mapnik/src/warp.cpp

349 lines
14 KiB
C++
Raw Normal View History

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
2021-01-05 15:39:07 +01:00
* Copyright (C) 2021 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
// mapnik
#include <mapnik/warp.hpp>
#include <mapnik/config.hpp>
#include <mapnik/image.hpp>
#include <mapnik/image_scaling_traits.hpp>
#include <mapnik/image_util.hpp>
#include <mapnik/geometry/box2d.hpp>
#include <mapnik/view_transform.hpp>
2013-01-28 05:53:37 +01:00
#include <mapnik/raster.hpp>
#include <mapnik/proj_transform.hpp>
#include <mapnik/safe_cast.hpp>
#include <mapnik/warning.hpp>
MAPNIK_DISABLE_WARNING_PUSH
#include <mapnik/warning_ignore_agg.hpp>
#include "agg_image_filters.h"
#include "agg_trans_bilinear.h"
#include "agg_span_interpolator_linear.h"
#include "agg_span_image_filter_rgba.h"
#include "agg_rendering_buffer.h"
#include "agg_pixfmt_rgba.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_basics.h"
2014-09-11 17:49:00 +02:00
#include "agg_scanline_bin.h"
#include "agg_renderer_scanline.h"
#include "agg_span_allocator.h"
#include "agg_image_accessors.h"
#include "agg_renderer_scanline.h"
MAPNIK_DISABLE_WARNING_POP
2011-09-16 16:57:40 +02:00
namespace mapnik {
template<typename T>
struct pixel_format
{
using type = typename detail::agg_scaling_traits<T>::pixfmt_pre;
};
template<>
struct pixel_format<image_rgba8>
{
struct src_blender
{
using color_type = agg::rgba8;
using order_type = agg::order_rgba;
using value_type = typename color_type::value_type;
static inline void
blend_pix(unsigned /*op*/, value_type* p, unsigned cr, unsigned cg, unsigned cb, unsigned ca, unsigned cover)
{
agg::comp_op_rgba_src<color_type, order_type>::blend_pix(p, cr, cg, cb, ca, cover);
}
};
// Use comp_op_src to fix seams between faces of the mesh
using type = agg::pixfmt_custom_blend_rgba<src_blender, agg::rendering_buffer>;
};
template<typename T>
MAPNIK_DECL void warp_image(T& target,
T const& source,
proj_transform const& prj_trans,
box2d<double> const& target_ext,
box2d<double> const& source_ext,
double offset_x,
double offset_y,
unsigned mesh_size,
scaling_method_e scaling_method,
double filter_factor,
boost::optional<double> const& nodata_value)
{
using image_type = T;
using pixel_type = typename image_type::pixel_type;
using pixfmt_pre = typename detail::agg_scaling_traits<image_type>::pixfmt_pre;
using color_type = typename detail::agg_scaling_traits<image_type>::color_type;
using output_pixfmt_type = typename pixel_format<T>::type;
using renderer_base = agg::renderer_base<output_pixfmt_type>;
using interpolator_type = typename detail::agg_scaling_traits<image_type>::interpolator_type;
constexpr std::size_t pixel_size = sizeof(pixel_type);
view_transform ts(source.width(), source.height(), source_ext);
view_transform tt(target.width(), target.height(), target_ext, offset_x, offset_y);
std::size_t mesh_nx = std::ceil(source.width() / double(mesh_size) + 1);
std::size_t mesh_ny = std::ceil(source.height() / double(mesh_size) + 1);
image_gray64f xs(mesh_nx, mesh_ny, false);
image_gray64f ys(mesh_nx, mesh_ny, false);
// Precalculate reprojected mesh
for (std::size_t j = 0; j < mesh_ny; ++j)
{
for (std::size_t i = 0; i < mesh_nx; ++i)
{
xs(i, j) = std::min(i * mesh_size, source.width());
ys(i, j) = std::min(j * mesh_size, source.height());
ts.backward(&xs(i, j), &ys(i, j));
}
}
prj_trans.backward(xs.data(), ys.data(), nullptr, mesh_nx * mesh_ny);
agg::rasterizer_scanline_aa<> rasterizer;
2014-09-11 17:49:00 +02:00
agg::scanline_bin scanline;
agg::rendering_buffer buf(target.bytes(), target.width(), target.height(), target.width() * pixel_size);
output_pixfmt_type pixf(buf);
2013-07-24 00:46:40 +02:00
renderer_base rb(pixf);
rasterizer.clip_box(0, 0, target.width(), target.height());
agg::rendering_buffer buf_tile(const_cast<unsigned char*>(source.bytes()),
source.width(),
source.height(),
source.width() * pixel_size);
pixfmt_pre pixf_tile(buf_tile);
using img_accessor_type = agg::image_accessor_clone<pixfmt_pre>;
img_accessor_type ia(pixf_tile);
agg::span_allocator<color_type> sa;
// Project mesh cells into target interpolating raster inside each one
for (std::size_t j = 0; j < mesh_ny - 1; ++j)
{
for (std::size_t i = 0; i < mesh_nx - 1; ++i)
{
double polygon[8] = {xs(i, j),
ys(i, j),
xs(i + 1, j),
ys(i + 1, j),
xs(i + 1, j + 1),
ys(i + 1, j + 1),
xs(i, j + 1),
ys(i, j + 1)};
tt.forward(polygon + 0, polygon + 1);
