mapnik/src/image_scaling.cpp

396 lines
16 KiB
C++
Raw Normal View History

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
2014-11-20 15:25:50 +01:00
* Copyright (C) 2014 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
// mapnik
#include <mapnik/image_data.hpp>
#include <mapnik/image_scaling.hpp>
// does not handle alpha correctly
//#include <mapnik/span_image_filter.hpp>
// boost
2014-10-22 01:37:27 +02:00
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedef"
#pragma GCC diagnostic ignored "-Wredeclared-class-member"
#include <boost/assign/list_of.hpp>
#include <boost/bimap.hpp>
2014-10-22 01:37:27 +02:00
#pragma GCC diagnostic pop
// agg
#include "agg_image_accessors.h"
#include "agg_pixfmt_rgba.h"
#include "agg_pixfmt_gray.h"
2013-07-24 00:45:25 +02:00
#include "agg_color_rgba.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_renderer_scanline.h"
#include "agg_rendering_buffer.h"
#include "agg_scanline_u.h"
#include "agg_span_allocator.h"
#include "agg_span_image_filter_gray.h"
#include "agg_span_image_filter_rgba.h"
#include "agg_span_interpolator_linear.h"
#include "agg_trans_affine.h"
#include "agg_image_filters.h"
namespace mapnik
{
using scaling_method_lookup_type = boost::bimap<scaling_method_e, std::string>;
static const scaling_method_lookup_type scaling_lookup = boost::assign::list_of<scaling_method_lookup_type::relation>
(SCALING_NEAR,"near")
(SCALING_BILINEAR,"bilinear")
(SCALING_BICUBIC,"bicubic")
(SCALING_SPLINE16,"spline16")
(SCALING_SPLINE36,"spline36")
(SCALING_HANNING,"hanning")
(SCALING_HAMMING,"hamming")
(SCALING_HERMITE,"hermite")
(SCALING_KAISER,"kaiser")
(SCALING_QUADRIC,"quadric")
(SCALING_CATROM,"catrom")
(SCALING_GAUSSIAN,"gaussian")
(SCALING_BESSEL,"bessel")
(SCALING_MITCHELL,"mitchell")
(SCALING_SINC,"sinc")
(SCALING_LANCZOS,"lanczos")
(SCALING_BLACKMAN,"blackman")
;
boost::optional<scaling_method_e> scaling_method_from_string(std::string const& name)
{
boost::optional<scaling_method_e> mode;
scaling_method_lookup_type::right_const_iterator right_iter = scaling_lookup.right.find(name);
if (right_iter != scaling_lookup.right.end())
{
mode.reset(right_iter->second);
}
return mode;
}
boost::optional<std::string> scaling_method_to_string(scaling_method_e scaling_method)
{
boost::optional<std::string> mode;
scaling_method_lookup_type::left_const_iterator left_iter = scaling_lookup.left.find(scaling_method);
if (left_iter != scaling_lookup.left.end())
{
mode.reset(left_iter->second);
}
return mode;
}
void scale_image_agg(image_data_rgba8 & target,
image_data_rgba8 const& source,
scaling_method_e scaling_method,
double image_ratio_x,
double image_ratio_y,
double x_off_f,
double y_off_f,
double filter_factor)
{
// "the image filters should work namely in the premultiplied color space"
// http://old.nabble.com/Re:--AGG--Basic-image-transformations-p1110665.html
// "Yes, you need to use premultiplied images only. Only in this case the simple weighted averaging works correctly in the image fitering."
