mapnik/src/image_scaling.cpp

386 lines
14 KiB
C++
Raw Normal View History

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2011 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
// mapnik
#include <mapnik/image_data.hpp>
#include <mapnik/image_scaling.hpp>
// does not handle alpha correctly
//#include <mapnik/span_image_filter.hpp>
// boost
#include <boost/assign/list_of.hpp>
#include <boost/bimap.hpp>
// agg
#include "agg_image_accessors.h"
#include "agg_pixfmt_rgba.h"
2013-07-23 22:45:25 +00:00
#include "agg_color_rgba.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_renderer_scanline.h"
#include "agg_rendering_buffer.h"
#include "agg_scanline_u.h"
#include "agg_span_allocator.h"
#include "agg_span_image_filter_rgba.h"
#include "agg_span_interpolator_linear.h"
#include "agg_trans_affine.h"
#include "agg_image_filters.h"
namespace mapnik
{
typedef boost::bimap<scaling_method_e, std::string> scaling_method_lookup_type;
static const scaling_method_lookup_type scaling_lookup = boost::assign::list_of<scaling_method_lookup_type::relation>
(SCALING_NEAR,"near")
(SCALING_BILINEAR,"bilinear")
(SCALING_BICUBIC,"bicubic")
(SCALING_SPLINE16,"spline16")
(SCALING_SPLINE36,"spline36")
(SCALING_HANNING,"hanning")
(SCALING_HAMMING,"hamming")
(SCALING_HERMITE,"hermite")
(SCALING_KAISER,"kaiser")
(SCALING_QUADRIC,"quadric")
(SCALING_CATROM,"catrom")
(SCALING_GAUSSIAN,"gaussian")
(SCALING_BESSEL,"bessel")
(SCALING_MITCHELL,"mitchell")
(SCALING_SINC,"sinc")
(SCALING_LANCZOS,"lanczos")
(SCALING_BLACKMAN,"blackman")
(SCALING_BILINEAR8,"bilinear8")
;
boost::optional<scaling_method_e> scaling_method_from_string(std::string const& name)
{
boost::optional<scaling_method_e> mode;
scaling_method_lookup_type::right_const_iterator right_iter = scaling_lookup.right.find(name);
if (right_iter != scaling_lookup.right.end())
{
mode.reset(right_iter->second);
}
return mode;
}
boost::optional<std::string> scaling_method_to_string(scaling_method_e scaling_method)
{
boost::optional<std::string> mode;
scaling_method_lookup_type::left_const_iterator left_iter = scaling_lookup.left.find(scaling_method);
if (left_iter != scaling_lookup.left.end())
{
mode.reset(left_iter->second);
}
return mode;
}
// this has been replaced by agg impl - see https://github.com/mapnik/mapnik/issues/656
template <typename Image>
void scale_image_bilinear_old (Image & target,Image const& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned out=0;
unsigned t = 0;
for(int i=0; i<4; i++){
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
// channel up
out |= r << t;
t += 8;
a >>= 8;
b >>= 8;
c >>= 8;
d >>= 8;
}
target(x,y)=out;
}
}
}
template <typename Image>
void scale_image_bilinear8 (Image & target,Image const& source, double x_off_f, double y_off_f)
{
int source_width=source.width();
int source_height=source.height();
int target_width=target.width();
int target_height=target.height();
if (source_width<1 || source_height<1 ||
target_width<1 || target_height<1) return;
int x=0,y=0,xs=0,ys=0;
int tw2 = target_width/2;
int th2 = target_height/2;
int offs_x = rint((source_width-target_width-x_off_f*2*source_width)/2);
int offs_y = rint((source_height-target_height-y_off_f*2*source_height)/2);
unsigned yprt, yprt1, xprt, xprt1;
//no scaling or subpixel offset
if (target_height == source_height && target_width == source_width && offs_x == 0 && offs_y == 0){
for (y=0;y<target_height;++y)
target.setRow(y,source.getRow(y),target_width);
return;
}
for (y=0;y<target_height;++y)
{
ys = (y*source_height+offs_y)/target_height;
int ys1 = ys+1;
if (ys1>=source_height)
ys1--;
if (ys<0)
ys=ys1=0;
if (source_height/2<target_height)
yprt = (y*source_height+offs_y)%target_height;
else
yprt = th2;
yprt1 = target_height-yprt;
for (x=0;x<target_width;++x)
{
xs = (x*source_width+offs_x)/target_width;
if (source_width/2<target_width)
xprt = (x*source_width+offs_x)%target_width;
else
xprt = tw2;
xprt1 = target_width-xprt;
int xs1 = xs+1;
if (xs1>=source_width)
xs1--;
if (xs<0)
