic-search && cd semantic-search
conda env create -f environment.yml
conda activate semantic-search
#+end_src
** Run
Load ML model, generate embeddings and expose API to query specified org-mode files
#+begin_src shell
python3 main.py --input-files ~/Notes/Schedule.org ~/Notes/Incoming.org --verbose
#+end_src
** Use
- *Semantic Search via Emacs*
- [[https://github.com/debanjum/semantic-search/tree/master/interface/emacs#installation][Install]] [[./interface/emacs/semantic-search.el][semantic-search.el]]
- Run ~M-x semantic-search <user-query>~ or Call ~C-c C-s~
- *Semantic Search via API*
- Query: ~GET~ [[http://localhost:8000/search?q=%22what%20is%20the%20meaning%20of%20life%22][http://localhost:8000/search?q="What is the meaning of life"]]
- Regenerate Embeddings: ~GET~ [[http://localhost:8000/regenerate][http://localhost:8000/regenerate]]
- [[http://localhost:8000/docs][Semantic Search API Docs]]
- *Call Semantic Search via Python Script Directly*
#+begin_src shell
python3 search_types/asymmetric.py \
--compressed-jsonl .notes.jsonl.gz \
--embeddings .notes_embeddings.pt \
--results-count 5 \
--verbose \
--interactive
#+end_src
** Acknowledgments
- [[https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3][MiniLM Model]] for Asymmetric Text Search. See [[https://www.sbert.net/examples/applications/retrieve_rerank/README.html][SBert Documentation]]
- [[https://github.com/openai/CLIP][OpenAI CLIP Model]] for Image Search. See [[https://www.sbert.net/examples/applications/image-search/README.html][SBert Documentation]]
- Charles Cave for [[http://members.optusnet.com.au/~charles57/GTD/orgnode.html][OrgNode Parser]]