// http://permalink.gmane.org/gmane.comp.graphics.agg/3443
using pixfmt_pre = agg::pixfmt_rgba32_pre;
using renderer_base_pre = agg::renderer_base<pixfmt_pre>;
// define some stuff we'll use soon
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
agg::span_allocator<agg::rgba8> sa;
agg::image_filter_lut filter;
// initialize source AGG buffer
agg::rendering_buffer rbuf_src(const_cast<unsigned char*>(source.getBytes()), source.width(), source.height(), source.width() * 4);
pixfmt_pre pixf_src(rbuf_src);
using img_src_type = agg::image_accessor_clone<pixfmt_pre>;
img_src_type img_src(pixf_src);
// initialize destination AGG buffer (with transparency)
agg::rendering_buffer rbuf_dst(target.getBytes(), target.width(), target.height(), target.width() * 4);
pixfmt_pre pixf_dst(rbuf_dst);
renderer_base_pre rb_dst_pre(pixf_dst);
// create a scaling matrix
agg::trans_affine img_mtx;
img_mtx /= agg::trans_affine_scaling(image_ratio_x, image_ratio_y);
// create a linear interpolator for our scaling matrix
using interpolator_type = agg::span_interpolator_linear<>;
interpolator_type interpolator(img_mtx);
// draw an anticlockwise polygon to render our image into
double scaled_width = target.width();
double scaled_height = target.height();
ras.reset();
ras.move_to_d(x_off_f, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f + scaled_height);
ras.line_to_d(x_off_f, y_off_f + scaled_height);
switch(scaling_method)
{
case SCALING_NEAR:
{
using span_gen_type = agg::span_image_filter_rgba_nn<img_src_type, interpolator_type>;
span_gen_type sg(img_src, interpolator);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
return;
}
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_factor), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_factor), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_factor), true); break;
}
// details on various resampling considerations
// http://old.nabble.com/Re%3A-Newbie---texture-p5057255.html
// high quality resampler
using span_gen_type = agg::span_image_resample_rgba_affine<img_src_type>;
// faster, lower quality
//using span_gen_type = agg::span_image_filter_rgba<img_src_type,interpolator_type>;
// local, modified agg::span_image_resample_rgba_affine
// dating back to when we were not handling alpha correctly
// and this file helped work around symptoms
// https://github.com/mapnik/mapnik/issues/1489
//using span_gen_type = mapnik::span_image_resample_rgba_affine<img_src_type>;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
}
void scale_image_agg(image_data_gray32f & target,
image_data_gray32f const& source,
scaling_method_e scaling_method,
double image_ratio_x,
double image_ratio_y,
double x_off_f,
double y_off_f,
double filter_factor)
{
using pixfmt_pre = agg::pixfmt_gray32_pre;
using renderer_base_pre = agg::renderer_base<pixfmt_pre>;
// define some stuff we'll use soon
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
agg::span_allocator<agg::gray32> sa;
agg::image_filter_lut filter;
// initialize source AGG buffer
agg::rendering_buffer rbuf_src(const_cast<unsigned char*>(source.getBytes()), source.width(), source.height(), source.width() * 4);
pixfmt_pre pixf_src(rbuf_src);
using img_src_type = agg::image_accessor_clone<pixfmt_pre>;
img_src_type img_src(pixf_src);
// initialize destination AGG buffer (with transparency)
agg::rendering_buffer rbuf_dst(target.getBytes(), target.width(), target.height(), target.width() * 4);
pixfmt_pre pixf_dst(rbuf_dst);
renderer_base_pre rb_dst_pre(pixf_dst);
// create a scaling matrix
agg::trans_affine img_mtx;
img_mtx /= agg::trans_affine_scaling(image_ratio_x, image_ratio_y);
// create a linear interpolator for our scaling matrix
using interpolator_type = agg::span_interpolator_linear<>;
interpolator_type interpolator(img_mtx);
// draw an anticlockwise polygon to render our image into
double scaled_width = target.width();
double scaled_height = target.height();
ras.reset();
ras.move_to_d(x_off_f, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f + scaled_height);
