mapnik/src/text/vertex_cache.cpp

410 lines
12 KiB
C++
Raw Normal View History

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2013 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
// mapnik
2014-08-27 04:23:24 +02:00
#include <mapnik/global.hpp>
#include <mapnik/text/vertex_cache.hpp>
#include <mapnik/offset_converter.hpp>
namespace mapnik
{
double vertex_cache::current_segment_angle()
{
return std::atan2(-(current_segment_->pos.y - segment_starting_point_.y),
current_segment_->pos.x - segment_starting_point_.x);
}
double vertex_cache::angle(double width)
{
// IMPORTANT NOTE: See note about coordinate systems in placement_finder::find_point_placement()
// for imformation about why the y axis is inverted!
double tmp = width + position_in_segment_;
if ((tmp <= current_segment_->length) && (tmp >= 0))
{
//Only calculate angle on request as it is expensive
if (!angle_valid_)
{
angle_ = current_segment_angle();
}
2014-08-21 08:42:10 +02:00
}
else
{
scoped_state s(*this);
if (move(width))
{
pixel_position const& old_pos = s.get_state().position();
return std::atan2(-(current_position_.y - old_pos.y),
current_position_.x - old_pos.x);
}
else
{
s.restore();
angle_ = current_segment_angle();
}
}
return width >= 0 ? angle_ : angle_ + M_PI;
}
bool vertex_cache::next_subpath()
{
if (!initialized_)
{
current_subpath_ = subpaths_.begin();
initialized_ = true;
2014-08-21 08:42:10 +02:00
}
else
{
current_subpath_++;
}
if (current_subpath_ == subpaths_.end()) return false;
rewind_subpath(); //Initialize position values
return true;
}
void vertex_cache::rewind_subpath()
{
current_segment_ = current_subpath_->vector.begin();
//All subpaths contain at least one segment (i.e. the starting point)
segment_starting_point_ = current_position_ = current_segment_->pos;
position_in_segment_ = 0;
angle_valid_ = false;
position_ = 0;
}
void vertex_cache::reset()
{
initialized_ = false;
}
bool vertex_cache::next_segment()
{
segment_starting_point_ = current_segment_->pos; //Next segments starts at the end of the current one
if (current_segment_ == current_subpath_->vector.end()) return false;
current_segment_++;
angle_valid_ = false;
if (current_segment_ == current_subpath_->vector.end()) return false;
return true;
}
bool vertex_cache::previous_segment()
{
if (current_segment_ == current_subpath_->vector.begin()) return false;
current_segment_--;
angle_valid_ = false;
if (current_segment_ == current_subpath_->vector.begin())
{
//First segment is special
segment_starting_point_ = current_segment_->pos;
return true;
}
segment_starting_point_ = (current_segment_-1)->pos;
return true;
}
vertex_cache & vertex_cache::get_offseted(double offset, double region_width)
{
2014-08-31 00:13:34 +02:00
if (std::fabs(offset) < 0.01)
{
return *this;
}
vertex_cache_ptr offseted_line;
offseted_lines_map::iterator pos = offseted_lines_.find(offset);
if (pos != offseted_lines_.end())
{
offseted_line = pos->second;
2014-08-21 08:42:10 +02:00
}
else
{
offset_converter<vertex_cache> converter(*this);
converter.set_offset(offset);
offseted_line = vertex_cache_ptr(new vertex_cache(converter));
}
offseted_line->reset();
offseted_line->next_subpath(); //TODO: Multiple subpath support
// find the point on the offset line closest to the current position,
// which we'll use to make the offset line aligned to this one.
double seek = offseted_line->position_closest_to(current_position_);
offseted_line->move(seek);
offseted_lines_[offset] = offseted_line;
return *offseted_line;
}
2014-08-21 08:42:10 +02:00
inline double dist_sq(pixel_position const &d)
{
return d.x*d.x + d.y*d.y;
}
double vertex_cache::position_closest_to(pixel_position const &target_pos)
{
bool first = true;
pixel_position old_pos, new_pos;
double lin_pos = 0.0, min_pos = 0.0, min_dist_sq = std::numeric_limits<double>::max();
// find closest approach of each individual segment to the
// target position. would be good if there were some kind
// of prior, or fast test to avoid calculating on each
// segment, but i can't think of one.