xs=xs1=0;
unsigned a = source(xs,ys);
unsigned b = source(xs1,ys);
unsigned c = source(xs,ys1);
unsigned d = source(xs1,ys1);
unsigned p,r,s;
// X axis
p = a&0xff;
r = b&0xff;
if (p!=r)
r = (r*xprt+p*xprt1+tw2)/target_width;
p = c&0xff;
s = d&0xff;
if (p!=s)
s = (s*xprt+p*xprt1+tw2)/target_width;
// Y axis
if (r!=s)
r = (s*yprt+r*yprt1+th2)/target_height;
target(x,y)=(0xff<<24) | (r<<16) | (r<<8) | r;
}
}
}
template <typename Image>
void scale_image_agg(Image & target,
Image const& source,
scaling_method_e scaling_method,
double image_ratio_x,
double image_ratio_y,
double x_off_f,
double y_off_f,
double filter_radius)
{
// "the image filters should work namely in the premultiplied color space"
// http://old.nabble.com/Re:--AGG--Basic-image-transformations-p1110665.html
// "Yes, you need to use premultiplied images only. Only in this case the simple weighted averaging works correctly in the image fitering."
// http://permalink.gmane.org/gmane.comp.graphics.agg/3443
typedef agg::pixfmt_rgba32_pre pixfmt_pre;
typedef agg::renderer_base<pixfmt_pre> renderer_base_pre;
// define some stuff we'll use soon
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
agg::span_allocator<agg::rgba8> sa;
agg::image_filter_lut filter;
// initialize source AGG buffer
agg::rendering_buffer rbuf_src((unsigned char*)source.getBytes(), source.width(), source.height(), source.width() * 4);
pixfmt_pre pixf_src(rbuf_src);
typedef agg::image_accessor_clone<pixfmt_pre> img_src_type;
img_src_type img_src(pixf_src);
// initialize destination AGG buffer (with transparency)
agg::rendering_buffer rbuf_dst((unsigned char*)target.getBytes(), target.width(), target.height(), target.width() * 4);
pixfmt_pre pixf_dst(rbuf_dst);
renderer_base_pre rb_dst_pre(pixf_dst);
rb_dst_pre.clear(agg::rgba(0, 0, 0, 0));
// create a scaling matrix
agg::trans_affine img_mtx;
img_mtx /= agg::trans_affine_scaling(image_ratio_x, image_ratio_y);
// create a linear interpolator for our scaling matrix
typedef agg::span_interpolator_linear<> interpolator_type;
interpolator_type interpolator(img_mtx);
// draw an anticlockwise polygon to render our image into
double scaled_width = target.width();
double scaled_height = target.height();
ras.reset();
ras.move_to_d(x_off_f, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f + scaled_height);
ras.line_to_d(x_off_f, y_off_f + scaled_height);
switch(scaling_method)
{
case SCALING_NEAR:
{
typedef agg::span_image_filter_rgba_nn<img_src_type, interpolator_type> span_gen_type;
span_gen_type sg(img_src, interpolator);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
return;
}
case SCALING_BILINEAR:
case SCALING_BILINEAR8:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_radius), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_radius), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_radius), true); break;
}
// details on various resampling considerations
// http://old.nabble.com/Re%3A-Newbie---texture-p5057255.html
// high quality resampler
typedef agg::span_image_resample_rgba_affine<img_src_type> span_gen_type;
// faster, lower quality
//typedef agg::span_image_filter_rgba<img_src_type,interpolator_type> span_gen_type;
// local, modified agg::span_image_resample_rgba_affine
// dating back to when we were not handling alpha correctly
// and this file helped work around symptoms
// https://github.com/mapnik/mapnik/issues/1489
//typedef mapnik::span_image_resample_rgba_affine<img_src_type> span_gen_type;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
}
template void scale_image_agg<image_data_32>(image_data_32& target,
const image_data_32& source,
scaling_method_e scaling_method,
double image_ratio_x,
double image_ratio_y,
double x_off_f,
double y_off_f,
double filter_radius);
template void scale_image_bilinear_old<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
template void scale_image_bilinear8<image_data_32> (image_data_32& target,const image_data_32& source, double x_off_f, double y_off_f);
}