tt.forward(polygon + 2, polygon + 3);
tt.forward(polygon + 4, polygon + 5);
tt.forward(polygon + 6, polygon + 7);
rasterizer.reset();
rasterizer.move_to_d(std::floor(polygon[0]), std::floor(polygon[1]));
rasterizer.line_to_d(std::floor(polygon[2]), std::floor(polygon[3]));
rasterizer.line_to_d(std::floor(polygon[4]), std::floor(polygon[5]));
rasterizer.line_to_d(std::floor(polygon[6]), std::floor(polygon[7]));
std::size_t x0 = i * mesh_size;
std::size_t y0 = j * mesh_size;
std::size_t x1 = (i + 1) * mesh_size;
std::size_t y1 = (j + 1) * mesh_size;
x1 = std::min(x1, source.width());
y1 = std::min(y1, source.height());
agg::trans_affine tr(polygon, x0, y0, x1, y1);
if (tr.is_valid())
{
interpolator_type interpolator(tr);
if (scaling_method == SCALING_NEAR)
{
using span_gen_type = typename detail::agg_scaling_traits<image_type>::span_image_filter;
span_gen_type sg(ia, interpolator);
agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg);
}
else
{
using span_gen_type = typename detail::agg_scaling_traits<image_type>::span_image_resample_affine;
agg::image_filter_lut filter;
2014-12-17 14:24:58 +01:00
detail::set_scaling_method(filter, scaling_method, filter_factor);
boost::optional<typename span_gen_type::value_type> nodata;
if (nodata_value)
{
nodata = safe_cast<typename span_gen_type::value_type>(*nodata_value);
}
span_gen_type sg(ia, interpolator, filter, nodata);
agg::render_scanlines_bin(rasterizer, scanline, rb, sa, sg);
}
}
}
}
}
2014-12-17 14:24:58 +01:00
namespace detail {
struct warp_image_visitor
{
warp_image_visitor(raster& target_raster,
proj_transform const& prj_trans,
box2d<double> const& source_ext,
double offset_x,
double offset_y,
unsigned mesh_size,
scaling_method_e scaling_method,
double filter_factor,
boost::optional<double> const& nodata_value)
: target_raster_(target_raster)
, prj_trans_(prj_trans)
, source_ext_(source_ext)
, offset_x_(offset_x)
, offset_y_(offset_y)
, mesh_size_(mesh_size)
, scaling_method_(scaling_method)
, filter_factor_(filter_factor)
, nodata_value_(nodata_value)
{}
void operator()(image_null const&) const {}
template<typename T>
void operator()(T const& source) const
{
using image_type = T;
// source and target image data types must match
if (target_raster_.data_.template is<image_type>())
{
image_type& target = util::get<image_type>(target_raster_.data_);
warp_image(target,
source,
prj_trans_,
target_raster_.ext_,
source_ext_,
offset_x_,
offset_y_,
mesh_size_,
scaling_method_,
filter_factor_,
nodata_value_);
}
}
raster& target_raster_;
proj_transform const& prj_trans_;
box2d<double> const& source_ext_;
double offset_x_;
double offset_y_;
unsigned mesh_size_;
scaling_method_e scaling_method_;
double filter_factor_;
boost::optional<double> const& nodata_value_;
};
} // namespace detail
void reproject_and_scale_raster(raster& target,
raster const& source,
proj_transform const& prj_trans,
double offset_x,
double offset_y,
unsigned mesh_size,
scaling_method_e scaling_method,
boost::optional<double> const& nodata_value)
{
detail::warp_image_visitor warper(target,
prj_trans,
source.ext_,
offset_x,
offset_y,
mesh_size,
scaling_method,
source.get_filter_factor(),
nodata_value);
util::apply_visitor(warper, source.data_);
}
void reproject_and_scale_raster(raster& target,
raster const& source,
proj_transform const& prj_trans,
double offset_x,
double offset_y,
unsigned mesh_size,
scaling_method_e scaling_method)
{
reproject_and_scale_raster(target,
source,
prj_trans,
offset_x,
offset_y,
mesh_size,
scaling_method,
boost::optional<double>());
}
template MAPNIK_DECL void warp_image(image_rgba8&,
image_rgba8 const&,
proj_transform const&,
box2d<double> const&,
box2d<double> const&,
double,
double,
unsigned,
scaling_method_e,
double,
boost::optional<double> const&);
template MAPNIK_DECL void warp_image(image_gray8&,
image_gray8 const&,
proj_transform const&,
box2d<double> const&,
box2d<double> const&,
double,
double,
unsigned,
scaling_method_e,
double,
boost::optional<double> const&);
template MAPNIK_DECL void warp_image(image_gray16&,
image_gray16 const&,
proj_transform const&,
box2d<double> const&,
box2d<double> const&,
double,
double,
unsigned,
scaling_method_e,
double,
boost::optional<double> const&);
template MAPNIK_DECL void warp_image(image_gray32f&,
image_gray32f const&,
proj_transform const&,
box2d<double> const&,
box2d<double> const&,
double,
double,
unsigned,
scaling_method_e,
double,
boost::optional<double> const&);
} // namespace mapnik