2014-08-21 08:42:10 +02:00
for (segment const &seg : current_subpath_->vector)
{
if (first)
{
old_pos = seg.pos;
min_pos = lin_pos;
min_dist_sq = dist_sq(target_pos - old_pos);
first = false;
2014-08-21 08:42:10 +02:00
}
else
{
new_pos = seg.pos;
pixel_position d = new_pos - old_pos;
2014-08-21 08:42:10 +02:00
if ((d.x != 0.0) || (d.y != 0))
{
pixel_position c = target_pos - old_pos;
double t = (c.x * d.x + c.y * d.y) / dist_sq(d);
2014-08-21 08:42:10 +02:00
if ((t >= 0.0) && (t <= 1.0))
{
pixel_position pt = (d * t) + old_pos;
double pt_dist_sq = dist_sq(target_pos - pt);
2014-08-21 08:42:10 +02:00
if (pt_dist_sq < min_dist_sq)
{
min_dist_sq = pt_dist_sq;
min_pos = lin_pos + seg.length * t;
}
}
}
old_pos = new_pos;
lin_pos += seg.length;
double end_dist_sq = dist_sq(target_pos - old_pos);
2014-08-21 08:42:10 +02:00
if (end_dist_sq < min_dist_sq)
{
min_dist_sq = end_dist_sq;
min_pos = lin_pos;
}
}
}
return min_pos;
}
bool vertex_cache::forward(double length)
{
if (length < 0)
{
MAPNIK_LOG_ERROR(vertex_cache) << "vertex_cache::forward() called with negative argument!\n";
return false;
}
return move(length);
}
bool vertex_cache::backward(double length)
{
if (length < 0)
{
MAPNIK_LOG_ERROR(vertex_cache) << "vertex_cache::backward() called with negative argument!\n";
return false;
}
return move(-length);
}
bool vertex_cache::move(double length)
{
if (current_segment_ == current_subpath_->vector.end()) return false;
position_ += length;
length += position_in_segment_;
while (length >= current_segment_->length)
{
length -= current_segment_->length;
if (!next_segment()) return false; //Skip all complete segments
}
while (length < 0)
{
if (!previous_segment()) return false;
length += current_segment_->length;
}
double factor = length / current_segment_->length;
position_in_segment_ = length;
current_position_ = segment_starting_point_ + (current_segment_->pos - segment_starting_point_) * factor;
return true;
}
bool vertex_cache::move_to_distance(double distance)
{
if (current_segment_ == current_subpath_->vector.end()) return false;
double position_in_segment = position_in_segment_ + distance;
if (position_in_segment < .0 || position_in_segment >= current_segment_->length)
{
// If there isn't enough distance left on this segment
// then we need to search until we find the line segment that ends further than distance away
double abs_distance = std::abs(distance);
double new_abs_distance = .0;
pixel_position inner_pos; // Inside circle.
pixel_position outer_pos; // Outside circle.
position_ -= position_in_segment_;
if (distance > .0)
{
do
{
position_ += current_segment_->length;
if (!next_segment()) return false;
new_abs_distance = (current_position_ - current_segment_->pos).length();
}
while (new_abs_distance < abs_distance);
inner_pos = segment_starting_point_;
outer_pos = current_segment_->pos;
}
else
{
do
{
if (!previous_segment()) return false;
position_ -= current_segment_->length;
new_abs_distance = (current_position_ - segment_starting_point_).length();
}
while (new_abs_distance < abs_distance);
inner_pos = current_segment_->pos;
outer_pos = segment_starting_point_;
}
find_line_circle_intersection(current_position_.x, current_position_.y, abs_distance,
inner_pos.x, inner_pos.y, outer_pos.x, outer_pos.y,
current_position_.x, current_position_.y);
position_in_segment_ = (current_position_ - segment_starting_point_).length();
position_ += position_in_segment_;
}
else
{
position_ += distance;
distance += position_in_segment_;
double factor = distance / current_segment_->length;
position_in_segment_ = distance;
current_position_ = segment_starting_point_ + (current_segment_->pos - segment_starting_point_) * factor;
}
return true;
}
void vertex_cache::rewind(unsigned)
{
vertex_subpath_ = subpaths_.begin();
vertex_segment_ = vertex_subpath_->vector.begin();
}
unsigned vertex_cache::vertex(double *x, double *y)
{
if (vertex_segment_ == vertex_subpath_->vector.end())
{
vertex_subpath_++;
if (vertex_subpath_ == subpaths_.end()) return agg::path_cmd_stop;
vertex_segment_ = vertex_subpath_->vector.begin();
}
*x = vertex_segment_->pos.x;
*y = vertex_segment_->pos.y;
unsigned cmd = (vertex_segment_ == vertex_subpath_->vector.begin()) ? agg::path_cmd_move_to : agg::path_cmd_line_to;
vertex_segment_++;
return cmd;
}
vertex_cache::state vertex_cache::save_state() const
{
state s;
s.current_segment = current_segment_;
s.position_in_segment = position_in_segment_;
s.current_position = current_position_;
s.segment_starting_point = segment_starting_point_;
s.position_ = position_;
return s;
}
void vertex_cache::restore_state(state const& s)
{
current_segment_ = s.current_segment;
position_in_segment_ = s.position_in_segment;
current_position_ = s.current_position;
segment_starting_point_ = s.segment_starting_point;
position_ = s.position_;
angle_valid_ = false;
}
void vertex_cache::find_line_circle_intersection(
double cx, double cy, double radius,
double x1, double y1, double x2, double y2,
double & ix, double & iy) const
{
double dx = x2 - x1;
double dy = y2 - y1;
double A = dx * dx + dy * dy;
double B = 2 * (dx * (x1 - cx) + dy * (y1 - cy));
double C = (x1 - cx) * (x1 - cx) + (y1 - cy) * (y1 - cy) - radius * radius;
double det = B * B - 4 * A * C;
if (A <= 1.0e-7 || det < 0)
{
// Should never happen.
// No real solutions.
return;
}
else if (det == 0)
{
// Could potentially happen....
// One solution.
double t = -B / (2 * A);
ix = x1 + t * dx;
iy = y1 + t * dy;
return;
}
else
{
// Two solutions.
// Always use the 1st one
// We only really have one solution here, as we know the line segment will start in the circle and end outside
double t = (-B + std::sqrt(det)) / (2 * A);
ix = x1 + t * dx;
iy = y1 + t * dy;
//t = (-B - std::sqrt(det)) / (2 * A);
//ix = x1 + t * dx;
//iy = y1 + t * dy;
return;
}
}
} //ns mapnik