ras.line_to_d(x_off_f, y_off_f + scaled_height);
switch(scaling_method)
{
case SCALING_NEAR:
{
using span_gen_type = agg::span_image_filter_gray_nn<img_src_type, interpolator_type>;
span_gen_type sg(img_src, interpolator);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
return;
}
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_factor), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_factor), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_factor), true); break;
}
using span_gen_type = agg::span_image_resample_gray_affine<img_src_type>;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
}
void scale_image_agg(image_data_gray16 & target,
image_data_gray16 const& source,
scaling_method_e scaling_method,
double image_ratio_x,
double image_ratio_y,
double x_off_f,
double y_off_f,
double filter_factor)
{
using pixfmt_pre = agg::pixfmt_gray16_pre;
using renderer_base_pre = agg::renderer_base<pixfmt_pre>;
// define some stuff we'll use soon
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
agg::span_allocator<agg::gray16> sa;
agg::image_filter_lut filter;
// initialize source AGG buffer
agg::rendering_buffer rbuf_src(const_cast<unsigned char*>(source.getBytes()), source.width(), source.height(), source.width() * 2);
pixfmt_pre pixf_src(rbuf_src);
using img_src_type = agg::image_accessor_clone<pixfmt_pre>;
img_src_type img_src(pixf_src);
// initialize destination AGG buffer (with transparency)
agg::rendering_buffer rbuf_dst(target.getBytes(), target.width(), target.height(), target.width() * 2);
pixfmt_pre pixf_dst(rbuf_dst);
renderer_base_pre rb_dst_pre(pixf_dst);
// create a scaling matrix
agg::trans_affine img_mtx;
img_mtx /= agg::trans_affine_scaling(image_ratio_x, image_ratio_y);
// create a linear interpolator for our scaling matrix
using interpolator_type = agg::span_interpolator_linear<>;
interpolator_type interpolator(img_mtx);
// draw an anticlockwise polygon to render our image into
double scaled_width = target.width();
double scaled_height = target.height();
ras.reset();
ras.move_to_d(x_off_f, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f);
ras.line_to_d(x_off_f + scaled_width, y_off_f + scaled_height);
ras.line_to_d(x_off_f, y_off_f + scaled_height);
switch(scaling_method)
{
case SCALING_NEAR:
{
using span_gen_type = agg::span_image_filter_gray_nn<img_src_type, interpolator_type>;
span_gen_type sg(img_src, interpolator);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
return;
}
case SCALING_BILINEAR:
filter.calculate(agg::image_filter_bilinear(), true); break;
case SCALING_BICUBIC:
filter.calculate(agg::image_filter_bicubic(), true); break;
case SCALING_SPLINE16:
filter.calculate(agg::image_filter_spline16(), true); break;
case SCALING_SPLINE36:
filter.calculate(agg::image_filter_spline36(), true); break;
case SCALING_HANNING:
filter.calculate(agg::image_filter_hanning(), true); break;
case SCALING_HAMMING:
filter.calculate(agg::image_filter_hamming(), true); break;
case SCALING_HERMITE:
filter.calculate(agg::image_filter_hermite(), true); break;
case SCALING_KAISER:
filter.calculate(agg::image_filter_kaiser(), true); break;
case SCALING_QUADRIC:
filter.calculate(agg::image_filter_quadric(), true); break;
case SCALING_CATROM:
filter.calculate(agg::image_filter_catrom(), true); break;
case SCALING_GAUSSIAN:
filter.calculate(agg::image_filter_gaussian(), true); break;
case SCALING_BESSEL:
filter.calculate(agg::image_filter_bessel(), true); break;
case SCALING_MITCHELL:
filter.calculate(agg::image_filter_mitchell(), true); break;
case SCALING_SINC:
filter.calculate(agg::image_filter_sinc(filter_factor), true); break;
case SCALING_LANCZOS:
filter.calculate(agg::image_filter_lanczos(filter_factor), true); break;
case SCALING_BLACKMAN:
filter.calculate(agg::image_filter_blackman(filter_factor), true); break;
}
using span_gen_type = agg::span_image_resample_gray_affine<img_src_type>;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(ras, sl, rb_dst_pre, sa, sg);
}
}